Witness FB – 1D

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)

)

)

)

)

)

)

In the Matter of the Application of Rocky Mountain Power for Authority to Increase its Retail Electric Utility Service Rates in Utah and for Approval of its Proposed Electric Service Schedules and Electric Service Regulations

Docket N. 10-035-124 Direct Testimony Leland Hogan On behalf of The Utah Farm Bureau Federation

June 2, 2011

10-035-124

1 INTRODUCTION

2 Q. WHAT IS YOUR NAME, OCCUPATION AND BUSINESS LOCATION?

- A. My name is Leland Hogan. I am President of the Utah Farm Bureau Federation, the
 state's largest farm and ranch organization with more than 30,000 member families
 statewide. I serve as Chairman of the Farm Bureau Pumper Committee representing
 members on irrigation issues. I also serve as Vice Chairman of the Governor's
 Agriculture Advisory Board. I own and operate a farm in Tooele County producing cattle
 and hay.
- 9

10 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS GENERAL RATE CASE?

11 A. I represent the interests of Rocky Mountain Power's (RMP or the Company) Utah

12 irrigation customers who are on electric rate schedule 10. My testimony will discuss: 1)

the contribution of Utah agriculture to the Utah economy; 2) the unique economics of

14 agriculture and irrigation farming; and 3) the issues that the Public Service Commission

15 should consider when implementing any rate increase for the irrigation customer class.

16

17 I. UTAH AGRICULTURE, THE UTAH ECONOMY AND IRRIGATION

18

19

Q. HOW IMPORTANT IS AGRICULTURE TO THE UTAH ECONOMY?

- 20 A. According to the 2010 Annual Utah Agriculture Statistics Report, agriculture
- 21 contributes approximately \$1.2 billion¹ in farm commodity sales.
- A 2010 study released by Utah State University evaluated the economic impact
- 23 of agriculture and food in Utah. The analysis reported agriculture and food contributes

¹ 2010 Utah Agriculture Statistics and Utah Department of Agriculture Annual Report

10-035-124

\$15.2 billion² in economic activity annually and employs more than 66,000 Utahns
 through forward and backward linkages – transportation, energy, chemicals, processing,
 manufacturing and so forth.

According to the U.S. Department of Agriculture Economic Research Service, eighty-nine (89) percent of the state's population resides in urban communities while only eleven (11) percent reside in rural communities³. Utah is the 9th most urban state in the United States. Food and agriculture are the driving force for our rural economy, vitally important to rural communities. These communities depend on agriculture for tax revenues to fund roads, schools and other rural infrastructure and ultimately is a major contributor to their overall quality of life.

34

35 Q. UTAH IS AN ARID STATE. WHAT ALLOWS UTAH'S FARMERS AND RANCHERS 36 TO ACHIEVE THE ECONOMIC IMPACT THAT YOU JUST DESCRIBED?

A. Utah farmers and ranchers rely on irrigation systems which are powered by electric

- 38 pumps to make their pastures, farm fields and orchards productive. During the growing
- 39 season, these irrigation systems often run on a continual basis when there is no
- 40 precipitation. Without irrigation, Utah farms and ranches could not produce sufficient
- 41 crop yields to remain, profitable and in business.
- 42

43 Q. YOU INDICATED THAT IRRIGATION IS POWERED BY ELECTRICITY. HOW DOES

- 44 THE PRICE OF ELECTRICITY IMPACT THE ECONOMICS OF IRRIGATION
- 45 **FARMING?**
- A. Food production, as an industry, is highly energy intensive. Increased costs of electricity,

² The Economic Impact of Agriculture of the State of Utah, Utah State University, January 2010 or http://ag.utah.gov/news/documents/USUageconstudy2010-02.pdf

³ USDA Economic Research Service, State Fact Sheets – Utah or http://www.ers.usda.gov/statefacts/ut.htm

