Load Research Status

Presentation to the Load Research/Forecasting Working Group June 3rd, 2010

Presentation Format

- 1. Current status of Load Research at Rocky Mountain Power
- 2. What is Load Research?
- 3. Issues to be addressed by the working group
 - Load Research sampling (A Study in Philosophy, Science and Art)
 - Comparison of class load estimates to billing data
 - What do we do with irrigation?
 - Forecasting class loads
 - Weather normalization of class loads
 - The calibration conundrum

Status Report

Utah

	Data	Design	Sample	Install
Class/Schedule	Source	Criteria	Size	Date
Sch 001	Stratified random sample	90/5	170	October 2008
Sch 006	Stratified random sample	90/10	108	January 2009
Sch 023	Stratified random sample	90/10	75	October 2008
Sch 010	Stratified random sample	90/10	130	May 2006
Sch 008	Direct Measurement	Census	Census	Ongoing
Sch 009	Direct Measurement	Census	Census	Ongoing
Sch 021	Direct Measurement	Census	Census	Ongoing
Sch 031	Direct Measurement	Census	Census	Ongoing

Load Research Meters

Sample Rotation Schedule

Idaho	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Res 001	64				75											
Res 036	54				75											
Com 006		89														
Com 023	56			75												
Irr 010			125													
Oregon	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Res 004				75				1	1							
Com 023			125													
Com 028		72														
Com 030			152													
Utah	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Res 001			170				i -	u -	u -					1		
Com 006		107	Bonus	Depreciat	ion				0					1	1	
Com 023		75	Bonus	Depreciat	ion			0	0	1	1		1	1	1	
Irr 010		130														
Washington	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Res 016					75						(1		
Com 024					60											
Com 036					44											
Wyoming	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Res 002	44				45											
Com 025		120	Bonus	Depreciat	ion											
Com 028														1		
Irr 040		75														

A DIVISION OF PACIFICORP

Load Research Clients & Activities

Support Organizations:

- Power Delivery Metering & Meter Reading
- CBS/Information Technology
- Regulation
- Commercial & Trading
- Forecasting

Industry Affiliations:

- Association of Edison Electric Companies (AEIC)
- Western Load Research Association (WLRA)

Client Organizations:

- Regulation
- Customer Billing
- Power Delivery Customer Service
- Power Supply
- Transmission/Wholesale Billing
- Forecasting
- Engineering
- Marketing & Demand Side/Strategic Planning
- Power Delivery Metering

Load Research Group by Work Assignment

What is Load Research?

What is Load Research?

 "an activity embracing the measurement and study of the characteristics of electric loads to provide a thorough and reliable knowledge of trends, and the general behavior of load characteristics of the more important services rendered by the electrical utility."

Association of Edison Illuminating Companies 2001

Huh?

 "load research allows utilities to study the ways their customers use electricity, either in total or by individual end uses"

Association of Edison Illuminating Companies 2001

So... What is it really?

- The study of how and when our customers use energy so that PacifiCorp can most effectively:
 - •Allocate Costs as per Regulatory Mandate
 - •Design or Maximize Customer Rates
 - Forecast Loads
 - •Service Customer Data Requests
 - •Size Transformers & Distribution Circuits
 - Provide Enhanced Customer Service

Load Shape

Electric usage varies over time and by customer type

PacifiCorp is obligated to provide electricity (load) when the customer demands (kW) and for the length of time that the customer needs it (kWh).

Load research (interval) data provides an important data input into planning, regulatory and financial decision making processes...

