BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)	
In the Matter of the Application of Rocky)	
Mountain Power for Authority to Increase its)	Docket No. 09-035-23
Retail Electric Utility Service Rates in Utah)	
and for Approval of Its Proposed Electric)	DPU Exhibit No. 9.0R
Service Schedules and Electric Service)	
Regulations)	
-)	
)	

Rebuttal Testimony of

Jonathan Nunes

For the Division of Public Utilities

Department of Commerce

State of Utah

November 12, 2009

2 A. My name is Jonathan Nunes. I am employed by R. W. Beck as a Senior Economist. 3 **Q**. Have you submitted Direct Testimony in this proceeding? 4 A. Yes. I submitted Direct Testimony on October 8, 2009. 5 What is the purpose of your Rebuttal Testimony? **Q**. 6 A. This testimony addresses the following: 7 Provides a response to portions of the Direct Testimony of Utah Industrial Energy 8 Consumers' (UIEC) witness, Mr. Brubaker, and Utah Association of Energy Users' 9 (UAE) witness, Mr. Higgins, pertaining to the Company's estimated class loads used 10 in cost of service calculations. I argue that neither witness has presented compelling 11 evidence supporting certain of their assertions and that certain adjustments they have 12 made to class loads for purposes of alternative cost of service calculations are not 13 reasonable and should not be adopted. 14 • Provides a clarifying modification and correction to a series of charts contained in Exhibit 9.4 of my Direct Testimony. While the changes are not consequential to the 15 16 conclusions provided in my testimony, they are more consistent with similar charts 17 shown in other parts of my testimony and should help to avoid any confusion. 18 **Rebuttal of Testimony of UIEC Witness Mr. Brubaker** 19 Q. What arguments related to class loads does Mr. Brubaker present in his testimony? 20 A. The following are Mr. Brubaker's arguments relative to class loads: 21 Load research samples for Schedules 1, 6, and 23 are "very old"

1

O.

Please state your name and occupation.

	• The Company's load research samples have not been shown to be representative of
	RMP's current customers.
	• The Company makes no effort to adjust class demands to reflect typical peak demand
	weather conditions, the implication being that Mr. Brubaker believes they should.
	• Jurisdiction loads are typically higher than the sum of class loads as a result of the
	under-estimation of class loads for rate classes for which class loads are based on load
	research data. This results in an over-allocation of costs to rate classes 8 and 9, for
	which class loads rely on directly metered hourly loads.
Q.	Do you agree with Mr. Brubaker's first conclusion above regarding the age of the
	samples?
A.	I do generally agree with his concerns regarding the age of the Company's load research
	samples. The load research samples for Schedule 1 do seem outdated, given the significant
	changes that have occurred in the saturation of air conditioning in the Company's Utah
	jurisdiction. It is not clear whether the need to have more up-to-date samples for the other
	load research classes is as great, but that should improve the measured accuracy of class
	energy as well as the accuracy of estimated class demands, which is not possible to
	calculate.
Q.	Do you agree with Mr. Brubaker's second conclusion above regarding the poor
	accuracy of load estimates from the samples?
A.	I do agree that the load research data do not appear to be sufficiently accurate. The
	testimony of the Company's witness, Mr. Thornton, and my own Direct Testimony present
	data that corroborate Mr. Brubaker's conclusion that the load research data appear not to
	А. Q.

44		represent the Company's current customers very accurately, particularly versus the
45		Company's stated accuracy standard of 90% confidence of 10% or better accuracy.
46		However, it is not a reasonable conclusion to suggest that this is solely or even largely the
47		result of the age of the sample design. For the residential class, in particular, the apparent
48		randomness of the error in sampled versus actual class energy does not appear to dovetail
49		with the argument that the primary cause for errors in the residential class is the increased
50		saturation of air conditioning that is not well represented in the sample.
51	Q.	Do you agree with Mr. Brubaker's third conclusion above regarding the need to
52		adjust the class demand estimates to reflect "peak-making" temperatures?
53	A.	I do. Adjustments of this nature would be most consistent with the philosophy that
54		assumptions to be used in a cost of service study should represent conditions that
55		the utility is likely to experience during the test year. The Company's practice to
56		adjust the estimated load profiles so that the total monthly energy equals the
57		forecasted energy does not accomplish this.
58	Q.	What is your opinion of Mr. Brubaker's fourth conclusion above regarding the
59		comparison of test year jurisdiction peak demands to the sum of the class coincident
60		peak demands?
61	A.	I agree that the large discrepancies between jurisdiction peak demands and class
62		coincident peaks suggest an important inconsistency or inconsistencies between the
63		two statistics. However, the source of these differences is far from certain, and Mr.
64		Brubaker has presented little evidence to support his assertion that the discrepancy

65 is a result, let alone exclusively the result, of inaccuracies in the Company's load66 research estimates.