	FB 1D	Hogan 1	0-035-124	3 of 15
47		fuel and fertilizer in recent years mean	s approximately half of farmer's an	id rancher's
48		costs of production are energy related.	Utah's largest cash crop is alfalfa	
49		hay, with \$182 million in sales in 2009.	Utah's dry, high desert climate w	hich makes
50		irrigation a necessity, also provides an	environment that produces a very	high quality
51		dairy feed. Utah hay growers rely on c	lairy farms as their most important	market. Dairy
52		demand establishes alfalfa hay prices	in Utah and in the region. Utah's r	ecognized high
53		quality provides some sales in the price	e competitive Asian export market.	Utah alfalfa
54		hay growers compete for markets with	hay growers in the Rocky Mountai	in Region, the
55		Northwest and Canada (the latter who	have a government subsidized tra	nsportation
56		system to their west coast providing a	cost advantage).	
57				
58	II.	ECONOMICS OF AGRICULTURE AN	D IRRIGATION FARMING	
59				
60	Q.	IN YOUR INTRODUCTION, YOU DES	CRIBE THE ECONOMICS OF AG	BRICULTURE
60 61	Q.	IN YOUR INTRODUCTION, YOU DES AS BEING UNIQUE. PLEASE EXPLA		BRICULTURE
	Q. A.		AIN.	
61		AS BEING UNIQUE. PLEASE EXPLA	AIN. griculture has historically, and cont	tinues to be
61 62		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a	AIN. griculture has historically, and cont sed costs of production to the proc	tinues to be sessors and
61 62 63		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a unable to effectively pass along increa	AIN. griculture has historically, and cont sed costs of production to the proc through national and international	tinues to be cessors and markets. Higher
61 62 63 64		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a unable to effectively pass along increa consumers. Commodity prices are set	AIN. griculture has historically, and cont sed costs of production to the proc through national and international	tinues to be cessors and markets. Higher
61 62 63 64 65		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a unable to effectively pass along increa consumers. Commodity prices are set production costs, including electricity for irrigators.	AIN. griculture has historically, and cont sed costs of production to the proc through national and international	tinues to be cessors and markets. Higher ueeze for
61 62 63 64 65 66		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a unable to effectively pass along increa consumers. Commodity prices are set production costs, including electricity for irrigators.	AIN. griculture has historically, and cont sed costs of production to the proc through national and international or irrigation creates a cost/price sq e. Increased costs of production loc	tinues to be cessors and markets. Higher ueeze for cally means
61 62 63 64 65 66 67		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a unable to effectively pass along increa consumers. Commodity prices are set production costs, including electricity for irrigators. Agriculture is highly competitive	AIN. griculture has historically, and cont sed costs of production to the proc through national and international or irrigation creates a cost/price sq e. Increased costs of production loc egional, national and global marke	tinues to be cessors and markets. Higher ueeze for cally means
 61 62 63 64 65 66 67 68 		AS BEING UNIQUE. PLEASE EXPLA Unlike most sectors of the economy, a unable to effectively pass along increa consumers. Commodity prices are set production costs, including electricity for irrigators. Agriculture is highly competitive Utah irrigators are less competitive in r	AIN. griculture has historically, and cont sed costs of production to the proc through national and international or irrigation creates a cost/price sq e. Increased costs of production loo egional, national and global marke below cost of production ultimately	tinues to be cessors and markets. Higher ueeze for cally means ets. affects

72 valuable open space.

Utah food producers are "price takers" not "price makers." To that point, farmers
and ranchers deliver a commodity locally to a limited number of processors, brokers and
middlemen who pay a price established regionally or nationally, with little local
influence.

To deal with these market realities, Utah has one of the highest percentages of its farmers and ranchers taking non-farm jobs to make economic ends meet. According to USDA National Agriculture Statistics Service (NASS) Utah is tied for second among the 50 states with 62 percent⁴ of the Utah's farming and ranching operations working off their farms, earning non-farm income to meet their financial obligations.

