1 **Q.** Please state your name.

2 A. My name is Richard W. Anderson.

3 Q. What is your business address and by whom are you employed?

4 A. My business address is 1407 W North Temple Street, Salt Lake City, Utah. I am
5 employed by Rocky Mountain Power Company (the "Company").

Q. What is your position with Rocky Mountain Power Company and what are your responsibilities?

8 A. My current position is Manager, Load Research in the Metering Business Unit. I am 9 responsible for the development of all class load profile estimates utilized in cost 10 allocation, rate design, forecasting and special studies. I direct the design, 11 implementation, and maintenance of all load studies performed by both Rocky 12 Mountain Power and Pacific Power Companies. I am responsible for the 13 development of load coincidence factors and for the determination of the distribution 14 system peak for the Company.

15 Q. What is your educational and work experience?

A. I have a Bachelors Degree in Accounting from the University of Utah. I have over
30-years of experience with the Company in the areas of accounting, auditing, and
load research (27-years). I served as Chair and Co-Chair of the Western Load
Research Association and as Sub-Committee Chair of the Association of Edison
Electric Companies (AEIC) Load Research Committee. I co-authored past and
current editions of the AEIC Load Research Manual and have been an instructor at
AEIC Load Research training courses.

Page 1 – Rebuttal Testimony of Richard W. Anderson

23 **Purpose and Summary of Testimony**

24 Q. What is the purpose of your rebuttal testimony?

A. My rebuttal testimony is in response to the Testimony of Committee of Consumer Services witness Anthony Yankel. My rebuttal focuses on the method Mr. Yankel used to calculate the load factor data presented in his testimony. I will then present a more appropriate representation of load factor data by usage level.

29 Load Factors

30 Q. Do you agree with Mr. Yankel's representation of the average coincident peak 31 load factors presented on pages 4 and 5 of his testimony?

32 A. No. Mr. Yankel's load factor calculations misrepresent and distort actual customer 33 usage patterns in favor of his analysis and resulting recommendations. Mr. Yankel 34 has erroneously determined the average coincident load factor for each usage level by 35 taking a simple average of the average load factors for each sample customer. This is not a sound mathematic process, is empirically incorrect, and when used will produce 36 37 incorrect results. The correct approach, which is consistent with how load research 38 estimates are universally prepared, is to calculate the aggregate or weighted average 39 load factor for the customers in the load size grouping. Under this approach, load 40 factors are derived using average weighted energy consumption per customer in each 41 load size group, divided by the hours in the period of interest, divided by average 42 weighted coincident demand per customer in the load size group.

43 Q. How were you able to determine that Mr. Yankel's methodology is flawed?

44 A. Using the same data files that Mr. Yankel used, and through some trial and error, our
45 analysts were able to exactly replicate Mr. Yankel's results.

Page 2 – Rebuttal Testimony of Richard W. Anderson

46 Q. Apart from averaging the average factors are there other problems with Mr.

47

Yankel's methodology?

A. Yes; I take issue with two other aspects of Mr. Yankel's approach. Before I address
these issues, it should be noted that Mr. Yankel's approach effectively post-stratifies
the current load research sample in an attempt to estimate loads for usage blocks, or
strata, for his analysis. This approach is reasonable if done correctly. I take issue
with these two aspects of Mr. Yankel's method:

- After segregating the load research customers for the residential class, Mr. Yankel neglected to appropriately weight the customer data to more reasonably reflect the number of customers represented by the stratified load groups.
- Mr. Yankel's methodology re-assigns sample customers to different
 segregated groups or strata, for each month depending on their usage. Load
 research practitioners refer to customer movement between stratified groups as
 strata migration; a condition that should be minimized because of its distorting
 impact on calculated sample estimates.

Q. Relative to weight factors; have you calculated appropriate weight factors for the stratified usage groups in Mr. Yankel's testimony?

A. Yes; these weight factors are presented in Table 1 below:

	Tab	ole 1	
Strata Range	Weight Factors	Strata Range	Weight Factors
0-400 kWh	0.28320	0-400 kWh	0.28320
401-600 kWh	0.21422	401-1000 kWh	0.50340
601-1000 kWh	0.28918	>1000 kWh	0.21340
>1000 kWh	0.21340		

Page 3 – Rebuttal Testimony of Richard W. Anderson

- Q. Did Mr. Yankel have access to data from which these weight factors were
 calculated?
- A. Yes; this data was provided by the Company in its response to Data Request CCS 2
 Request 2.5 and again in response to CCS Data Request 29.1.

