BEFORE THE UTAH PUBLIC SERVICE COMMISSION

Pre-filed Direct Testimony

Of

William A. Powell, PhD

On Behalf of

Utah Division of Public Utilities

October 8, 2009

TABLE OF CONTENTS

Introduction	1
Scope of Testimony and Recommendations	2
Wind Integration Costs	4
Net Power Cost Adjustments	14

1	Artie Powell, PhD					
2	Direct Testimony					
3	Division of Public Utilities					
4	Docket No. 09-035-23					
5						
6	Intro	duction				
7	Q:	Please state your name, business address, and employment position for the				
8		record.				
9	A:	My name is William "Artie" Powell; my business address is Heber Wells Building,				
10		160 East 300 South, Salt Lake City, Utah; I am employed by the Utah Division of				
11		Public Utilities ("Division" or "DPU"); my current position is manager of the energy				
12		section.				
13	Would	you please summarize your education and experience?				
14	A:	I hold a doctorate degree in economics from Texas A&M University. Prior to				
15		joining the Division, I taught courses in economics, regression analysis, and				
16		statistics both for undergraduate and graduate students. I joined the Division in				
17		1996 and have since attended several professional courses or conferences dealing				
18		with a variety of regulatory issues including, the NARUC Annual Regulatory Studies				
19		Program (1995) and IPU Advanced Regulatory Studies Program (2005). Since				
20		joining the Division, I have testified or presented information on a variety of topics				
21		including, electric industry restructuring, incentive-based regulation, revenue				
22		decoupling, energy conservation, evaluation of alternative generation projects,				
23		and the cost of capital.				

24 Scope of Testimony and Recommendations

25	Q:	What is the purpose of your testimony in this proceeding?
26	A:	The purpose of my testimony is to discuss the Company's wind integration costs
27		(WIC) included in the net power cost study for this case. Specifically, I take
28		exception to a couple of assumptions or omissions in the Company's WIC study.
29		As explained in Company witness Mr. Greg Duvall's testimony, the WICs can be
30		decomposed into two parts, namely, inter-hour and intra-hour costs. While I am
31		not questioning the methodology the Company used in estimating these costs, I
32		question whether some assumptions or inputs in the intra-hour cost estimates are
33		appropriate. In particular, the Company assumes that the underlying data used to
34		estimate the intra-hour costs are normally distributed. Statistical theory and the
35		sample data employed in the Company's study do not support this assumption.
36		Additionally, the Company's WIC study does not consider the effects that the
37		variation in loads will have on WICs, which other studies have found to be
38		significant. Given these issues, and in addition to the issues discussed in DPU
39		witness Mr. George W. Evans' testimony, the Division is recommending an
40		adjustment to the Company's WICs, which when applied to the GRID model
41		results, will decrease net power costs (NPC). Mr. Evans will provide more detail
42		on this adjustment.

43		I am also recommending NPC adjustments to the Kennecott, Tesoro, and
44		U.S. Magnesium qualifying facility (QF) estimates, as presented in Company
45		witness Mr. Greg N. Duvall's exhibit GND-1.
46	Q:	Do you have a summary of the adjustments and recommendations that you are
47		making in this case?
48	A:	Yes. DPU witness Mr. George Evans discusses in detail the Division's adjustment
49		to the Company's estimated WICs. In brief, because of considerably uncertainty
50		surrounding the Company's intra-hour integration cost estimates, the Division
51		recommends that the Commission disallow these costs and value the WIC at the
52		Company's estimate for the inter-hour costs only.
53		In direct testimony, Company witness Mr. Greg Duvall presents the Company's
54		estimates for WICs. The costs included by the Company in NPC for the inter-hour
55		and intra-hour variation are, respectively, \$2.08 and \$4.83 per megawatt hour. If
56		the WICs are limited to the inter-hour costs, \$2.08 per megawatt hour, NPC
57		decreases by approximately \$20 million system wide, or about \$8 million on a
58		Utah allocated basis.
59		The GRID model used for this filing does not estimate power costs for the
60		Kennecott, Tesoro, or U.S. Magnesium Corp. (U.S. Magnesium) QFs after

61 December 2009. The Power Purchase Agreements (PPAs) for each of these QFs

62 expire on December 31, 2009. However, based on experience, these agreements

63		are likely to be renewed. As a result, these QFs should be included in the
64		Company's NPC estimate for the remaining six months of the test year. Including
65		these QFs in the Company's NPC study increases the Company's Utah allocated
66		NPC by about \$474,456.
67	Wind	Integration Costs
68	Q:	Does the Company describe its WIC study?
69	A:	Yes. The Company provides a description of its WIC cost study and methodology