Energy Profiler Online (EPO)

Energy Profiler Online (EPO)

Time	EPO Demo - Warehouse Usage (kVAR)	EPO Demo - Warehouse Usage (kW)	EPO Demo - Warehouse Usage (Power Factor)
12/23/2007 00:15	320	1,348	0.9730
12/23/2007 00:30	280	1,308	0.9778
12/23/2007 00:45	280	1,272	0.9766
12/23/2007 01:00	300	1,300	0.9744
12/23/2007 01:15	288	1,284	0.9758
12/23/2007 01:30	240	1,272	0.9827
12/23/2007 01:45	248	1,232	0.9803
12/23/2007 02:00	268	1,236	0.9773
12/23/2007 02:15	256	1,244	0.9795
12/23/2007 02:30	260	1,288	0.9802
12/23/2007 02:45	228	1,252	0.9838
12/23/2007 03:00	212	1,208	0.9849
12/23/2007 03:15	220	1,100	0.9806
12/23/2007 03:30	132	1,168	0.9937
12/23/2007 03:45	72	1,180	0.9981
12/23/2007 04:00	76	1,160	0.9979
12/23/2007 04:15	76	1,164	0.9979
12/23/2007 04:30	56	1,124	0.9988
12/23/2007 04:45	64	1,124	0.9984
12/23/2007 05:00	80	1,140	0.9975
12/23/2007 05:15	88	1,200	0.9973

A brief history.....

- Some utilities have performed load research since the 1930's.
- The AEIC Load Research Committee held it's first organizational meeting in 1944.
- In 1978, the Public Utilities Regulatory Policy Act (PURPA) required the utility industry to develop load research programs as a basis for cost-ofservice filings with FERC and public utility commissions.

So, what is a load profiling meter?

Load Research Sampling (A Study in Philosophy, Science and Art)

Section 133 of the 1978 Public Utilities Regulatory Policy Act (PURPA), Code of Federal Regulations (CFR), Title 18, Chapter 1, Subchapter K, Part 290.403, Subpart B

• <u>"Accuracy Level</u>. If sample metering is required, the sampling method and procedures for collecting, processing, and analyzing the sample loads, taken together, shall be designed so as to provide reasonably accurate data consistent with available technology and equipment. An accuracy of plus or minus 10 percent at the 90 percent confidence level shall be used as a target for the measurement of group loads at the time of system and customer group peaks."

An absurdity...

Delanius-Hodges

		Oregon	Residential	Class DH	Worksheet			
		-	Thre	e Strata				
			Customer	Interval				
			Count	Factor				
	Range		f	μ	μf	õf	cum õf	
0	to	250	22575	1	22575	150.2	150.2	
251	to	500	66104	1	66104	257.1	407.4	
501	to	750	90169	1	90169	300.3	707.6	178,848
751	to	1000	82359	1	82359	287.0	994.6	
1001	to	1250	64719	1	64719	254.4	1,249.0	
1251	to	1500	46390	1	46390	215.4	1,464.4	
1501	to	1750	31714	1	31714	178.1	1,642.6	225,182
1751	to	2000	20013	1	20013	141.5	1,784.0	
2001	to	2250	12067	1	12057	109.8	1,893.8	
2251	to	2500	7444	1	7444	86.3	1,980.0	
2501	to	2750	4418	1	4418	66.5	2,046.5	
2751	to	3000	2758	1	2758	52.5	2,099.0	
3001	to	3250	1789	1	1789	42.3	2,141.3	
3251	to	3500	1099	1	1099	33.2	2,174.5	
3501	to	3750	738	1	738	27.2	2,201.6	
3751	to	4000	509	1	509	22.6	2,224.2	
4001	to	4250	354	1	354	18.8	2,243.0	
4251	to	4500	247	1	247	15.7	2,258.7	
4501	to	4750	186	1	186	13.6	2,272.4	
4751	to	5000	133	1	133	11.5	2,283.9	
5001	to	5250	105	1	105	10.2	2,294.1	
5251	to	5500	75	1	75	87	2,302,8	
5501	to	5750	60	- i	60	7.7	2.310.6	
5751	to	6000	69	1	59	7.7	2,318,2	
6001	to	6250	39	1	39	6.2	2 324.5	
6251	to	6500	23	1	23	4.8	2 329 3	
6501	to	6750	24	- i	24	4.9	2 334 2	
6751	to	7000	17	- i	17	4.1	2 338 3	
7001	to	7250	11	i i	11	3.3	2 341.6	
7251	to	7500	7	- i	7	2.6	2 344 3	
7501	to	7750	13	- i	13	3.6	2 347 9	
7751	to	8000	13	- i	13	3.6	2 351 5	
8001	to	8250	12	- i	12	3.5	2 354 9	
8251	to	8500	10	- i	10	3.2	2 358 1	
8501	to	8750		- i		2.8	2,360,9	
8751	to	9000	ě		ě	2.8	2 363 8	
9001	to	9250	14		14	37	2 367 5	
9251	to	9500	5	- i	5	2.2	2 369 7	
9501	to	9750	š	- i	š	17	2 371 5	
9761	to	10000	2		2	1.4	2 372 9	
10001	to	12500	17	10	170	13.0	2 385 9	
12501	to	15000	6	10	50	7.4	2,393.0	
15001	to	20000	1	20	20	4.5	2 397 6	
20001	to	25000	2	20	40	6.3	2,007.0	
25001	to	30000	1	20	20	4.6	2 408 3	
30001	to	68644		154 576	154 576	12.4	2 420 7	52 280
20001	10	00044		104.010	104.010	12.19	2,420.1	02,200
Т	otal N		456,310					456,310