69 Q. What affect does not weighting this data correctly have on these load factor
70 calculations?

Not weighting the raw load research customer data, or application of incorrect weight 71 A. 72 factors, will result in less precise estimates of the contribution of individual strata to 73 the total class. By not applying weight factors, Mr. Yankel makes the assumption that 74 every residential load research sample customer is an equal representative of the total 75 population (residential class, 650,000 customers). This implies that the small usage 76 sample customer group has equal representation in the total class population as the 77 medium to very large usage sample customer groups. As indicated in Table 1, the 78 numbers of customers represented by the stratified groups used in Mr. Yankel's 79 analysis are not evenly distributed between the strata.

Q. You stated that strata migration exists in Mr. Yankel's analysis and that this causes distortion in the calculated class estimate. Will you please explain this further?

A. Movement of sample customers between strata ignores the natural diversity of the individual sample customer load. This methodology tends to over-emphasize the monthly contribution of the migrated customer to the total stratum load. This distortion can result in either an inappropriate increase or a decrease in the strata contribution to the total class load, depending on the usage pattern of the migrated sustomer.

Page 4 – Rebuttal Testimony of Richard W. Anderson

89 Q. Has the Company produced load factor estimates that are more representative

90 of customer usage groupings being analyzed by Mr. Yankel?

91 A. Yes. These data are presented below.

Table 2

Monthly NonCoincident Peak Load Factor, Sample of 145 Schedule 1 Customers, Summer 2004*						
Average	NCP_LF	NCP_LF	NCP_LF	NCP_LF	NCP_LF	Avg Monthly LF
Monthly Usage	May-04	Jun-04	Jul-04	Aug-04	Sep-04	for Summer
0-400 kWh	12%	12%	15%	15%	14%	14%
401-1000 kWh	17%	19%	22%	20%	17%	19%
> 1000 kWh	23%	25%	31%	29%	23%	26%
0-400 kWh	12%	12%	15%	15%	14%	14
401-600 kWh	16%	17%	19%	17%	16%	17 %
601-1000 kWh	18%	21%	25%	23%	19%	21%
Total	19%	21%	25%	23%	19%	22%

*: Monthly noncoincident peak load factors are developed by first grouping the sample of customers by their monthly usage,

and then calculating the load factors by the dividing the average monthly usage per customer by the average Indiviual Customer Monthly Maximum demand (ICMD).

Monthly Distribution Peak Load Factor. Sample of 145 Schedule 1 Customers. Summer 2004 *

Average	DCP_LF	DCP_LF	DCP_LF	DCP_LF	DCP_LF	Avg Monthly LF
Monthly Usage	Mav-04	Jun-04	Jul-04	Aua-04	Sep-04	for Summer
0-400 kWh	106%	72%	82%	65%	84%	78%
401-1000 kWh	87%	72%	61%	56%	71%	67%
> 1000 kWh	75%	75%	61%	55%	62%	64%
0-400 kWh	106%	72%	82%	65%	84%	78%
401-600 kWh	113%	63%	53%	50%	84%	65%
601-1000 kWh	73%	80%	68%	62%	64%	68%
Total	81%	73%	62%	57%	67%	67%

* : Monthly distribution peak load factors are developed by first grouping the sample of customers by their monthly usage, and

then calculating load factors by the dividing the average monthly usage per customer by the average peak load per customer at the time of Utah's distribution system peak.

Monthly Coincident Peak Load Factor. Sample of 145 Schedule 1 Customers. Summer 2004 *

Average	CP_LF	CP_LF	CP_LF	CP_LF	CP_LF	Avg Monthly LF
Monthly Usage	May-04	Jun-04	Jul-04	Aug-04	Sep-04	for Summer
0-400 kWh	85%	84%	73%	71%	77%	77%
401-1000 kWh	78%	62%	71%	57%	66%	66%
> 1000 kWh	69%	65%	66%	58%	51%	61%
0-400 kWh	85%	84%	73%	71%	77%	77%
401-600 kWh	83%	71%	74%	63%	65%	71%
601-1000 kWh	73%	56%	69%	54%	66%	62%
Total	73%	65%	69%	59%	58%	66%

* : Monthly coincident peak load factors are developed by first grouping the sample of customers by their monthly usage, and then calculating coincident load factors by the dividing the average monthly usage per customer by the average peak load per customer at the time of PacifiCorp's system peak.

92

95 Summary	93	Summary
------------	----	---------

94	Q.	You have stated three reasons for concern relative to Mr. Yankel's calculation of
95		load factors and subsequent analysis:
96		a. Averaging the averages
97		b. Inappropriate weighting
98		c. Strata migration
99		Is one of these factors more problematic than the others?
100	A.	Yes; averaging the average load factors is by far the most influential problem and in
101		this case has resulted in load factor estimates that are distorted in a direction that aides
102		Mr. Yankel's analysis but have no basis in fact, are mathematically incorrect, and are
103		intuitively wrong.
104	Q.	Does this complete your rebuttal testimony?
105	•	Vasit doos

105 A. Yes it does.