BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

In the Matter of the Application of PacifiCorp For Approval of Power Purchase Agreement Between PacifiCorp and Spanish Fork Park 2, LLC))))	Docket No. 06-035-76
In the Matter of the Petition of Wasatch Wind, LLC, for Approval of a Contract for the Sale of Capacity and Energy from Their Proposed QF Facilities)))	Docket No. 06-035-42

Direct Testimony of Abdinasir M. Abdulle, Ph.D Division of Public Utilities

January 12, 2007

1	Q:	Please state your name, business address, and employer for the record.
2	A:	My name is Dr. Abdinasir M. Abdulle; my business address is 160 East 300
3		South, Salt Lake City, Utah 84114; I am employed by the Utah Division of Public
4		Utilities ("Division").
5	Q:	On whose behalf are you testifying in these proceedings?
6	A:	I am testifying on behalf of the Division.
7	Q.	What is the purpose of your testimony?
8	A.	The purpose of my testimony is to address the issue of the line loss
9		associated with Spanish Fork Park 2.
10	Q.	Is there a line loss associated with wind QF Resources?
11	A.	Yes. Line loss is a physical reality whenever electric energy flows in a
12		conductor. The extent of the line loss depends on a number of factors
13		including, but not limited to, the distance the power is moved, the capacity
14		of the transmission lines and the ambient temperature. The existence of
15		line loss is independent of the contractual arrangements (firm contracts or
16		non-firm contracts) or intermittence of the power flow from the generator.
17	Q.	What distance is relevant in determining the line loss associated with
18		wind QF resources?
19	A.	It depends on the load the wind QF resource is expected to serve. If the
20		wind QF resource is serving system load, then the relevant distance should
21		be from the metering point to the nearest load center. If it is expected to
22		serve a specific load center, then the relevant distance is from the metering
23		point to that particular load center. In our case, the resource in question is
24		a system resource and serves system load, so the relevant distance should
25		be from the metering point to the nearest load center.
26	Q.	How should line loss costs or benefits be incorporated into the wind
27		QF resource pricing?

2

1	А.	When electric power from a wind QF flows in the system, either another
2		resource or purchase is backed down or power equal to the amount
3		provided by the wind QF resource is sold. Ideally, in either case the line
4		loss associated with the wind QF resource should be compared with the
5		line loss associated with any of the above options. If the line loss
6		associated with the wind QF resource is less or more than the line loss
7		associated with any of the above options, then the price for the wind QF
8		resource must be increased or decreased accordingly.
9	Q.	How does this apply to the current case?
10	A.	It does not. Determining the exact line loss associated with a specific QF
11		is problematic at best. For example, determining which resource is backed
12		down or which sale incurred as a result of the QF coming online in each
13		and every hour will be extremely difficult. For this and other reasons, the
14		Commission, in Docket No. 03-035-14, ordered that for
15		[W]ind QFs up to the Company's IRP target megawatt
16		level of wind resource. The Company's most recent
17		executed wind contract from its Renewable RFP will serve
18		as the proxy against which project specific adjustments are
19		made to produce an indicative price for wind QFs in Utah.
20		Therefore, adjustments for line loss should be based on a comparison
21		between the line loss associated with Spanish Fork Wind Park 2 and the
22		line loss associated with the proxy plant (Wolverine Creek Wind Farm).
23	Q.	In comparing the line loss associated with Spanish Fork and
24		Wolverine, what distance should be considered for a line loss
25		calculation for the Spanish Fork Park 2 and Wolverine Creek Wind
26		Farm?

3

1	A.	As I indicated earlier, the appropriate distance for line loss calculation for
2		any QF is the distance between the metering point and the nearest load
3		centers. As is shown Exhibit 1 (based on Rocky Mountain responses to
4		Wasatch Wind data requests 1.6, 1.13, 2.1, and 4.1), a MW from
5		Wolverine Creek will have to travel on average 5.8 miles from the
6		delivery point to reach a distribution circuit where it would be consumed.
7		Whereas a MW from Spanish Fork Park 2 will have to travel on average
8		9.83 miles from the delivery point to reach a distribution circuit where it
9		would be consumed.
10	Q.	What are the line loss adjustments or credits in Wolverine Creek's
11		case?
12	A.	There are no line loss adjustments considered for Wolverine Creek.
13	Q.	Since there is a difference in the distance between the metering and
14		the nearest load center between Spanish Fork Park 2 and the proxy
15		resource, should line loss adjustments be considered for Spanish Fork
16		Park 2?
17	A.	No. my above analysis does not justify line loss credit fro Spanish Fork
18		Park 2. In fact it suggests just the opposite. However, I don't think that
19		the difference in line loss (no analysis was made to estimate the line loss
20		difference) would be large enough to justify the time and costs associated
21		with a complete line loss study.
22		