Bill Frequency Analysis Summary

BOUNDARIES INDICATED FOR STRATA: 4 605.2 403.4 806.9 484.1 1 2 1,613.8 968.3 806.9 1,210.3 3 1,815.5 1,452.4 1,210.3

6

A DIVISION OF PACIFICORP

Sample Design

OREGON RESIDENTIAL CLASS LOAD STUDY DESIGN OPTION (2008)

THREE STRATA, MEAN-PER-UNIT DESIGN

		a Sample Mean KW	b Sample Mean kWh	с 2008 Рор N	d Variance of Mean	e Standard Deviation	f Wtd. Devtns. c*e	g Proprtn. row f/ sum f	h Optimal Allocation g*h total	i Optimal with Attrition	j Final with Attrition
STRATUM 1 STRATUM 2 STRATUM 3	0 - 750 kWh 751 - 1,750 kWh GT 1,750 kWh	1.040 2.445 4.741	479.711 1,149.480 2,321.920	178,848 225,182 52,280	0.3254 0.7479 2.6640	0.570 0.865 1.632	102024 194743 85331	0.2670 0.5097 0.2233	11 21 9	11 21 10	20 35 20
EST POP ME	EAN (wtd by N)	2.157	1,021.296 1 RELATIVE P	456,310 RECISION	I OF SAMPLE KW	, ESTIMATE	382098 ″	1.0000 "	41	42 Sample Estimate 41	75 Adj Sample Estimate 75
					TOTAL KW Optimal n (col. h)	A	TOTAL KW djusted n (col. i) f	TOTAL KW Final (col. J	MEAN KW Adj. n		
			Variance contributed by strata:	1 2 3 4	1,040,821,283 1,896,071,312 910,010,183	:	1,040,821,283 1,896,071,312 808,882,465	547,773,107 1,115,266,717 383,081,549	0.004999 0.009106 0.003885		- - -
			Total Varianc	ю	3,846,902,778		3,745,775,061	2,046,121,373	0.017990		•
			Standard Erro	r	62023.40509	1	61202.73736	45234.07314	0.134125348		
			Desired Conf. (z two tailed)	Level	90% 1.645		90% 1.645	90% 1.645	90% 1.645		
			Conf. Interval		102028.5014		100678.503	74410.05032	0.220636197		
			MPU Est of k	w	984415.575		984415.575	984415.575	2.1573		
			Relative Conf.	Int.	10.36%		10.23%	7.56%			//www.

A DIVISION OF PACIFICORP

Random Sample Selection

Stratum	1	2	3	4
Sampling Frame	178,848	225,182	52,280	
Sample	20	35	20	
Interval	8,942.40	6,433.77	2,614.00	
Random Starts				
Primary Random No. ⁽¹⁾ Start	0.73614 6583	0.63858 4108	0.01908 50	
Alternate 1 Random No. ⁽¹⁾ Start	0.32245 2884	0.67499 4343	0.55702 1456	
Alternate 2 Random No. ⁽¹⁾ Start	0.63755 5701	0.55457 3568	0.88375 2310	
Alternate 3 Random No. ⁽¹⁾ Start	0.06381 571	0.42825 2755	0.10714 280	
Alternate 4 Random No. ⁽¹⁾ Start	0.61245 5477	0.44735 2878	0.40029 1046	

Active Customers with kWh Meters For the 12 Months Ending March 2008

⁽¹⁾ Random numbers from Excel's random function.

