BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

IN THE MATTER OF THE APPLICATION OF	
ROCKY MOUNTAIN POWER FOR AUTHORITY TO	DOCKET NO. 11-035-200
INCREASE ITS RETAIL ELECTRIC UTILITY	
SERVICE RATES IN UTAH AND FOR APPROVAL	
OF ITS PROPOSED ELECTRIC SERVICE	DPU Exhibit 8.0 DIR-COS
SCHEDULES AND ELECTRIC SERVICE	
REGULATIONS	

COST OF SERVICE

DIRECT TESTIMONY OF LEE SMITH ON BEHALF OF

THE UTAH DIVISION OF PUBLIC UTILITIES

June 22, 2012

1 I. INTRODUCTION

Q.	What is your name and business address?
A.	My name is Lee Smith, and I work for La Capra Associates, One Washington Mall,
	Boston, MA 02108.
Q.	On whose behalf are you testifying in this proceeding?
A.	I am testifying on behalf of the Utah Division of Public Utilities (Division).
Q.	Please describe your background and experience.
A.	I am a Managing Consultant and Senior Economist at La Capra Associates. I have been
	with this energy planning and regulatory economics firm for 28 years. I have prepared
	testimony on gas and electric rates, rate adjustors, cost allocation and other issues
	regarding more than 40 utilities in 21states and before the Federal Energy Regulatory
	Commission. Prior to my employment at La Capra Associates, I was Director of Rates
	and Research, in charge of gas, electric, and water rates, at the Massachusetts Department
	of Public Utilities. Prior to that period, I taught economics at the college level. My
	resume is attached as DPU Exhibit 8.1 DIR-COS.
Q.	Please describe your educational background.
A.	I have a bachelor's degree with honors in International Relations and Economics from
	Brown University. I have completed all requirements except the dissertation for a Ph.D.
	in economics from Tufts University.
	Q. A. Q. A. Q. A.

23

24	Q.	What is the purpose of your testimony?
25	A.	I have been retained by the Division to review and analyze the cost allocation and rate
26		design presented by Rocky Mountain Power ("the Company"). I have developed a cost
27		allocation study which reflects the Division's revenue requirements as a basis for
28		determining class revenue requirements. The Division's rate objectives and class revenue
29		requirements then become the basis for rate designs, which I will also present.
30		
31	Q.	Please summarize your testimony.
32	A.	I have reviewed and analyzed all aspects of the Company's allocation of costs to
33		customer classes and proposed class rates. Regarding the cost of service study, I will first
34		address the issues raised by the Commission in its Action Request of May 17. I then
35		address a number of other issues related to the Company's allocated cost of service study.
36		I address rate design issues including the Company's load research and its estimation of
37		peak loads, the Company's calculation of customer costs, and the Company's marginal
38		cost study and a proposed rate design. I have reflected the Division's revenue
39		requirement adjustments in the cost of service model and reflected my recommended
40		allocation changes in that model. Finally, based on the above analyses, I recommend an
41		alternative rate spread.
42		
43		I have found that:
44		• There are a number of problems in the allocated cost of service study

45		• Correcting the problems that I have identified results in finding lower deficiencies
46		to the residential class and to Schedule 6, although these changes are not major
47		• The load research/ load forecast is imperfect, particularly regarding the Irrigation
48		class loads
49		• The Company's proposed increase in the residential customer charge is not
50		warranted
51		• The Company has not attempted to base its Time of Use rates or its rate
52		components on marginal costs
53		• The way in which the Company's model treated working capital, interest and
54		income taxes is inconsistent with the JAM model and inconsistent with the
55		depiction of the full cost of serving each class
56		• The increases to customer classes can be based on the results of the cost of service
57		study, with mitigation for classes that would otherwise receive particularly high
58		increases
59		
60	Q.	There appear to be a number of issues with regard to the estimation of class costs
61		and rate design. How have you presented tabular information regarding these
62		various issues?
63	А.	The first cost of service modifications that I show have been made in a modification of
64		the model distributed by the Commission that I am referring to as "Model X." This
65		produces results almost identical to the Company's model but is easier for the analyst to
66		use. Allocation changes contained in Model X are applied to the Division's

67		recommended revenue requirement. I then show the changes from these results to those
68		resulting from changes to the Company's model's treatment of working capital, interest
69		and income taxes. I then utilize the results of this model as a basis for computing rate
70		spreads and rate design.
71		
72	II.	ALLOCATED COST OF SERVICE STUDY
73	Q.	What have you reviewed with regard to RMP's allocation of costs?
74	A.	I have compared the allocations between states and the allocations of the same cost
75		categories within Utah classes. I have also critically reviewed the Utah allocation
76		methodologies. There are a number of aspects of the Company's allocation which
77		warrant discussion and in some cases correction.
78		
79		A. Response to the Commission's Action Request on Inconsistencies between
80		Jurisdictional and Intrastate Allocation Methodologies
81		
82	Q.	Have you prepared the Division's response to the Commission's Action Request of
83		May 17?
84	A.	Yes. The Commission on May 17 asked the Division to respond to several issues arising
85		from the integrated cost of service model. These issues were framed as three
86		inconsistencies between the Company's jurisdictional and class cost of service studies:
87		1) relations among cash working capital, interest expense, and income taxes; 2) the
		-

determination of state income taxes; and 3) use of the income to revenue multiplier.

89

90 Q. Would you please summarize these differences?

91 On a fundamental level, the jurisdictional cost of service study calculates cash working A. 92 capital, interest expense, and income taxes based on the underlying allocations of rate 93 base and expenses to each jurisdiction. In contrast, the intrastate Utah treatment allocates 94 these cost elements to rate classes based only on earned income amounts before taxes. 95 From a very simple perspective, this means that when the cost of service determines that 96 a class earns below the average rate of return, the amount of working capital, interest 97 expense, and income taxes that are attributed to the class are less than they would be if 98 the class earned the average rate of return. The opposite is also true; if a class earns 99 above the average rate of return, it is allocated more of these costs than it would pay 100 based on the average rate of return. 101 The results of the Jurisdictional Allocation Model ("JAM") are that each state's cost of 102 service is represented as allocated expenses, plus the return on allocated rate base, working capital, interest expense, and income taxes¹ that are calculated relative to the 103 104 required return, which as noted is dependent on allocated rate base.