- in Mr. Duvall's direct testimony and in Appendix F to the Company's 2008
- 71 Integrated Resource Plan (IRP), which is attached to Mr. Duvall's testimony as
- 72 Exhibit RMP_(GND-3), referred to herein as GND-3. According to Mr. Duvall's
- 73 description, the Company's WIC study estimates five cost elements associated
- 74 with integrating intermittent resources. For the inter-hour costs, these elements
- 75 include day-ahead and hour-ahead system balancing costs. For the intra-hour
- 76 costs, these elements include variation (or errors) in hour-ahead forecasts, and
- two defined variations, namely, regulate-up and regulate-down.
- As I previously stated, some assumptions utilized in the intra-hour
 estimates are not well supported by statistical theory or the sample data
- 80 employed by the Company.

Q: Would you please explain the concerns you have with the Company's estimates of the intra-hour integration cost?

83	A:	Yes. The Company utilizes three elements in its WIC study to estimate the intra-
84		hour integration costs. These three elements are (1) the hour-ahead forecast
85		error, (2) regulate-up, and (3) regulate-down. Estimates for each of these
86		elements are developed using hourly data for existing and incremental (or
87		planned) wind resources. The total variation among these elements multiplied by
88		a given critical value determines a required level of incremental reserves. It is the
89		cost of these reserves, as determined in the Company's resource stack model, that
90		constitute the intra-hour integration costs requested by the Company in its rate
91		case filing.
92		As explained by Mr. Duvall in direct testimony, the necessary reserve levels
93		are determined "by multiplying the [intra]-hour standard deviation from all wind
94		projects in each of the three regions in this study by a Z score of 1.96." 1 The
95		standard deviation is the square root of the sum of the associated covariances
96		among the three elements for all of the wind projects. For example, for the East
97		side of PacifiCorp's system (i.e., Utah) the total variation is measured by the sum
98		of the covariances among the three elements for four wind projects: Wolverine
99		Creek, Mountain Wind, Spanish Fork, and a generic incremental wind project. The
100		standard deviation is the square root of this total variation.

¹ Gregory N. Duvall, "Direct Testimony of Gregory N. Duvall: Net Power Costs," Docket No. 09-035-23, June 2009, Exhibit RMP_(GND-3), p. 276.

101		My first concern has to do with the choice of the Z-score or critical value of
102		1.96. As explained by Mr. Duvall in GND-3, the choice of this particular Z-score is
103		meant to represent a 97.5% confidence interval for the observed intra-hour
104		variation and, thus, consistent with the NERC Control Performance Standard $II.^2$
105		The choice of this Z-score, however, is valid only if the underlying data, in this case
106		the three elements for the four wind projects, are normally distributed. Neither
107		statistical theory nor the sample data support the choice of 1.96 as the critical
108		value in this case. Secondly, the Company's WIC study for the intra-hour costs
109		utilizes the covariances among the three elements but does not include the
110		potentially offsetting covariance with loads.
111	Q:	Why do you say that theory does not support the choice of 1.96 as the Z-score?
111 112	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the
111 112 113	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the sample data, in this case, the three elements – the hour-ahead forecast error,
111 112 113 114	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the sample data, in this case, the three elements – the hour-ahead forecast error, regulate-up and regulate-down – are normally distributed. That is, the data
111 112 113 114 115	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the sample data, in this case, the three elements – the hour-ahead forecast error, regulate-up and regulate-down – are normally distributed. That is, the data represent a random sample drawn from a population that is normally distributed.
111 112 113 114 115 116	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the sample data, in this case, the three elements – the hour-ahead forecast error, regulate-up and regulate-down – are normally distributed. That is, the data represent a random sample drawn from a population that is normally distributed. While the forecast error may be normally distributed, it is unlikely that the other
111 112 113 114 115 116 117	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the sample data, in this case, the three elements – the hour-ahead forecast error, regulate-up and regulate-down – are normally distributed. That is, the data represent a random sample drawn from a population that is normally distributed. While the forecast error may be normally distributed, it is unlikely that the other two elements, regulate-up and regulate-down, are normally distributed.
111 112 113 114 115 116 117 118	Q: A:	Why do you say that theory does not support the choice of 1.96 as the Z-score? By choosing 1.96 as the critical value, the Company is implicitly assuming that the sample data, in this case, the three elements – the hour-ahead forecast error, regulate-up and regulate-down – are normally distributed. That is, the data represent a random sample drawn from a population that is normally distributed. While the forecast error may be normally distributed, it is unlikely that the other two elements, regulate-up and regulate-down, are normally distributed.