5

Sampling Challenges

- Voltage level breakouts
- Requests for load estimates by demand breakouts on non-demand metered customers (OR 23).
- New tariffs (OR 28 & 30, WY 28)
- Samples are designed for a specific purpose, which makes their usefulness in other areas very limited

Comparison of class load data to billing estimates

Load Research Processing Steps

1.)INCLUDE NEW SAMPLE IN LOAD RESEARCH MV90 SYSTEM

- -Ensure master files are correct
- -Build summary maps
- -Add contributors by strata
- -Input weight factors
- -Determine statistics to be stored
- -Input sample size, pop size, thresholds

2.) VERIFY EXISTING SAMPLES VS CSS

-Rate change, disconnected, alternates

3.) ENTER SYSTEM PEAK DAY AND TIMES INTO MV90 SYSTEM

4.) DETERMINE 305 DATA BROKEN DOWN BY RATE AND STRATA

5.)CALCULATE USAGE DATA FOR ALL CONTRIBUTORS

Load Research Processing Steps

6.)CALCULATE AVERAGE USAGE FOR CLASS AND STRATA

7.)INPUT MONTHLY POPULATIONS AND KWH BY CLASS AND STRATA

8.)TOTALIZE BY STRATA

9.) RUN REPORTS AND GRAPHS

- -Check for missing data, gaps, outliers
- -Modify summary map start/stop times
- -Delete data directory
- -Delete or Add to calculate usage data files (step 5)
- -Re-calculate average usage (step 6)
- -Re-totalize (step 8)
- -Run reports and graphs (step 9)

10.)VERIFY MV90 SAMPLE AVERAGES ARE COMPLETE

LOAD RESEARCH PROCESSING STEPS

11.) EXPORT MV90 SAMPLE AVERAGES INTO SAS FILES

12.) EXPAND MV90 SAMPLE AVERAGES BY POPULATION

13.)BUILD STREET LIGHTING AND OFF SEASON IRRIGATION SCHEDULES

14.) ADJUST LOAD RESEARCH KWH TO PRICING KWH

15.)DETERMING DISTRIBUTION PEAK DAY AND TIMES

16.)EXTRACT VARIOUS REPORT DATA

- -System peaks
- -Distribution peaks
- -Schedule peaks
- -Class peaks
- -etc.

Preparation of Class loads to be used in Rate Filing

	Department	Test Year	+1 Month	+2 Months	+3 Months	+4 Months
Test year data collection ends		12 months				
Load Profile reads retrieved	Load Research		30 days			
Special request load profile reads	Load Research			15 days		
Class load profiles completed	Load Research			15 days		
Prep of historic energy & peaks	Pricing		60	days		
Forecast energy & peaks completed	Forecast			Ongoing		
Forecast challenge	Pricing				15 days	
Rate sched forecast energy complete	Pricing				15 days	
Forecast class loads completed	Load Research					7 days