- 105 The intrastate allocation is inconsistent with the JAM allocation and does not reflect an
- allocation of all costs, as it results in reported class cost of services that do not include

¹ State income taxes involve another issue which will be discussed separately.

107	working capital, interest expense, and income taxes that are related to the return that is
108	allocated to them.

109 Q. Do you recommend changes to the Company's allocation methods regarding these
110 issues?

A. Yes. Modifying the treatment of working capital, interest expense, and income taxes will result in a more complete estimate of the full cost of serving each customer class, and will be consistent with the JAM allocations. These issues have been discussed in technical sessions. The model distributed by the Commission has been modified so that it does calculate full costs, by allocating the above cost elements consistent with the JAM

model. As mentioned above, I am referring to this modified model as Model X.

- 117 Q. Do all of the tables that you use to illustrate cost of service depend on this revised
 118 model?
- A. No. In order to illustrate changes from the Company's filed cost of service that result
 from my recommended allocator changes, my Tables 3 to 6 compare my results to those
 of the Commission model. Subsequently (Tables 10 and 11), I show changes to class
 deficiencies resulting from Model X, both with my allocators and Division revenue
 requirements.
- 124

- 125
- B. Consistency Between Utah and JAM Allocations
- 126

127	Q.	Are the allocators that RMP has used in its Utah class cost of service study the same
128		as those used in its JAM?
129	A.	Most the allocators are the same. One significant change is that in the previous case the
130		75% of the generation capacity allocator was based on weighted 12 Coincident Peaks.
131		Each month was weighted by its relationship with the highest monthly peak, which put
132		more weight on high load months. The JAM allocation of generation capacity uses
133		unweighted 12 CPs, and in this case the Company has switched back to using the same
134		demand definition for the jurisdiction allocation as for the JAM allocation.
135		
136	Q.	Why should most JAM and Utah allocators be similar if not identical?
137	A.	The JAM allocators for generation and transmission determine the Utah jurisdiction's
138		generation and transmission costs. It would be undesirable to communicate something
139		radically different to Utah customers in the Utah cost of service study. However, if
140		conditions have changed such that some JAM allocators no longer reflect cost causation,
141		and using JAM allocators provide erroneous price signals to different customer classes,
142		an argument can be made for adopting a different allocator within Utah.
143		
144	Q.	Do you believe it is appropriate that some Utah allocators are different from the
145		JAM allocators?
146	A.	The short answer is yes. RMP's distribution costs are dominated by Utah specific
147		distribution plant, so allocation decisions are specific to Utah. Also the allocation of a
148		number of costs related to customer service may be different, because to distinguish

149		between classes within Utah requires a different approach than allocating between
150		jurisdictions. Where cost causation between Utah and the other states and between
151		customer classes within Utah is different, different allocators will be appropriate.
152		
153	Q.	Are the purposes of inter and intrastate allocation the same?
154	A.	No, they are not. The JAM allocation determines what portion of PacifiCorp costs,
155		primarily generation and transmission costs, will be paid by each state. The intrastate or
156		interclass allocation is a basis for determining how much different classes will pay, and
157		therefore also underlies rate design. There are a number of accounts whose Utah class
158		allocation I would not recommend changing, even though they may seem to differ from
159		the JAM allocation.
160		
161 162		C. Allocation of Generation and Transmission Plant and Expenses
163	Q.	How has RMP allocated generation and transmission capacity costs in the Utah cost
164		of service study?
165	A.	Generation and transmission fixed costs are allocated using the same allocator used in the
166		JAM allocation, allocator F10. This allocator weights a measure of demand by 75% and
167		energy by 25%; in other words, 75% of these fixed costs are "classified" as demand. The
168		measure of demand is the average class 12 monthly peaks coincident ("12 CP") with the
169		monthly peaks of the entire PacifiCorp system. In the previous case the Company's
170		filing utilized a different measure of demand, in which the 12 CPs were weighted by their

171		relationship to the peak month. The change was made to be more consistent with the
172		JAM allocation. The allocation of these fixed costs to customer classes is dependent on
173		both the classification, (the weight placed on demand and energy), and on the definition
174		of demand. In other places and times demand has been defined by a single coincident
175		peak, an average of summer peaks, and an average of summer and winter peaks.
176		
177	Q.	Do you think the Company had strong justification to move back to using the
178		unweighted 12 CP in Allocator F10?
179	A.	Yes. The MSP process and prior Utah orders supported the unweighted 12 CP measure
180		for demand and a 75% weight for demand. There has been no analysis demonstrating
181		why these decisions, particularly the adoption of a 12 CP definition of demand, should be
182		modified. In addition this results in consistency between intrastate and interstate
183		allocations, since Utah's cost responsibility for generation capacity is determined by the
184		use of the 12 CP demand.
185		
186	Q.	Has this allocation methodology, that is the 75/25 classification and the definition of
187		demand as 12 CPs, been supported by current analyses of cost causation for all
188		generation and transmission plant in this case?
189	A.	This method was proposed and accepted by the Commission in Docket No. 97-035-01.
190		In 09-035-23 Mr. Paice described the methodology as the result of a studies producing a
191		result suitable to all parties, since at the time of the Utah Power – Pacific Power merger
192		both companies had used different methodologies. (p. 8 Rebuttal) There was a Division

193		finding supporting the use of 12 months of coincident peaks, and also a finding that
194		energy plays some role in the selection of least-cost resources. Mr. Paice stated that the
195		75/25 split was retained during the Multi-State Process discussion because it fell ("in the
196		middle of the range of reasonable approaches." (p. 9 Paice Rebuttal) This was a
197		qualitative position rather than a quantitative analysis of portfolio planning. It is also
198		significant that Division support of this methodology 15 years ago did not conclude that
199		the methodology best reflected cost causation, but merely, as cited by Dr. Powell, that the
200		evidence was "not inconsistent" with the methodology.
201		
202		In this case there has been no analysis to demonstrate the appropriateness of this
203		methodology for application to the present loads and generation portfolio. The Company
204		did refer to a "stress analysis" as providing support for the 12 CP definition of demand.
205		This analysis is not current and it is not clear how it results in the conclusion that all 12
206		months contribute to the need to add capacity to meet peak loads. Dr. Powell also
207		discusses this topic in his testimony.
208		
209	Q.	Have there been changes in the major reasons for generation capacity investment
210		that suggest that the allocation of generation capacity costs should be reviewed?
211	A.	Yes. There has been a significant shift in the Company's generation portfolio since 1997,
212		as a very large quantity of wind generation has been added. The current book value of