82

Q. YOU EXPRESSED THE IMPORTANCE OF THE PRICE/COST SQUEEZE ON UTAH FARMERS. CAN YOU GIVE AN EXAMPLE OF SUCH A COST/PRICE SQUEEZE?

A. Yes. In 2008, Utah farmers and ranchers found themselves in an especially painful

86 cost/squeeze when diesel fuel prices in some rural areas exceeded \$5.00 per gallon.

87 Although demand for locally grown agriculture products was strong, the reality that

- diesel fuel costs had doubled in a short period created a cost/price squeeze with food
- 89 producers unable to recoup their full cost of production in the market. This squeeze
- 90 created a financial burden that in some cases led to the farm sales. Other food
- 91 producers renegotiated mortgage loans or annual operating loans, liquidating equity in

92 the business.

93 Q. ARE UTAH'S IRRIGATION FARMERS IN A BETTER POSITION NOW?

A. No. Fuel prices declined for a time after reaching all time highs in 2008, possibly due to

⁴ 2007 Census of Agriculture, Vol. 1, Chapter 2, Table 46

or

http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1_Chapter_2_US_State_Level/st99_2_046_046.pdf

the global economic recession and reduced demand for oil. The political unrest in the
Middle East has led to global oil prices again exceeding \$100 per barrel. At the pump,
gas and diesel prices are up again, with some analysts predicting gas and diesel fuel
prices will exceed the record 2008 price levels.

10-035-124

Market uncertainty for alfalfa hay is creating price volatility. Alfalfa hay prices in
Utah are heavily influenced by local dairy demand, weather and the California dairy
market. Prices for milk produced by dairy farmers in Utah are set under the Federal Milk
Marketing Order and milk produced by California dairy farmers is priced under the
California's Milk Marketing Order.

104

FB – 1D Hogan

105 Q. WHAT ARE MILK MARKETING ORDERS?

106 Α. In the 1930s, the U.S. Federal Government established a system of Milk Marketing 107 Orders (MMO) to provide for the orderly marketing of milk. These Milk Marketing 108 Orders, on a regional basis, establish pricing for what was considered a very perishable food commodity. Some consider the order system outdated because it is less than 109 110 effective in recognizing market forces related to price and demand. Prices continue to be set by the Federal Government and are set based on a relationship - fluid milk usage 111 in cheese manufacturing. It is a pricing system that is complicated and understood by 112 113 few. The milk prices to Utah dairy farmers, based on Federal MMO pricing, show 114 extreme volatility between 2002 and 2007 with a low of \$11.80 and a high of \$18.90⁵. 115

More recent price trends report 2009 milk prices established through the Federal MMO as low as \$10.50 per hundredweight increasing to a summer 2010 average price of of \$15.00 per hundredweight. Prices in 2011 have increased, averaging between

5 of 15

⁵ USDA National Agricultural Statistics Service, Utah Agriculture or www.nass.usda.gov

	FB – 1	ID Hogan	10-035-124	6 of 15
119		\$16.00 and \$17.00 ⁶ per hundredwei	ght.	
120		According to the Utah Dairyr	nen's Association, for the first	quarter of 2011 the
121		statewide average milk production c	ost is \$17.00 – 17.50 per hun	dredweight.
122				
123	Q.	HOW IS FEDERAL ENERGY POLI	CY AFFECTING UTAH IRRIC	GATORS?
124	A.	Alfalfa hay and feed corn are the m	ajor feed cost components us	ed by dairy farmers.
125		Corn prices are being influenced by	federal energy policy that is p	providing a market
126		subsidy to corn that is made into eth	anol for auto fuels. Approxima	ately 35 percent of the

as bio-fuels. Corn prices have escalated dramatically in recent years. From 2001 to

corn produced domestically is now being converted into ethanol for use in automobiles

- 129 2006, prices averaged just over \$2.00 per bushel⁷. Corn prices have increased by
- nearly 300 percent between 2007 and 2011 hitting nearly \$6.50⁸ per bushel early this
- 131 year, adding to the cost/price squeeze pressure.
- 132