² GND-3, pp. 271-272.

120	regulate-down is defined as the difference between the maximum output in a
121	given hour measured on ten-minute intervals and the output at the top of the
122	hour,

$$Regulate - Down = Max\{x_0, x_1, x_2, x_3, x_4, x_5\} - x_0$$
(1)

where x_i represents the output (of a wind resource) and the subscript the 10
minute interval within the hour: 0 equals the top of the hour, 1 equals 10 minutes
after the hour, 2 equals twenty minutes after the hour, etc. Similarly, regulate-up
is defined as,

$$Regulate - Up = x_0 - Min\{x_0, x_1, x_2, x_3, x_4, x_5\}$$
(2)

127 Generally, the extreme values for a population or sample would follow a 128 Gumbel distribution that is quite different from the normal distribution. In the 129 case of the maximum, the distribution is skewed to the right meaning, the right 130 tail of the distribution is "fatter," or contains larger probability, than does the right 131 tail of a normal distribution. In other words, in order to capture 97.5% of the 132 values under the Gumbel distribution, the critical value would have to be 133 considerably larger than the 1.96 Z-score used by the Company. For a standard

134	Gumbel distribution, the appropriate critical value for the maximum statistic
135	would be 3.68. ³

136	Given the definitions of regulate-down and regulate-up in Equations 1 and
130	siven the definitions of regulate down and regulate up in Equations 1 and

- 137 2, which restrict the possible values to be equal to or greater than zero, I would
- 138 expect the distributions for both elements to be right-hand skewed. Skewness is a
- 139 measure of how much fatter the tails of the distribution are relative to a
- 140 comparable normal distribution. A right-hand skew implies that the right tail of
- 141 the distribution is fatter, or contains more probability, than a normal distribution.⁴

142 Q: Did you analyze the Company's sample data to determine if your expectation 143 about the skewness in the distributions was correct?

- 144 A: Yes, I did. Summary or descriptive statistics for each of the three elements for
- seven wind plants, three on the East side and four on the West side of PacifiCorp's
- 146 system, are contained in DPU Exhibit 11.1 attached to my testimony.
- 147 Q: Would you please explain your findings?
- A: I would be delighted. Since the pattern of the descriptive statistics is similar for
 each wind plant across the three elements, similar or general conclusions can be
- 150 reached for each of the three elements utilizing one wind project. For example,

³ The percent function for the Gumbel distribution (maximum) is given by the function $F(p) = -\ln[\ln(1/p)]$, where p = 0.975 and ln is the natural log. Alternatively, the critical value can be determined by solving the cumulative distribution function $G(x) = Exp{-Exp(-x)} = 0.975$ for x, where Exp is the exponential function. See Alexander M. Mood, Franklin A Graybill, and Duane C. Boes, "Introduction to the Theory of Statistics," 3^{rd} Edition, [McGraw –Hill: New York, New York], 1974, pp. 118, 182-185, 542.

⁴ John Neter, William Wasserman, G.A. Whitmore, "Applied Statistics," 4th Ed., [Allyn and Bacon: Boston, Massachusetts], 1993, pp. 85-92.

151	the descriptive statistics for Wolverine Creek lend themselves to several
152	observations. First, while the distribution of the forecast error may be somewhat
153	symmetrical around its mean, the distribution is much more peaked than would
154	be expected for a comparable normal distribution. This conclusion is apparent
155	from comparing the mean and median, and analyzing the kurtosis value. Kurtosis
156	is a measure of how "peaked" a distribution is relative to a comparable normal
157	distribution. For convenience, I reproduce some of these summary statistics in
158	Table 1.

159 **Table 1: Summary Statistics, Wolverine Creek**

	Forecast Error	Regulate Up	Regulate Down
Mean	0.0061	2.6510	2.7207
Median	0.0457	0.7211	0.7632
Standard Deviation	10.1214	4.5975	4.6550
Kurtosis	4.1605	16.9026	18.3031
Skewness	-0.1432	3.3733	3.4145
Count	10,197	10,199	10,199

For a normal distribution, the mean and the median would be approximately the same, and both the skewness and kurtosis values would be zero.⁵ As can be seen in Table 1, the skewness value for the forecast error does not appear to be significantly different from zero and, even though the median is

⁵ For a normal distribution, the population mean and the median are the same value. The population skewness is equal to the third moment (or expected value, E) of the distribution about the mean: $E[(X - \mu)]^3$, which for a normal distribution is equal to zero. The kurtosis is defined as the fourth moment of the distribution about the mean: $E[(X - \mu)^4]$, which for a normal distribution is equal to three (3). Many statistical packages such as Excel[©] define kurtosis as the difference between the fourth moment and three, thus, the value for a normally distributed sample would be approximately zero.