- 213 PacifiCorp's wind capacity (including contracts) is 22% of total production capacity,
- 214 while that percentage in 1997 was probably zero. (The 2011 IRP shows no wind capacity

215		that had been in place in 1997). PacifiCorp's Load and Resource rated wind capacity is
216		23.5% of its total nameplate rated capacity according to the 2011 IRP. 2
217		
218	Q.	Why is the proportion of wind capacity in the generation portfolio relevant?
219	A.	If we reviewed each generation plant type separately, we would conclude that the
220		classification of costs between demand and energy varied with each type of plant.
221		Peaking units, for instance, are built primarily to meet demand peaks, and are also the
222		least capital cost means of meeting additional peak loads. Utilities invest in more
223		expensive generating units because the additional expense is justified by the energy
224		savings that will result from more capital intensive units. For instance, a large portion of
225		the cost of coal units is justified by energy savings, and only a small portion of
226		investment in coal would be directly related to demand.
227		
228		The 75/25 classification method was found reasonable based on the mix of generation
229		plant in the generation portfolio that existed 15 years ago. If the portfolio at that time had
230		included much wind power, the classification that was adopted would probably have been
231		different.
232		
233		Wind generation is built in order to supply cheap energy and/or to meet state
234		requirements for renewable power. Requirements for renewable power are also driven by

235 concerns about energy costs and emissions resulting from energy production. The amount

 $^{^2\,}$ 132 MWs of L&R wind /1032 MWs nameplate wind capacity 2011 IRP Table5.5

236	of wind required by state Renewable Portfolio Standards is expressed in terms of the
237	percent of energy that should result from renewable resources. As a result, the primary
238	cost causation factor for wind energy is energy. Wind normally gets very little capacity
239	credit, as it is not guaranteed to be available at the times capacity is needed to meet load
240	and reserve requirements. The generation portfolio that resulted in the 75% demand
241	allocation accepted in 1997 did not reflect the 18% of production rate base, or the 23.5%
242	of total capacity in the portfolio today that should be allocated primarily on energy.

244 **Q.** How have you determined what portion of the cost of wind capacity you

245 recommend classifying as and allocating by capacity?

246 I first referred to the Company's 2011 Integrated Resource Plan. Table 5.5 contains the A. 247 total amount of PacifiCorp installed capacity and also Resource and Supply Contribution 248 of those wind resources. While the relationship between total capacity and the amount of 249 capacity credit produced by wind resources varies, on average it was 12%. In other 250 words, on average 100 MWs of wind capacity is only considered to contribute 12 MWs 251 to PacifiCorp's capacity target. However, the capacity cost per MW of wind is higher 252 than the cost of peaking units, so the 12 MWs are more expensive than what is normally 253 considered peaking capacity. In addition, wind resources require wind integration costs, 254 and in general do not provide some of the useful characteristics provided by less 255 expensive peaking capacity. As a result, I recommend discounting the capacity value of 256 wind by as much as 50%. A 50% discount results in a 6%/94% demand/ energy 257 classification for wind resources.

259	Q.	How do you respond to the fact that your recommendation will result in an
260		inconsistency between classifying wind capacity cost as 94% energy when the JAM
261		method classifies only 25% of this cost as energy?
262	A.	First, as I noted above, the JAM method was developed and adopted when there was
263		essentially no wind in the portfolio mix. Second, other PacifiCorp's jurisdictions'
264		intrastate allocations also deviate from the JAM allocation (and classification) of
265		generation capacity. Presumably regulators in other states have adopted intrastate
266		allocations that they believe respond to their rate design goals better than the JAM
267		allocation would. Third, I believe this revised allocation will produce a more equitable
268		intraclass allocation. The revised class allocation will not impact interstate allocation
269		unless and until a change is adopted at the MultiState level.
270		
271	Q.	Which other PacifiCorp jurisdictions allocate generation capacity costs to customer
272		classes in different ways?
273	A.	Oregon and California essentially classify and then allocate generation capacity by first
274		estimating marginal costs by function, then reconciling marginal generation costs to
275		embedded generation function revenue requirements. This is equivalent to a
276		classification that is based on the cost relationship between a peaker (simple combustion
277		turbine) and a baseload (combined cycle unit) and then an allocation of the demand
278		portion on class loads coincident with the system peak. Washington classifies 35% of
279		generation capacity as demand, 65% as energy, and allocates the demand portion on 100

280		Summer and 100 Winter System Peaks. The difference from the JAM generation plant
281		methodology evidently is based on the assumption used in Washington that the cost of
282		peaking capacity is determined by the Bonneville Power Administration contract
283		capacity. Only Wyoming and Idaho classify and allocate generation capacity in the same
284		manner that RMP does.
285		
286	Q.	The Commission in its order in 09-035-23 stated that parties proposing changes to
287		approved methods should demonstrate that the changed method is "appropriate"
288		and "viable at the interjurisdictional level." Please respond.
289	А.	I think that allocating 94% of wind capacity on the basis of energy is both an appropriate
290		and viable method.
291		
292		I have established above that classifying a large portion of wind resources on the basis of
293		energy reflects cost causation and is appropriate from that standpoint. In addition, I
294		believe it is appropriate to modify allocation methodologies to reflect significant changes
295		in the underlying costs.
296		
297		By "viable", the Commission seems to have asked what impact this change at the MSP
298		might have on other states and whether it is likely that they would agree to this change. I
299		would expect that states with mandatory RPS standards should be aware that these
300		change generation portfolios and change cost causation. How they react to this probably
301		will be influenced by the actual dollar impact to them. States with higher energy use