127

133 Q. HOW HAS CORN PRICE INCREASES AND MILK PRICES BELOW COST OF

134 **PRODUCTION ADVERSELY AFFECTED IRRIGATORS?**

- A. Lack of economic stability for Utah dairy farmers has led to uncertainty for alfalfa hay
 growers and wild fluctuations in market prices the last two years. According to UDSA
- 137 NASS, Utah baled hay prices averaged about \$150 per ton during the winter months of 2009, falling to around \$100 per ton as summer production came on. The 2010 prices
- showed little increase ranging from first quarter average price of \$95 per ton to
- 139 December 2010 average baled alfalfa hay selling for \$113 per ton.
- 140 Escalating of energy inputs costs, federal energy policy increasing the cost of
 - ⁶ Ibid

⁷ Agricultural Prices (April 2011) USDA, National Agricultural Statistics Service.

⁸ Ibid

	FB –	1D Hogan	10-035-124	7 of 15
141		corn, a major feed component, and	prices set through governme	nt Milk Marketing
142		Orders pricing milk at prices that do	o not cover the cost of produc	tion has contributed to
143		the number of dairy farms in Utah d	Iropping from more than 800 i	in 2000 to around
144		400 in 2011.		
145		Local demand from a decrea	asing number of Utah dairy fa	arms has created
146		uncertainty, volatility and downward	d price pressure in the Utah a	lfalfa hay market. Utah
147		irrigators are faced with more uncer	rtainty in 2011 than in recent	years.
148				
149	Q.	CONSIDERING THE WEAK ECON	OMIC CONDITIONS, HOW	WILL AN INCREASE IN
150		ELECTRICITY PRICES IMPACT U	TAH FARMERS?	
151	Α.	Because the climate in Utah during	the production season is usu	ally dry, Utah farmers
152		and ranchers must rely on irrigation	to make their farmland produ	uctive. Utah is second
153 154		only to Nevada as the nation's mos	t arid state. Electricity is the p	primary energy source
154		for the state's irrigation pumps. Inc	reased electricity costs would	l increase the costs of
156		production for producing alfalfa hay	, Utah's number one cash cro	op, but would also
157		increase the cost of production for f	ruit farmers, small grain farm	ers, and vegetable
		farms who pump irrigation water. A		

An increase in electric rates to pump irrigation water for farming would further exacerbate the cost/price squeeze food producers already face. As has been previously pointed out a high percentage of Utah farmers and ranchers are augmenting their incomes from non-farm jobs to help meet financial obligations. Stability in the cost of energy inputs for Utah's farms and ranches would help maintain the important economic contribution agriculture makes to our rural communities – providing jobs, paying taxes and funding important local infrastructure needs and contributing to Utah's overall

increased costs of production to their customers.

159

	FB –	1D Hogan	10-035-124	8 of 15
167		economy.		
168				
169	III.	RATE INCREASE CON	NSIDERATIONS FOR THE IRRIGATI	ION CLASS
170				
171	Q.	WHAT RATE INCREA	SE HAS THE COMPANY PROPOSE	D FOR THE SCHEDULE
172		10 IRRIGATION CLAS	S IN THIS FILING?	
173	Α.	The company has prop	osed an 18.6 % increase for the irriga	ation class, the largest
174		increase for any retail o	sustomer class. The average rate incre	ease for all retail customers
175		is 14.1%. The propose	d increase for farmers and ranchers u	using electric pumps for
176		irrigating their fields is 3	33% higher than the average requeste	ed increase.
177				
178	Q.	HOW SHOULD THE U	TAH PUBLIC SERVICE COMMISSIC	ON RESPOND TO THE
179		COMPANY'S PROPOS	SAL FOR IRRIGATION RATES?	
180	Α.	This question is extrem	ely difficult to answer because of a nu	umber of inter-related and
181		philosophical issues. L	Itah has had a proud history of embra	cing self-sufficiency. Self
182		sufficiency in meeting c	our most basic need, our food, goes ba	ack to early settlement by
183		our pioneer ancestors.	Recognizing the volatility in the energy	gy sector, it seems that as a
184		state and nation, we wo	ould want to protect our ability to prod	uce domestically our food
185		and fiber. Placing addi	tional economic burdens in an already	y stressed economic sector,
186		will put our food produc	ing capabilities at additional risk. We	are currently seeing food
187		price volatility at the gro	ocery store driven by increased fuel co	osts, adverse weather
188		conditions and politicall	y motivated policies.	
189		In the food price	equation, it's important to recognize	where the consumer dollar
190		goes. According the U	SDA Economic Research Service (EF	RS), 19 cents out of every
191		spent at the grocery sto	ore goes to the food producer – the fa	rmer or rancher. That