Annual Summary Report

6	Print												🦳 Mark fo
	> » Q, ▼												
	MV-90XI SUMMARY ID: 1	UT GS OO6	CL NAM	2008 ANNU E: Utah GS	AL SUMMARY 006 Class	REPORT			2009	, MAR 91	2:59 PM		PAGE 1
	CAL MO/YR	JAN 08	FEB 08	MAR 08	APR 08	MAY 08	JUN 08	JUL 08	AUG 08	SEP 08	OCT 08	NOV 08	DEC 08
	HEATING DD COOLING DD	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
	POPULATION D.	ATA											
	# CUSTOMERS	14935	14974	14999	15026	15054	15076	12890	12890	12890	12890	12890	12890
	AVG KWH	31235	456825826 30507	444085531 29607	435181056 28961	442411709 29388	463821975 30765	0	0	0	0	0	0
	SAMPLE DATA												
	NONCOIN KW	103.27 35455	104.47 32747	101.80 33048	102.74	122.23 34840	121.71 37841	.00 42132	.00 42219	.00 35227	.00 33262	.00 30159	.00 34505
	AVG KWH CAL	35455	32747	32909	32177	34840	37841	0	0	0	00202	0	0
	*** NONCOINC KM/CUST MPU	IDENT ***	104.465	101, 796	102.741	122.234	121,709	.000	. 0.00	. 000	.000	. 000	.000
	n STD FDDOD	64 5 7272005	64	65	64 5 4305905	65	65	0	0	0000000	0	0000000	0
	* ACCURACY A	I 10 72	10.91	9.720440	0.4000000	11 20	12 50	.0000000.	. 0000000	.0000000.	.0000000	. 0000000	.0000000
	***** CIAS	2 *****	10.91	2.30	0.05	11.20	12.30	.00		.00		.00	
	PEAK DATE	08/01/17	08/02/07	08/03/31	08/04/29	08/05/19	08/06/25	00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	00/00/00
	PEAK TIME KM/CUST MPU	11:15 81 806	11:30 80 233	10:30 76 840	11:45 76 476	11:45 94 831	11:45 92 309	00:00	00:00	00:00	00:00	00:00	00:00
	n	65	65	65	65	66	66				0		0
	STD ERROR * ACCURACY A	5.4825499 I	4.9082777	4.8137639	5.4126643	6.3783900	8.1380818	.0000000	. 0000000	.0000000	.0000000	. 0000000	.0000000
	90 CONF LVL	11.02	10.06	10.31	11.64	11.06	14.50	.00	. 00	.00	. 00	.00	. 00
	***** SYSTE PEAK DATE	4 ***** 08/01/23	08/02/05	08/03/05	08/04/01	08/05/19	08/06/30	00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	00/00/00
	PEAK TIME	08:00	08:00	08:00	08:00	16:00	14:00	00:00	00:00	00:00	00:00	00:00	00:00
	KW/CUST MPU	54.771	61.168	58.242	66.528	84.687	91.400	.000	.000	. 000	.000	. 000	.000
	n STD ERROR	65 4.6617982	65 5.5931169	66 4.4008572	64 4.9267310	66 6.7831523	66 8.8723886	0 0000000.	0 0000000 .	0 0000000.	0 0000000 .	0 0000000 .	0 0000000.
	* ACCORACY A 90 CONFLVL	14.00	15.04	12.43	12.18	13.18	15.97	.00	. 00	.00	. 00	.00	.00
	***** OTHE	R *****	00 (02 (05	00/00/05	00 (04 (0)	00/05/00	00.000.000	00.00.000	0.0 (00 (00	00.000.000	00.000.000	00,000,000	
	PEAK DAIE PEAK TIME	03/01/23	08/02/05	08/03/05	08/04/01	17:00	15:00	00:00	00/00/00	00:00	00:00	00:00	00:00
	KW/CUST MPU	69.061	69.756	68.263	68.333	73.527	90.550	.000	. 000	. 000	.000	. 000	.000
	n STD ERROR	65 5.8515009	65 5.9041212	66 4.5994032	64 5.1247612	66 6.5820749	66 8.6426362	0 0000000.	0 0000000 .	0 0000000.	0 0000000 .	0 0000000 .	0 .0000000.
	% ACCURACY A	r											#

POV

VER A DIVISION OF PACIFICORP

Cycle Days

Adjust to Pricing Kwh

Microsoft Excel - utoptms.xls

40

🔊 File Edit View Insert Format Tools Data Window <u>H</u>elp

🗅 😅 🔚 🔒 🖏	a 🏽 🗟 🚏 👗	🛍 🔁 🛍 🕶 🚿 🗠	* CH * 🍓	$\Sigma \rightarrow \begin{array}{c} A \downarrow \\ Z \downarrow \\ A \downarrow \\ A \downarrow \end{array}$	🛍 뤙	100%
			Arial	v 10	- B	ΙU

• 🝳 🗸

• 10 • B Z U 壽喜喜國 \$ %,‰ 🕫 律 🗉 • 🕭 • 🚣 • .