302		compared to the sum of their 12 Coincident peaks will be allocated more generation
303		capacity costs, and those with lower energy use will be allocated less. However, this
304		change will apply to less than twenty percent of PacifiCorp's generation rate base. In
305		addition, if the definition of demand were also reviewed, this might offset some of the
306		changes due to a change in classification. I have estimated that this change might result in
307		a range of changes in total allocated costs of between 0.2% decreases to 0.3% increases
308		(with a 0.01 % decrease to Utah).
309		
310		D. Allocation of Distribution Plant and Expenses
311		
312	Q.	Are there any problems with RMP's allocation of distribution plant in the Utah cost
313		of service study?
314	A.	Yes, I believe there are. A major problem that has persisted is the allocation of service
315		plant. Service plant is allocated to customer classes as if each customer requires an
316		individual service. It is clear many residential customers do not have individual services.
317		While there may be some Schedule 6 customers who share services, it is the
318		overstatement of residential services that has been the major concern.
319		
320	Q.	Has the allocation of services been an issue in prior cases, and how has RMP
321		responded to this issue?
322	A.	Yes, it has been an issue in a number of prior cases. The OCS attempted to "correct" this
323		in 10-035-124, and both the OCS and the Division recommended that cost allocation

324		reflect the impact of multifamily housing. Although the Division witness in 10-035-124,
325		Dr. Abdulle, did not assert that he had an exact or "proper" estimate of the number of
326		residential services, he did testify that the overallocation of service plant could be
327		substantial and an adjustment should have been made to reflect this possibility.
328		
329		The Company has implied that it would require a major study to identify shared services,
330		and it would need approval to do such a study. (97-035-23 Paice Rebuttal p. 6) I believe
331		that the Company could have addressed this issue by analyzing a sample of its data, but it
332		has not done so. Mr. Paice dismisses the relevance of the Division testimony in the last
333		case because the case was settled. The Company did no further analysis of its system
334		before filing this case, although in its revised response to OCS 3.19 it indicates that it
335		now knows how many customers are in multifamily dwellings. While it is true that there
336		may not have been exact data on the number of residential services, there are many
337		aspects of the cost allocation process that are not exact. It is unrefuted that there are
338		fewer residential services than there are residential customers.
339		
340	Q.	Is there additional data that can be used to estimate a correction to the service plant
341		allocation?
342	A.	Yes. Additional data that has been provided in this case on numbers of multifamily
343		customers, on the cost of service plant, and the number of customers served by
344		transformers, that is all relevant to the issue. Also, the results of the 2010 U.S. Census
345		are now available.

347 Q. What does the data on multifamily numbers of customers indicate about residential 348 services?

- 349 Customers living in multifamily housing will almost always share services. For all A. 350 customers who share services with other customers, the Company's service allocator 351 overstates the number of residential services. According to the revised response to OCS 352 3.19, there are 158,779 residential customers identified as located in multifamily units. 353 These will range from two family units to apartment buildings with more than fifty 354 customers. The most conservative way to use this data is to make a computation 355 assuming that all of these multifamily customers share a service with one other customer. 356 I will call this Method 1 for adjusting the service allocator. It results in a finding that at a 357 minimum the number of services will be 79,390 less than the number of customers.
- 358

359 Q. What does the transformer data indicate about multifamily customers?

A. Detailed data on transformers provided in response to OCS 3.15 shows the number of residential customers served by each specific residential transformer, which ranges from one to 239 residential customers. This data does not directly identify all customers who may be sharing services, since residential transformers that are not serving multifamily units still typically serve from 3-6 individual housing units. However, there is a practical maximum number of individual units that are served by individual transformers.

366

367		For the transformer method approach, which I have called Method 2, I have assumed for
368		this estimate that a transformer of 100KW will serve no more than 20 residential
369		customers. I reviewed the data and identified the number of transformers that served
370		more than 20 residential customers, and the total number of customers served by these
371		large residential transformers. I further assumed that these multifamily units were served
372		by only one service. Method 2 results in an alternative estimate of the overstatement of
373		the number of residential services. The estimated overstatement is 93,110, well above the
374		overstatement calculated using Method 1.
375		
376		One other complication regarding large multifamily units is that their services may be
377		more expensive than the typical service for single-family dwellings. The service data Mr.
378		Paice relied on for his COS study, shows a single service for a residential customer costs
379		somewhere between \$600 to \$720. Services to serve loads between 100 and 300 kW,
380		which should be able to serve approximately from 20 to 60 residential customers, cost
381		over \$3,000. Using Mr. Paice's data on service costs and the transformer data, we
382		adjusted the average residential service cost to \$703 from \$656 to account for the
383		estimated number of customers that need larger service sizes.
384		
385	Q.	Would you expect that the estimates based on either of these methods will produce
386		the same degree of accuracy?
387	A.	No, but either estimate will be very conservative. Method 1, assuming that all

388 multifamily units use one service for two customers does not reflect multifamily sharing

389		for larger housing units. Method 2, adjusting services based only on numbers of larger
390		multifamily housing, does not reflect the sharing of services by smaller multifamily
391		housing units. There are residential customers sharing normal size and cost services in
392		small multifamily units and also residential customers sharing more expensive services in
393		large multifamily units. Neither method 1 nor 2 accounts for both. Note from the data
394		cited above that the cost of larger transformers does not increase proportionally with the
395		load that they can serve.
396		
397	Q.	What information does the Census provide?
398	A.	The Census provides data by county and by state regarding housing units. In 09-035-24,

OCS witness Paul Chernick used data from the 2000 Census to estimate the number of
RMP customers who shared services. According to Mr. Chernick, the 2000 Census
indicated that about 29% of the housing units in the counties that RMP serves were in
multifamily units.

403

404Data from the 2010 Census for the state of Utah shows that 21% of total housing units are405in multifamily units, and 24% of occupied units were in multifamily units (excluding "1406unit attached dwellings".) This data also contains the number of households in different407size multifamily units. It is reasonable to assume that RMP's number of customers is408very close to the number of occupied housing units.