10-035-124

means about 80% of every consumer dollar spent on food is attributed to non-farm
 costs⁹.

When farmers and ranchers are caught in the cost/price squeeze attributed to a combination of low commodity prices coupled with escalating input costs, more are forced to take non-farm jobs and/or borrow against the equity in their property. Selling at less than the cost of production means undermining Utah's farm and ranch assets which is unfair to our food producers and undermines our local food security. In addition, during tight lending periods like we are witnessing today, getting operating loans based on equity is difficult at best.

201 With irrigators a small part of the overall revenue picture for the Company, 202 making up less than one percent of the total revenues, the Commission should keep any 203 rate increase to a minimum to lessen the adverse impacts farmers and ranchers who 204 rely on affordable power rates to run their operations. By keeping the power rate as low 205 as possible, the Commission will benefit Utah's rural communities which are heavily 206 dependent on agriculture.

207

208 Q. HOW DO YOU SUPPORT SUCH A POSITION?

A. As presented earlier in my testimony, any increase in the schedule 10 rates adversely
impacts the economic viability of irrigation farmers. Therefore, the Commission should
take into consideration the following factors in making its spread decision in this
proceeding:
(1) The company's actual cost to serve irrigation customers are currently

unknown because the load sample for irrigators is very inaccurate.

214

⁹ USDA Economic Research Service (2006) or

http://www.ers.usda.gov/Publications/eib48/Spreads/17/index.htm

	FB – 1	D Hogan 10-035-124 10 of 15	5
215		(2) Irrigators are a very small part of the Company's overall revenue,	
216		(3) The irrigation class consumption has remained flat and therefore has r	not
217		been a significant driver behind the Company's need to build more po	wer
218		plants or transmission lines, and	
219		(4) Irrigators have been willing to work with the Company to help manage	e their
220		peak loads by actively participating in load control programs.	
221			
222		I discuss in greater detail each of these factors below.	
223			
224	Q.	HOW WOULD YOU DESCRIBE THE ENERGY NEEDS OF THE IRRIGATORS	
225		TAKING SERVICE UNDER SCHEDULE 10?	
226	A.	Inconsistent and unpredictable. There are many factors affecting their demand fo	r
227		energy. For example, climate conditions affect demands for energy. Variability in	l
228		temperature, wind, and moisture complicate the consistency of energy demand. I	Power
229		demand coincides with seasonal power demands. Food and agriculture production	on
230		related to irrigation peaks during the Company's high demand cycle. Another factor	or
231		affecting electricity and pumping is the crop being produced. Determining crop oft	en is
232		related to the irrigator's crop rotation. That may be determined by nutrient manage	ement
233		or soil related disease issues. Rotating from alfalfa hay to small grains will lower the	he
234		water demands and reduce the irrigation season. Irrigation seasons for crops like	e alfalfa
235		and corn are longer than irrigation seasons for wheat or barley. Lastly, when farm	ers
236		fallow or idle their land for soil health, they will have little or no demand for electric	city.
237		Each of these factors, independent or combined, vary the irrigator's power deman	ıd.
238			