67 Q. Please explain.

68 First, it is clear that the forecasted jurisdiction peak demands are based explicitly A. 69 on the Company's estimate of expected peak day temperatures. The Company's 70 responses to several data requests establish that the class demands used in this 71 proceeding are not based on or adjusted for peak temperatures, as discussed in Mr. 72 Brubaker's testimony. This is likely to be responsible for very large discrepancies 73 between jurisdiction peaks, which are weather-normalized, and the sum of class 74 demands, which are not. Variation in peak day temperatures and those of preceding 75 days can cause fluctuations of several percent for the peaks of summer months and 76 much larger percentages for other months. Second, to the extent that the load 77 samples are inaccurate as a result of an under-representation of customers with air 78 conditioning, for example, the Company's adjustment of load estimates to be equal, 79 on an energy basis, to forecasted loads by class and by month might represent a 80 sufficient adjustment, or even an over-adjustment, for class demands. Finally, there 81 are simply many other issues at play in this comparison between jurisdiction and 82 class peaks, including the lack of dependence between the Company's energy 83 forecast and jurisdiction peak forecast, the influence of estimated losses for class 84 demands, and potential inconsistencies introduced by the method by which base 85 year hourly loads, whether from load samples or census loads, are used to develop 86 test period loads for each class.

87	Q.	What is your conclusion regarding this aspect of Mr. Brubaker's testimony?
88	A.	Mr. Brubaker's assertion on page 17, line 14-15, that the differences between the
89		jurisdiction peak and class loads can "mainly be attributed to those customer classes
90		for which the Company must rely on load research data" is not supportable. As a
91		result, the cost of service study Mr. Brubaker presents on page 18-19 and in
92		UIEC(MEB-3) should be disregarded.
93	<u>Reb</u>	outtal of Testimony of UAE Witness Mr. Higgins
94	Q.	What issues regarding class demands are presented in Mr. Higgins' testimony?
95	A.	The following are issues discussed in his testimony:
96		• The number of load samples for the residential class may be too small to produce
97		accurate class loads.
98		• To the extent energy estimates based on load samples are in error, similar errors may
99		exist in coincident peak demand estimates.
100		• The gap between the sum of class coincident peak demands and the jurisdiction peak
101		is detrimental to the census-measured classes, presumably because this gap can be
102		wholly attributed to the classes for which class demands are based on samples. The
103		Company should revisit the decision to discontinue the process of calibrating the sum
104		of class coincident peak demands to the jurisdiction peak.
105	Q.	Do you agree with Mr. Higgins' first conclusion above regarding the size of the
106		residential load samples?
107	A.	Mr. Higgins presents no compelling evidence that the number of sampled
108		residential customers is too few. He uses data presented in the testimony of

of
nt

131	A.	No. As discussed previously in my rebuttal of Mr. Brubaker's testimony, there are
132		other issues impacting this discrepancy than simply load estimation errors for
133		sampled classes, the primary issue being the weather-adjustment of the jurisdiction
134		peak demands versus the lack of peak weather-adjustment of the class coincident
135		demands. The methodology by which Mr. Higgins supports his conclusion that the
136		census-measured classes are negatively impacted by this discrepancy relies on the a
137		priori assumption that the discrepancy is wholly attributable to load estimation
138		errors. This line of reasoning is circular and, as I have discussed previously, this
139		assumption is not supportable.
140	Q.	What is your conclusion regarding this aspect of Mr. Higgins' testimony?
141	A.	Mr. Higgins' cost of service sensitivity analysis presented in UAE_(KCH-5)
142		reflects allocation factors for Schedule 8 and 9 that inappropriately utilize
143		jurisdiction peaks in the calculation of cost allocators rather than the sum of class
144		demands. These results are based on unsupported assumptions and should be
145		disregarded.
146	<u>Cor</u>	rections to Direct Testimony
147	Q.	Do you have any changes to make to your Direct Testimony?
148	A.	Yes. Several charts contained in Exhibit 9.4 are inconsistent with similar figures
149		contained in Exhibit 9.0 of my Direct Testimony, and one of them is internally
150		inconsistent. Figures 6-9 of Exhibit 9.0 show the percent error in class energy
151		estimates from load research data for the base year of this rate case by dividing the

estimate by the actual value and subtracting the result by one. Figures 1-4 of

153	Exhibit 9.4 contain similar charts, showing data for the current and prior two rate
154	cases, but with the division portion of the underlying calculation reversed. In
155	addition, Figure 1 of that exhibit contained a single line, representing the 2007 rate
156	case (07-035-93), that reflected the calculation method used in Exhibit 9.0 (i.e.,
157	with the actual value in the denominator of the division).
158	
159	The purpose of these charts was to establish the volatility of the errors rather than
160	their direction, so the conclusions presented in my testimony are unaffected.
161	However, I have modified Figures 1-4 of Exhibit 9.4 to be consistent with Figures
162	6-9 of Exhibit 9.0 to avoid confusion and have corrected Figure 1 so that it is
163	internally consistent. Figures 1-4 below replace the same figures from Exhibit 9.4.
164	Positive numbers represent an over-estimate of class energy. Note that the
165	numerical value may be significantly different than presented in Exhibit 9.4 of my
166	Direct Testimony as the denominator may be fairly different from the numerator,
167	and their positions in the calculation have been reversed.

168 Figure 1: Accuracy of Energy Estimate from Load Research – Residential (Schedule 1)

170 Figure 2: Accuracy of Energy Estimate from Load Research – Commercial (Schedule 6)

Page 11

Figure 3: Accuracy of Energy Estimate from Load Research – Small Commercial (Schedule 23)

Page 12

175 Figure 4: Accuracy of Energy Estimate from Load Research – Irrigation (Schedule 10)

176

177 Q. Are you aware of any other corrections or changes to your Direct Testimony?

178 A. No.

- 179 **Q.** Does this complete your Testimony?
- 180 A. Yes.