409

410 Q. Have you used the 2010 Census data to estimate residential services?

411	A.	Yes. I applied the Census data, by County, to RMP's number of residential customers,
412		by county. The Census data is presented for categories of housing sizes. In a previous
413		case, Mr. Chernick was criticized for assuming that the number of units in a Census
414		category could be represented by the midpoint – e.g. 15 units for the category 10 to 20
415		units.
416		
417		While I do not find Mr. Chernick's representation unreasonable, in the interest of being
418		conservative, I have utilized the bottom number of units in each category to represent the
419		number of shared units in each category. Method 3 therefore uses the percentages of
420		households in each category to estimate how many of RMP's residential customers will
421		be in that category, and estimates the overstatement of services from this data. This
422		results in finding that the lack of reflecting multifamily housing overstates the number of
423		residential services by 129,953 services. The basis for this analysis is shown in Table 1
424		below.

Table	1
-------	---

From Utah Count	y ACS Data 5-yr	Estimated		
Multifamily Units	% of Customers	Number of Customers	Reduction in Services	
2	3.3%	23,529	11,765	
3	4.5%	32,473	21,649	
5	3.7%	26,710	21,368	
10	4.7%	33,514	30,163	
20	3.8%	27,206	25,846	
50	2.7%	19,554	19,163	
Total	22.6%	162,986	129,953	

426

428 **Q.** What do these three methods of calculating the impact of multifamily services on

429 service plant allocation demonstrate?

- 430 A. They provide a range of estimates of how much an overstatement of the number of
- 431 residential services result from the Company's assumption that every residential customer
- 432 has a service. Table 2 below shows RMPs assumed number of residential services and
- 433 the numbers produced by these three methods.
- 434

Table 2

435

Comparison of alternative calculations of the effect of multifamily housing on the number of residential services

Method	Description	Assumed Customers in Multi-Family Housing	Assumed Number of Services	Overstatement of Number of Services
	RMP Assumption	-	719,940	-
1	Duplex	158,779	640,550	79,390
	20 Cust./Tfmr = Multifamily			
2	+ Service Cost Adj.	96,424	626,830	93,110
3	Census Data	162,986	589,987	129,953

436

437 Q. What impact does this have on the amount of service plant allocated to the

438 residential class?

A. The service plant allocator directly applies to \$227.5 million of plant. It also impacts the

440 allocation of other costs through its impact on indirect allocators. Table 3 below shows

- the impact of the alternative allocation based on the census data on both the amount of
- service plant allocated to the residential class and the resulting total revenue requirement.
- 443

	Original Service Plant	Revised Service Plant	Difference	Original Revenue Requirement	Revised Revenue Requirement	Difference
Utah	227,473,706	227,473,706	0	1,792,446,188	1,792,446,188	0
Residential Sch 1	182,945,156	175,383,119	-7,562,037	697,722,256	697,030,369	-691,887
General Large Dist. Sch 6	16,678,078	19,510,424	2,832,346	481,944,558	482,202,515	257,957
General > 1 MW Sch. 8	1,670,108	1,953,733	283,625	146,620,823	146,646,591	25,768
Street & Area Sch. 7,11,12	0	0	0	11,511,720	11,511,629	-91
General Transmission Sch 9	0	0	0	249,737,890	249,739,023	1,133
Irrigation Sch 10	0	0	0	14,597,863	14,597,905	42
Traffic Signals Sch 15TS	688,786	805,759	116,973	607,973	618,693	10,719
Outdoor Lighting Sch 15OL	149,821	175,264	25,443	954,335	956,643	2,307
General Small Dist. Sch 23	25,341,757	29,645,407	4,303,650	130,416,614	130,810,094	393,480
Industrial Contract 1	0	0	0	28,068,264	28,068,609	345
Industrial Contract 2	0	0	0	30,263,893	30,264,119	226

Table 3³

446

447 Q. Have you reviewed the Company's previous objections to the attempts by Mr.

448 Chernick and by Dr. Abdulle to estimate the correct number of services serving the

449 residential class?

450 A. Yes. Over the last two cases the Company has presented a litany of objections to any

451 proposed correction to service plant allocation. I will attempt to list the most relevant of

452 them.

453 1) 2000 Census data did not reflect the Company's residential customer base

- 454 2) Some multifamily dwellings have more than one service drop
- 455 3) Services serving large multifamily dwellings will be more expensive than those reflected
- 456 in the residential service weight

³ This calculation is based on the Division revenue requirement discussed later in this testimony

457	4)	The exact number of customers in Census categories of multifamily housing are not
458		known
459	5)	Some other classes may also share services
460		
461	Q.	What do you recommend regarding the allocation of service plant?
462	A.	I do not think it is appropriate to continue to overallocate service plant to residential
463		customers because of imperfect data. I have produced alternative service plant
464		allocations to "bound" the misstatement of the service plant allocator, but I recommend
465		utilizing Method 3, as it depends on more detailed data. I believe this method still
466		overstates the allocation of service plant to the residential class, due to the use of the
467		minimum number of housing units in each Census category. The potential for some
468		uncounted sharing of services in other classes may offset some of this remaining
469		overallocation.
470		
471	Q.	Please discuss the allocation of substations and primary lines.
472	A.	Substations and primary lines are allocated on twelve "distribution coincident" peaks
473		(CPs of all distribution customers). The monthly weights are based on the percent of
474		substations that peak in the month. The Company has not presented any theoretical
475		support in this case for the weighting of monthly CPs in this manner, but this method has

476 been approved in past cases.