239 Q. GIVEN THE UNPREDICTABILITY OF PUMPER ENERGY DEMAND, HAS IT BEEN

	FB –	1D Hogan	10-035-124	11 of 15
240		DIFFICULT TO MEASURE E	NERGY DEMAND FOR PUMPE	ERS?
241	Α.	Yes.		
242				
243	Q.	WHAT EVIDENCE DO YOU	HAVE TO DRAW THIS CONCLU	USION?
244	Α.	On November 30, 2010, the D	vivision of Public Utilities publishe	ed a report entitled,
245		"Report of the Division of Put	lic Utilities on Workgroups I-II: L	oad Research and Peak
246		Hour Forecasting." ("Report")	Within the Report (page 12), it	was agreed by the parties
247		collaborating on the Report th	at load research for irrigation cla	ss was "problematic."10
248				
249	Q.	HOW DOES UNRELIABLE L	OAD RESEARCH AFFECT EN	ERGY STUDIES?
250	Α.	Any study based on unreliable	e data will produce unreliable stu	idy results. If decisions
251		about energy demand are bas	ed on faulty results, then the rat	es would inaccurately
252		reflect energy demand. Within	n the same above stated Report	, the Office of Consumer
253		Services (OCS) stated that "p	roblems with the irrigation load o	lata make the Cost of
254		Service (COS) results for this	customer class unreliable and th	ne Company has no
255		credible support for its claim t	hat the irrigation class is contribu	uting substantially less than
256		the Company's average rate of	of return."	
257				
258	Q.	BASED ON THE REPORT, V	VHY ARE THE COSTS OF SER	VICE FOR THE
259		IRRIGATOR CLASS OVERS	TATED?	
260	Α.	The Company's load research	sample is selected from activel	y irrigating customers, not
261		all irrigation customers. Othe	r classes are sampled over an er	ntire population. Ten

262 percent of the irrigators are cited as active, but have zero electricity usage during an

¹⁰ Report of the Division of Public Utilities on Workgroups I-II: Load Research and Peak Hour Forecasting, Division of Public Utilities et al., November 30, 2010 (Docket 09-035-23), p 12

	FB –	1D Hogan	10-035-124	12 of 15
263		irrigation season.	Omitting those farmers who use no electricity	from the load research
264		biases the study t	owards higher contribution to peak. Recognizir	∩g that during any
265		production seaso	n, there is a percentage of the irrigators who ar	re idling their land for
266		soil health issues		
267				
268	Q.	GIVEN THE LOA	D SAMPLING PROBLEM, HOW SHOULD RA	ATES FOR THE
269		IRRIGATION CL	ASS BE SET?	
270	Α.	Since the rate set	ting algorithm for irrigators is beset with many	inaccuracies, setting the
271		rate for irrigators	should provide stability in this important food p	roduction sector and not
272		disrupt the contrib	outions they make to rural communities.	
273		New rates	for irrigators could be set based on the average	ge retail increase. This
274		average rate incre	ease should be considered the upper limit for a	iny rate increase to be
275		applied to Schedu	le 10. Based on all the uncontrollable issues f	food producers face as
276		described in earlie	er testimony, the rates could be set using a low	ver than average
277		increase.		
278				
279	Q.	HOW DO THE R	ATES FOR IRRIGATORS IMPACT THE COM	PANY'S OVERALL
280		REVENUE?		
281	Α.	In 2009, the rever	nue from irrigators was .8% of the Company's l	Utah revenues.
282		Because irrigators	s are less than 1% of the Utah revenue, change	es to the rates of the
283		irrigation class ha	ve almost no effect on the Company's Utah rev	venue.
284				
285	Q.	WHY SHOULD T	HE SIZE OF THE IRRIGATOR CLASS FACTO	OR INTO THE
286		COMMISSION'S	DECISION ON HOW TO SET IRRIGATOR RA	ATES?