	\sim ·	/*										
	A	В	С	D	E	F	G	Н	I	J	K	L T
1	Factors Used t	o Take LR to I	Pricing KWH									
2		_										
3		200707	200708	200709	200710	200711	200712	200801	200802	200803	200804	200805
4	UT RES CL	699,452,630	643,450,143	438,303,834	402,787,295	452,008,797	606,405,842	599,048,141	505,418,989	488,538,840	424,930,208	420,698,47
5	Pricing Kwh	763,851,173	694,812,191	461,203,768	414,131,259	513,124,617	587,306,793	619,766,294	437,078,692	478,702,869	457,123,280	433,124,17
6	Adj. Fact.	1.092070	1.079823	1.052247	1.028164	1.135209	0.968505	1.034585	0.864785	0.979867	1.075761	1.02953
7												
8	UT RES 07	284,610	290,777	284,318	287,743	276,731	283,031	254,913	292,914	290,620	294,630	281,23
9	Pricing Kwh	267,184	265,897	266,310	263,986	264,209	268,091	264,339	261,562	261,957	260,715	259,58
10	Adj. Fact.	0.938771	0.914438	0.936663	0.917436	0.954750	0.947216	1.036979	0.892964	0.901374	0.884888	0.92294
11												
12	UT GS 006	625,042,364	652,226,283	520,696,952	472,972,812	446,238,396	471,327,570	533,411,479	492,947,335	498,872,707	488,356,849	527,039,94
13	Pricing Kwh	588,787,729	579,379,412	483,952,714	479,885,504	474,286,394	465,440,671	475,009,965	433,732,783	400,829,644	452,826,792	471,755,28
14	Adj. Fact.	0.941997	0.888310	0.929433	1.014615	1.062854	0.987510	0.890513	0.879877	0.803471	0.927246	0.89510
15												
16	UT GS 008	197,180,273	205,265,676	178,425,447	174,038,941	162,857,709	160,300,025	165,763,716	153,148,527	162,676,976	161,895,310	169,201,30
17	Pricing Kwh	185,673,122	187,120,002	160,237,641	169,098,783	179,716,654	174,388,483	161,520,012	144,212,250	145,300,374	147,715,616	166,715,08
18	Adj. Fact.	0.941641	0.911599	0.898065	0.971615	1.103519	1.087888	0.974399	0.941650	0.893183	0.912414	0.98530
19												
20	UT GS 007	912.231	902,328	908,305	902.813	914,710	910.262	951,789	944,694	907.122	906.050	917.89
21	Pricing Kwh	908.086	906,804	904,785	906,109	905,144	900,803	903,662	902.086	901.596	899.458	898.41
22	Adi. Fact.	0.995456	1.004961	0.996125	1.003651	0.989543	0.989608	0.949435	0.954897	0.993908	0.992725	0.97878
23												
24	UT GS 999	402,720,527	413,314,865	376,671,881	378,591,659	362,406,948	384,389,326	403,059,139	368,919,302	389,175,127	372,366,742	374,581,14
25	Pricing Kwh	348,527,550	371,602,154	309,943,121	335,591,628	365,494,860	369,385,983	374,576,611	331,787,156	359,484,949	329,974,634	354,116,02
26	Adi, Fact.	0.865433	0.899078	0.822846	0.886421	1.008521	0.960968	0.929334	0.899349	0.923710	0.886155	0.94538
27												
28	UT GS 021	32,805	36,006	35,756	46,851	42,110	34,751	36,599	32,008	48,820	34,389	49,93
29	Pricing Kwh	35,251	35,575	30,747	43,965	45,995	43,461	35.024	31,400	36,935	31.076	45.25
30	Adi. Fact.	1.074552	0.988021	0.859912	0.938402	1.092265	1.250632	0.956975	0.981019	0.756564	0.903661	0.90621
31												
32	UT GS 071	218.388	226,643	215,774	254,169	248,506	239,866	277.473	257.621	228.287	219,161	238.3£
33	Pricing Kwh	234,671	223,928	185,548	238,511	271.434	299,982	265.538	252,734	259,147	197,990	216.00
34	Adi Fact	1.074561	0 988022	n 859918	0.938395	1 092262	1 250624.	a89aa9 n	0.981029	1 135179	0.903400	15ane n
4 - 4	▶ N \ Sheet2 /	utoptms / utop	os (ut213171)	priceadj / pric	eadj9 / utsch /	schprice / utso	:h9 / schfore9	•				► I

_ 8 ×

- - - ×

Type a question for help

NUM

What do we do with irrigation?