477 I believe the reason for weighting the distribution CPs is to reflect the fact that478 substations are sized to meet relatively local peaks, and these peaks are not all coincident

479		with the system peak. As a result, a single CP alone is not the only cost driver for
480		distribution substations.
481		I am concerned that weighting by the number of substations that peak in a month does not
482		necessarily reflect the cost of substations built to meet peaks in different months. The
483		number of substations does not reflect the peak load on them in many months. If 10% of
484		substations peaked in December and another 10% peaked in June, but the load of those
485		substations which peaked in December was twice as large as those which peaked in June,
486		it is most likely that the December peaking substations represented more investment than
487		the June peaking substations.
488		
489	Q.	Are you recommending a change to the method of allocating substations and
490		primary lines?
491	A.	I am not. Theoretically, it would be more accurate if monthly peak loads were weighted
492		by the cost of substations peaking in the month. However, it does not appear that this
493		would result in a very significant change to the allocator, and the more accurate
494		weighting by the value of substations would be very data intensive.
495		
496	Q.	Does the designation of distribution lines as primary or secondary have much
497		impact on cost allocation?
498	A.	Yes, it has a large impact. Primary plant serves all customers (except possibly for some
/00		large sub-transmission level customers). It must be sized to meet the maximum

500		coincident load on it and is therefore allocated to all customers. Secondary plant serves
501		only customers who take service at secondary voltage level. Almost all residential and
502		some small general service customers take service at secondary voltage. Larger general
503		service customers almost always take service at primary voltage, and therefore should not
504		be allocated any secondary plant.
505		The more plant that is classified as secondary, the more costs are allocated to secondary
506		service customers, who according to RMP include only residential customers and small
507		general service customers on Schedule 23. RMP also assigns an amount of secondary
508		plant in account 364 and 365 to Streetlighting Schedules 7, 11, and 12.
509		
510	Q.	Has RMP allocated secondary plant to all secondary rate classes?
511	A.	No. It allocates secondary plant only to Schedules 1 and 23, although some Schedule 6
512		customers may use secondary poles and conductors. For instance, in a strip mall, when
513		transformers reduce power to the secondary level, either there will be services directly to
514		the secondary meter or there may be secondary lines that bring power to several meters.
515		Many Schedule 6 customers utilize secondary meters, but I have not been able to
516		determine how many of those may use secondary delivery service plant. Reflecting
517		some use of secondary plant by Schedule 6 in the cost allocation would result in
518		allocating more costs to Schedule 6 and less to Schedules 1 and 23.
519		
520	Q.	How does Rocky Mountain Power determine how much of their distribution lines
521		are primary and how much are secondary?

522	A.	Evidently this information does not come from their plant accounting data. According to
523		the response to OCS 3.14, "Distribution split percentage for accounts 365-367 are based
524		on data extracted from Company recordsand represent value of materials issued
525		from Company warehouses for the state of Utah during a five-year period." The primary
526		plant percentage ranges from 61% to 69% for these accounts. These data are not the net
527		book value of plant in the conductor account, which would reflect the dollar amount of all
528		conductor plant in use in Utah. However, I find these results are reasonable based on
529		what I would expect based on standard system configuration and numbers I have seen
530		from other utilities.
531		
532	Q.	Are you recommending any change at this time to RMP's primary/secondary split
533		of plant?
534	A.	I am not. As I indicated the primary percentage used by the Company in this case is in
535		line with percentages I have seen from utilities with better booked data. In addition, there
536		does not seem to be more accurate data available. I do recommend that the Company
537		analyze the total split of its plant in future cases.
538		
539	Q.	Please discuss the allocation of distribution line transformers.
540	A.	RMP uses annual class non-coincident peaks (NCPs) to allocate line transformer costs,
541		but weights the NCPs of the classes by a "coincidence factor," that reflects the number of
542		customers per transformer. This is relevant because for the classes with larger
543		customers, most customers have individual transformers. For a class such as Schedule 9,

544		transformers are really sized to meet individual customer peak loads, not the class non-
545		coincident peak load. The Company's weighting of the NCPs seems designed to address
546		this.
547		
548	Q.	Please describe RMP's allocation of general plant and administrative and general
549		("A&G") expenses.
550	А.	These costs are allocated on the basis of internal allocators.
551		• General plant is allocated on an internal allocator reflecting all directly allocated
552		plant
553		• Pensions and benefits are allocated on the basis of labor, according to Company
554		testimony
555		• Accounts identified as supporting customer systems are allocated on customer
556		factors
557		• All other A&G expenses are allocated based on the plant allocator
558		
559	Q.	Do you think all of these allocations are appropriate?
560	А.	Not entirely. Some A&G accounts are fairly directly related to labor expense, and should
561		be allocated on labor. These include Account 920, A&G salaries; Account 921, Office
562		Supplies and Expenses; and Account 922, Administrative Expenses Transferred. These
563		expenses for the most part support personnel, so I would expect them to be more closely
564		related to labor than to plant. I have reallocated Accounts 920, 921, and 922 on a labor
565		allocator. The Company has provided a "Labor" allocator which it uses to allocate

566		miscellaneous labor expenses among functions. Functional costs are then allocated to the
567		different classes using expense allocators for each function that do not include fuel,
568		purchased power, or wheeling expense.
569		
570	Q.	Has the Company argued that it is not appropriate to allocate these A&G accounts
571		on labor?
572	A.	No, it has not. In response to discovery it indicates that a previous attempt to allocate all
573		A&G expenses on labor was rejected. This is not an adequate rationale as to why not to
574		use different allocators for different A&G accounts.
575		
576	Q.	Do you recommend changing the allocation of some A&G accounts?
577	A.	Yes. I believe it is much more accurate to allocate the labor related A&G accounts on
578		labor, although this will not have a big impact on the bottom line.
579		
580		E. Results of Revised Revenue Requirements and Allocations
581		
582	Q.	Have you analyzed the impact of the various adjustments to the cost of service
583		recommended by the Division using the model distributed by the Commission?
584	A.	Yes. The total impact of these adjustments is shown in the following table.