10-035-124

A. Because the irrigators are such a small class, their rates have little effect on the rates and costs paid by other classes. Conversely, increases to the Schedule 10 rates have the potential to do great harm to the farmers and ranchers of Utah. The revenue impact on the other customers is simply not large enough to justify the potential harm done to irrigators and the customers and rural communities they support by increasing irrigation rates more than other classes.

293

294 Q. HAS INCREASED DEMAND FROM IRRIGATION CUSTOMERS CAUSED THE

295 COMPANY TO BUILD MORE POWER PLANTS AND TRANSMISSION LINES?

No. First of all, as I described earlier, irrigators are a very small customer class and 296 Α. 297 cannot be a driver for the Company's recent capital investments. These investments are 298 driven by the growth in urban populations, businesses and large industrial customers. 299 Second, annual power usage by irrigators has remained relatively flat or dropped over the last several years. According to the Company irrigators used 198 million kWh in 300 2002 versus 184 million kWh between July 2009 and June 2010. The Company is 301 forecasting irrigators using 187 million kWh between July 2011 and June 2012.¹¹ The 302 303 numbers point to the fact, the irrigators are not the cause of resource and infrastructure growth in the utility's system. 304

305

306 Q. HOW DO IRRIGATORS HELP THE COMPANY MANAGE SYSTEM PEAK DEMAND 307 IN THE SUMMER?

A. Pumpers are actively participating in load control programs that help the Company
 manage and reduce load during its peak periods. The Company offers incentives like
 reduced rates to irrigators who are willing to sign on for interruptible service. This helps

¹¹ Eelkema Direct, Table 3, pg. 12.

	FB – ´	1D Hogan	10-035-124	14 of 15
311		reduce the farmers' input costs and re	educe load during peak periods.	Certainly, this
312		provides a mutually beneficial outcom	e for food consumers, irrigators	and the utility. In
313		short, this interruptible program provid	des the Company with an import	ant tool that helps
314		keep down overall energy costs.		
315				
316		<u>SUMMARY</u>		
317				
318	Q.	PLEASE SUMMERIZE THE FARM B	UREAU'S TESTIMONY ON IR	RIGATION RATES
319		IN THIS GENERAL RATE CASE PR	OCEEDING.	
320		The Farm Bureau asks the Commissi	on to carefully consider any rate	increases for the
321		irrigation class, particularly recognizin	g the unreliability of the Compar	ny's load sampling
322		for Schedule 10 as well as several sp	ecial circumstances that affect th	nis class. In
323		summary, the Farm Bureau conclude	s the following:	
324	•	Because of load sampling problems, t	he Company cannot accurately	determine the cost
325		of service for Schedule 10. Therefore	e, the Commission should not ap	prove a rate
326		increase for Schedule 10 that is any h	igher than the average retail rat	e increase.
327				
328		In addition, Farm Bureau offers the fo	llowing reasons why the Commi	ssion should
329		consider a lower increase:		
330				
331	•	Irrigators make up less than 1% of the	e Company's Utah revenue. The	eir small size also
332		minimizes the impact of irrigator rates	on other customer classes. This	s cannot justify
333		the disproportionate harm that rate inc	creases cause Utah's farmers ar	nd ranchers.
334	•	Schedule 10 consumption has been f	lat and therefore has not been a	primary driver for

	FB – 1	D Hogan	10-035-124	15 of 15
335		the new plant and other infrastructur	e investments made by the Company	<i>ı</i> .
336	•	Irrigators are an important contributo	or to Utah's rural economic and cultura	al fabric.
337		Higher power rates adversely impac	ts financial stability of farmers and rar	nchers and
338		lessens the economic contribution for	ood producers make to rural communi	ties.
339	•	Lastly, Schedule 10 customers have	assisted the Company in its manage	ment of usage
340		during the summer peak period by the	neir participation in irrigation load con	trol programs.
341				
342	Q.	DOES THIS CONCLUDE YOUR TE	STIMONY?	
343	A.	Yes.		