Issues Associated with Irrigation Samples

➢ In 2008, there were 2,695 irrigation customers listed as active in the Company's billing system. Of that amount:

 \checkmark 240 had 0 usage for the season

- ✓149 had less that 250 kWh of usage during the season
- \checkmark 14% of total active customers had 0 or very low usage for the season

➢ In 2009, there were 2,745 irrigation customers listed as active in the Company's billing system. Of that amount:

✓ 230 had 0 usage for the season

- ✓160 had less that 250 kWh of usage during the season
- \checkmark 14% of total active customers had 0 or very low usage for the season

Issues Associated with Irrigation Samples

Typically a high variance group

➤There really is no standard irrigation load shape

Issues Associated with Irrigation Samples

Recommended solution:

Structure the sample design and customer selection process such that you have a high probability of selecting customers who are actively irrigating. The purpose of this design philosophy is to construct a load curve which reflects actual active irrigation.

>Utilization of this philosophy will <u>always</u> provide estimates that <u>exceed</u> billed usage

Implementation of this philosophy requires that the load curves provided be adjusted <u>downward</u> to reflect billed energy for the class

Forecasting class loads

Peak Date Alignment

System Peak Day Comparison										
Base Year - 2008		Base Year Aligned to Test	Year	Test Year - 2009/10)					
Jan 24, 2008 @ 09:00	Thu	Jan 28, 2010 @ 09:00	Thu	Jan 22, 2010 @ 09:00	Fri					
Feb 05, 2008 @ 09:00	Tue	Feb 09, 2010 @ 09:00	Tue	Feb 04, 2010 @ 09:00	Thu					
Mar 05, 2008 @ 09:00	Wed	Mar 10, 2010 @ 09:00	Wed	Mar 30, 2010 @ 09:00	Tue					
Apr 01, 2008 @ 09:00	Tue	Apr 06, 2010 @ 09:00	Tue	Apr 01, 2010 @ 09:00	Thu					
May 19, 2008 @ 17:00	Mon	May 24, 2010 @ 17:00	Mon	May 19, 2010 @ 16:00	Wed					
Jun 30, 2008 @ 15:00	Mon			Jun 24, 2010 @ 16:00	Thu					
Jul 09, 2008 @ 18:00	Wed	Jul 08, 2009 @ 18:00	Wed	Jul 20, 2009 @ 17:00	Mon					
Aug 14, 2008 @ 18:00	Thu	Aug 13, 2009 @ 18:00	Thu	Aug 27, 2009 @ 17:00	Thu					
Sep 08, 2008 @ 17:00	Mon	Sep 07, 2009 @ 17:00	Mon	Sep 10, 2009 @ 17:00	Thu					
Oct 01, 2008 @ 17:00	Wed	Sep 30, 2009 @ 17:00	Wed	Oct 30, 2009 @ 09:00	Fri					
Nov 05, 2008 @ 19:00	Wed	Nov 05, 2009 @ 19:00	Thu	Nov 25, 2009 @ 19:00	Wed					
Dec 15, 2008 @ 19:00	Mon	Dec 14, 2009 @ 19:00	Mon	Dec 16, 2009 @ 19:00	Wed					

Weather normalization of class loads

The calibration conundrum

The calibration philosophy rests upon a faulty assumption:

Any difference between class loads and jurisdictional loads is entirely attributable to sampling error in the sampled classes.

Calibration Issues

Jurisdictional loads and class loads are not homogeneous

Loss Factors

Real world vs. the theoretical

Effects of Calibration on Loads

Comparison of Base vs. Forecast Jurisdictional Loads

Questions?