165		error is approximately symmetrically distributed around the mean, as would a
166		normal distribution. However, the kurtosis value of 4.2 indicates that the
167		distribution is much more peaked than a normal distribution.
168		Second, the summary statistics for the regulate-up and regulate-down
169		elements appear to be similar. For example in the case of Wolverine Creek, the
170		mean is larger than the median by a factor of ten, which would lead one to
171		conclude that the distribution of these two elements has a right-hand skew.
172		Unlike the forecast error, the skewness value, which appears to be significantly
173		greater than zero, supports this conclusion. Additionally, the kurtosis values also
174		appear to be significantly greater than zero. Therefore, I conclude that neither the
175		regulate-up nor regulate-down elements are likely to have a normal distribution.
176	Q:	Do you have any other observations concerning your analysis of the three
177	•	elements, namely, the forecast error, regulate-up or regulate-down?
178	A:	Yes. I used the sample data for Wolverine Creek from the Company's WIC study
179		to construct a histogram, or an estimate, of the distribution for each of these
180		elements. In each case, the histogram reflects the conclusions drawn from the
181		summary statistics. The relative histogram for the forecast error is in Figure 1. In
182		this graph for the forecast error, I have also superimposed a comparable normal

larger than the mean by a factor of ten (10), I would conclude that the forecast

164

183 distribution, a normal distribution with the same mean and variance as the

184 forecast error. As can be seen in the graph, the distribution for the forecast error,

185 while relatively symmetric around the mean, is significantly more peaked than the

186 normal distribution.

187 Figure 1: Forecast Error Distribution, Wolverine Creek

189	A similar depiction of the relative histogram for the regulate-up element
190	for Wolverine Creek is shown in Figure 2. Again, the histogram supports the
191	conclusions drawn from the summary statistics. The distribution is considerably
192	skewed to the right and more peaked than the normal distribution.

193 Figure 2: Regulate-Up Distribution, Wolverine Creek

195 Q: With regard to the Company's WIC study, would you summarize your

196 conclusions and recommendations?

197	A:	Yes. Based on my analysis of the data provided in the Company's WIC study, I
198		conclude that the sample data is not normally distributed and, therefore, the
199		Company's assumption or use of a 1.96 Z-score to determine the amount of
200		needed incremental reserves is invalid. Thus, the Company's estimate of the
201		necessary intra-hour WIC included in its net power costs for this case are not
202		reliable. The Division recommends that the Commission allow only the WIC
203		associated with the inter-hour variation, which Company witness Mr. Duvall
204		indentifies as \$2.08 per megawatt hour.

205	Q:	If the Company were to increase the critical value from 1.96 to say 3.68, as you
206		indicated for the Gumbel distribution, would that lead to an acceptable level of
207		intra-hour wind integration costs?
208	A:	Perhaps, but at this point it would be premature to reach any conclusions of this
209		nature. Remember, there are three elements in the intra-hour variation: the
210		forecast error, regulate-up, and regulate-down. The Company's WIC methodology
211		estimates the total variation for a portfolio of wind resources across all three
212		elements. If there are four wind projects and the three elements, then there are
213		12 variables whose pair-wise covariances must be measured. A determination of
214		an appropriate critical value requires the use of the joint distribution of all twelve
215		variables. It is not certain what this joint distribution will look like at this point. In
216		the final analysis, the appropriate critical value may be larger or smaller than the
217		1.96 chosen by the Company.
218		Additionally, the Company's WIC study did not employ loads as an
219		offsetting element to the other intra-hour sources of variation. This is potentially
220		a critical shortcoming of the Company's WIC study. For example, some industry
221		experts have concluded that:
222		[A]t high penetration levels the cost of required reserves is
223		significantly less when the combined variations in load and
224		wind plant output are considered, as opposed to considering
225		the variations in wind plant output alone
226		It is now clear that, even at moderate wind penetrations. the
227		need for additional generation to compensate for wind