Table	4
-------	---

SUMMARY OF RESULTS	Utah Jurisdiction per Company	Utah Jurisdiction per Division	
Total Revenues	2,083,525,276	2,055,179,988	
Operation & Maintenance Expense	1,332,633,482	1,274,882,388	
Depreciation	237,119,812	236,090,587	
Amort of Limited-Term Plant	23,034,735	22,804,518	
Taxes Other Than Income	61,276,875	57,826,466	
Income Taxes - Federal	(12,715,742)	(521,056)	
Income Taxes - State	1,968,968	3,626,023	
Income Taxes Deferred - Net	94,260,457	94,302,956	
Investment Tax Credit Adjustment	(1,545,328)	(1,545,328)	
Misc. Expenses less Revenues	(648,382)	(648,382)	
Total Expenses	1,735,384,877	1,686,818,172	
RATEMAKING INCOME	348,140,399	368,361,816	
Total Additions	10,465,276,762	10,409,568,521	
Total Deductions	4,712,408,091	4,702,055,613	
RATE BASE	5,752,868,671	5,707,512,908	
Earned Rate of Return on Rate Base	6.052%	6.454%	
Earned Rate of Return on Common Equity	6.641%	7.459%	
Total Revenue Change	172,267,339	88,399,042	
Existing Revenues	1,704,047,146	1,704,047,146	
Total Revenue Requirement	1,876,314,485	1,792,446,188	

587

588 Q. Please summarize the changes that you have recommended and made to the cost

- 589 **allocation study.**
- 590 A. These changes are listed below:

• Wind generation capacity costs are allocated 94% on energy, 6% on demand

- The allocation of service plant to residential customers is reduced
- The allocation of A&G accounts 921, 922, and 923 are allocated on labor

594

595 **Q.** What are the results of these various modifications to both the Company's revenue

596 requirement and to the allocation of costs?

- 597 A. These modifications as a whole result in increasing all class rates of return and in
- 598 narrowing slightly the rate of return index. Table 5 below summarizes the changes to
- 599 rates of return. Table 6 shows the impact on class calculated deficiencies, based on the
- 600 Division's revenue requirement recommendations

601

Table 5.

	Division ROR	Revised Wind Allocation ROR	Revised Service Allocation ROR	Revised A&G Allocation ROR	All Revisions ROR
Utah	6.45%	6.45%	6.45%	6.45%	6.45%
Residential Sch 1	5.95%	6.06%	5.98%	5.89%	6.02%
General Large Dist. Sch 6	7.56%	7.59%	7.54%	7.59%	7.61%
General > 1 MW Sch. 8	6.89%	6.79%	6.89%	6.93%	6.83%
Street & Area Sch. 7,11,12	10.34%	9.84%	10.34%	9.92%	9.44%
General Transmission Sch 9	5.22%	5.03%	5.22%	5.30%	5.11%
Irrigation Sch 10	5.16%	5.06%	5.16%	5.20%	5.10%
Traffic Signals Sch 15TS	6.61%	6.46%	6.05%	6.26%	5.58%
Outdoor Lighting Sch 15OL	16.92%	15.31%	16.75%	16.92%	15.18%
General Small Dist. Sch 23	7.88%	7.95%	7.78%	7.86%	7.84%
Industrial Contract 1	3.41%	3.21%	3.41%	3.49%	3.29%
Industrial Contract 2	3.69%	3.02%	3.69%	3.77%	3.10%

602

603

604

605

606

Table 6

		Revised	Revised	Revised	
	Division	Wind	Service	A&G	All
	Deficiency	Allocation	Allocation	Allocation	Revisions
		Deficiency	Deficiency	Deficiency	Deficiency
Utah	88,399,042	88,399,042	88,399,042	88,399,042	88,399,042
Residential Sch 1	47,741,357	44,767,981	47,049,470	49,054,499	45,425,264
General Large Dist. Sch 6	6,861,766	6,351,699	7,119,723	6,277,403	6,032,943
General > 1 MW Sch. 8	5,062,209	5,577,172	5,087,977	4,868,738	5,402,669
Street & Area Sch. 7,11,12	-618,943	-504,124	-619,034	-508,503	-395,163
General Transmission Sch 9	20,416,716	22,303,276	20,417,849	19,834,168	21,696,503
Irrigation Sch 10	1,423,340	1,487,451	1,423,382	1,403,728	1,467,026
Traffic Signals Sch 15TS	23,079	25,960	33,799	28,982	42,621
Outdoor Lighting Sch 15OL	-190,291	-169,279	-187,983	-190,353	-167,294
General Small Dist. Sch 23	518,706	212,518	912,186	594,064	687,993
Industrial Contract 1	3,843,429	4,129,034	3,843,774	3,777,654	4,059,811
Industrial Contract 2	3,317,675	4,217,352	3,317,901	3,258,663	4,146,668

609

610 F. Revised Treatment of Working Capital, Interest, and Income Tax – Model X

611

612 Q. Please explain how Model X differs from both the original Company model and the 613 Commission distributed model.

A. The easiest way to explain the change is to look only at the treatment of state income tax.

The amount of state income tax that PacifiCorp will pay will depend on the equity

- 616 portion of its earnings. The various cost of service studies should calculate the deficiency
- 617 or surplus of each class assuming that they each paid the same return on equity. The
- 618 Company's total return on equity is allocated to classes based on their relative rate bases.
- 619 The original Company model and the Commission distributed model that attempts to

620		replicate the Company model calculate state income tax ⁴ based on the Utah allocated
621		return on equity. Then it allocates this total amount across classes based on income
622		before tax ("IBT"). If a class earns less than the average return, its allocated state income
623		tax will be less than if it earned the average return.
624		The model further does a number of calculations based not on the returns earned by each
625		class but on the dollars necessary to move from the average Utah earned return to the
626		system requested return. These calculations ignore the basic fact that various rate classes
627		in the forecast test year earn more or less than the average return.
628		
629	Q.	What does Model X calculate that the original Company model does not?
630	A.	Model X calculates the total costs that would be attributable to each class if each class
631		paid the system rate of return.
632		
633	Q.	Have you used Model X to calculate class cost of service and revenue deficiencies
634		based on the Division revenue requirement?
635	A.	Yes. I also made in this model the same changes to cost allocation that I recommend and
636		calculated in the model distributed by the Commission. Model X tends to slightly
637		increase the calculated deficiency of classes that earn less than the average rate of return,
638		and vice versa. Table 7 below shows the class deficiencies in dollars and in percentages
639		based on my version of the Commission distributed model and also on my version of
640		Model X.

⁴ Based on an average of state income taxes paid by PacifiCorp.