228 229		variations is substantially less than one-for-one and is generally small relative to the size of the wind plant. ⁶
230		Before the Company can reliably estimate the intra-hour cost of
231		integrating wind resources into its system, the issues I have raised, as well as
232		those presented by DPU witness Mr. Evans, will need addressing.
233	Net I	Power Cost Adjustments
234	Q:	Is it correct that you are making an adjustment for several QF contracts, which
235		effect NPC?
236	A:	Yes. I am making adjustments for three QF contracts: Kennecott, U.S. Magnesium,
237		and Tesoro.
238	Q:	Why are you making these adjustments?
239	A:	Although the Company does not model these contracts in the latter half of the
240		test year, I expect that all three contracts will be renewed and, therefore, the NPC
241		study for this case should include them.
242	Q:	Could you please explain why renewal of these contracts is likely?
243	A.	The Company has filed and asked for approval of new QF contracts for both
244		Kennecott and U.S. Magnesium. For these two contracts, the Company has
245		reached agreement over the contract terms, including energy prices and
246		associated line loss factors through the period ending December 31, 2010.

⁶ J. Charles Smith, Brian parsons, Edgar A. DeMeo, and Michael Milligan, "Wind Power Impacts on Electric Power System Operating Costs: Summary and Perspective on Work to Date," National Renewable Energy Laboratory, Presentation at the American Wind Energy Association Global Wind Power Conference, Chicago, Illinois, March 28-31 2009(?).

247		Furthermore, contracts with Kennecott and U.S. Magnesium have been in place
248		and periodically renegotiated or renewed for a number of years. At this time,
249		there is no reason to believe contract renewals will not continue to occur in the
250		future. The Division is currently reviewing these agreements and will participate
251		in hearings to present its recommendations to the Commission in early November
252		2009. The Division anticipates submittal of the Tesoro QF by early October 2009.
253		The Division expects that that the Commission will issue its order on all of these
254		agreements prior to the end of 2009, well in advance of February 18, 2010, which
255		marks the end of the 240 day clock for this rate case.
250	0	
256	Q.	is there a possibility that the Commission could reject these QF contracts?
257	Α.	Yes. But based on the progression of the negotiations and resulting preliminary
258		agreement between the Company and the respective parties for each of these
259		agreements, there is no reason to expect that the contracts will not receive
260		approval in one form or another.
261	0.	Do you have any other comments on the use of these contracts in the present
201	ц.	case?
202		
263	A:	Yes. The Division deems that the current information as proposed by the
264		Company for the Kennecott and U.S. Magnesium QF contracts provides a
265		reasonable estimate of NPC for these QFs for the remaining six months of the test
266		year. Likewise, the Company's most recent avoided cost data provides a
267		reasonable estimate of Tesoro's estimated NPC for its QF through the period

268		January 1, 2009 to June 30, 2009. If modifications were made to the proposed
269		contracts, such changes would probably have no material impact on the total NPC
270		estimate that the Division is recommending. Of course, such modifications can be
271		incorporated in the Commission's final order in this case.
272		Finally, the Division has not yet developed final recommendations on the
273		U.S. Magnesium or Kennecott QF contracts. As such, my use of the proposed QF
274		data as submitted by the Company does not constitute a final recommendation or
275		endorsement of these agreements.
276	Q.	Can you briefly describe your recommended adjustment for these QF contracts?
277	Α.	Yes. For the Kennecott and U.S. Magnesium QF estimates, the Division entered
278		the proposed energy prices and associated line loss factors for the period January
279		2010 through June 2010, as contained in each proposed QF, into the GRID model.
280		This information is proprietary, and may be found in the associated filings under
281		Docket Nos. 09-035-20 (U.S. Magnesium QF) and 09-035-62 (Kennecott QF). The
282		Tesoro estimate was developed using the monthly avoided energy prices (January
283		– June 2010) listed in Appendix B of the second quarter 2009 avoided cost input
284		changes developed in the Company's Quarterly Compliance Filing for Schedule 38
285		under Docket No. 03-035-14. These monthly prices were multiplied by a line loss
286		factor that is comparable to the proposed factor included in the Kennecott QF, an
287		approach that has been used in the previous two Tesoro QF applications. With

268

288	the inclusion of these three QFs, the Company's NPC estimate increases by about
289	\$1.16 million on a system basis or about \$474,456 on a Utah-allocated basis.
290	While arguably this is not the only way to make an adjustment for these QFs, it is
291	consistent, I believe, with similar adjustments done in the past. For example, in
292	Docket No. 07-035-93, the Division made a similar adjustment for the Tesoro QF
293	contract that expired just prior to the beginning of the test year.

- 294 Q: Does that conclude your direct testimony?
- 295 A: Yes, it does.