Table	7	•
-------	---	---

	Original Model	Model X	Original Model	Model X
	Deficiency	Deficiency	% Increase	% Increase
Utah	88,399,042	88,449,574	5.19%	5.19%
Residential Sch 1	45,425,264	50,547,518	6.99%	7.78%
General Large Dist. Sch 6	6,032,943	-4,796,981	1.27%	-1.01%
General > 1 MW Sch. 8	5,402,669	4,427,928	3.82%	3.13%
Street & Area Sch. 7,11,12	-395,163	-523,098	-3.26%	-4.31%
General Transmission Sch 9	21,696,503	27,991,650	9.46%	12.21%
Irrigation Sch 10	1,467,026	1,868,052	11.14%	14.18%
Traffic Signals Sch 15TS	42,621	49,860	7.29%	8.52%
Outdoor Lighting Sch 15OL	-167,294	-286,665	-14.62%	-25.04%
General Small Dist. Sch 23	687,993	-2,394,142	0.53%	-1.84%
Industrial Contract 1	4,059,811	5,649,841	16.76%	23.32%
Industrial Contract 2	4,146,668	5,915,612	15.39%	21.95%

643 III. LOAD RESEARCH AND ESTIMATION OF PEAK LOADS

644 Q. Why is load research data important in the cost allocation study?

A. The load research data is essential for estimating peak load allocators for classes that do

not have hourly metered data. Furthermore, the load research data yields valuable

647 information about class load shapes and how much energy customers in different classes

648 use during high-cost and low-cost time periods.

649

650 Q. Has RMP's load research data been an issue in prior cases, and what was the result?

A. Yes. In the 2009 GRC, RMP's load research was of such concern that two Workgroups

were established to examine the topic. The Workgroups found three significant issues in

the load research data used for prior cases:

654		1. An out-of-date sample
655		2. An out-of-date sample design
656		3. A lack of weather normalization of the data
657		Of these three issues, the first issue was partially fixed in the current case by the inclusion
658		of load research data from new sample meters that were installed in 2008 for Schedule 6
659		and Schedule 23. The out-of-date sample design, which fails to accurately capture
660		within-class variability in load-shapes, remains an issue. The Workgroup recommended
661		the Company accelerate its planned 2017 load research sample replacement to 2014.
662		Furthermore, the Workgroup recommended that the load research data be weather
663		normalized before being used to calculate load allocators.
664		The load research data utilized in this case reflects neither updated sample design nor
665		weather normalization of the data.
666		
667	Q.	What were the findings of the Workgroups on load research and peak-hour
668		forecasting?
669	A.	The Workgroups found that there were significant differences between the peak hours
670		calculated from the load research data and the peak hours calculated from the
671		jurisdictional load forecasts. Most parties believed that calibration was a useful interim
672		approach for mitigating these differences, but more importantly, some kind of weather
673		normalization is needed to ensure proper peak hour forecasts. The Workgroups did not
674		reach an agreement as to how to implement the weather normalization, but there was a
675		general consensus that some sort of weather normalization was needed.

- 677 Q. How has the Company projected peak loads, and what is the relationship between
 678 these projections and the load research data?
- 679 A. The Company has forecasted the timing and amount of monthly Utah total peak loads 680 using its jurisdictional forecast methodology, which also forecasts the day and hour of 681 each month's peak. Ideally, the sum of class peak loads that are projected from the load 682 research data should equal the jurisdictional forecast of total load. When projections 683 calculated from the load research data did not closely match the forecast peaks, the 684 Company "calibrated" the results to bring monthly peak estimates resulting from load 685 research closer to the peaks that it projected in its jurisdictional forecasts. RMP then adjusted the peak data resulting from the load research to bring it closer to the peak 686 687 estimates derived from its Utah class forecast.

688

689 Q. Does it appear that either the energy or the peak loads of the Irrigation class have 690 been projected accurately?

A. No. The load of the irrigation class is related to rainfall as well as to temperature and is
clearly difficult to forecast. The Company acknowledges the relationship to rainfall in
the response to DPU 24.17, when it states that the large deviation is due to a wet spring.
This type of load is difficult to predict, as it is related to the size as well as the number of
customers, agrarian economics, rainfall, temperature, and probably other factors. The
sample which the Company relies on was drawn from customers who were irrigating in

697	2003, 2004, and 2005. All of these factors suggest that both the irrigation energy forecast
698	and peak load estimates will not be very reliable.

700 Q. How do you recommend responding to the apparent lack of accurate data on the 701 irrigation class?

A. The lack of accurate data is a major issue regarding this class. We cannot determine if
normal weather loads have been under or over projected for this class. In addition, it may
not be appropriate to address the non-coincident peak loads of these customers in the
same manner that other class loads are treated.

- The cost of service study estimates that this class has relatively large deficiency, more
- than double the average deficiency. However, this increase can be limited by a cap on all
- rate increases. I recommend that this class should not receive a very large increase until
- the underlying load data has been improved. I also recommend that the Company
- 710 propose rate design changes for this class aimed at improving the load shape of the class
- 711 by shifting more load to off peak hours.

712

713 IV. DISCUSSION OF COMPANY'S MARGINAL COST STUDY

Q. Mr. Paice prepared a marginal cost study to comply with the Commission's Order on Rate Design in 09-035-23. Please comment on this marginal cost study.

- 716 A. I find that this study has numerous shortcomings. There are major conceptual flaws
- 717 which make me doubt its validity for ratemaking purposes. The normal approach to
- relying on marginal cost analysis for guidance in developing rates is that an energy

719		charge should inform customers of how much additional cost is incurred in the short run
720		when customers use additional energy, and a capacity charge should inform customers of
721		how much it will cost to add capacity if peak load increases.
722		
723	Q.	Could you describe some of the aspects of the Company's marginal cost study that
724		are problematic?
725	A.	Yes. The depiction of the marginal cost of generation seems to overstate the marginal
726		generation cost. The initial calculation of the marginal cost of capacity is based on the
727		cost of a simple combustion turbine, which should be the least expensive way to meet
728		peak load. The marginal cost of energy, however, increases the variable cost of energy
729		by adding to it a capitalized energy number. This reflects the difference between a
730		combined cycle unit and a combustion turbine. This capitalized energy cost is not
731		normally included in a short-run marginal cost calculation. I also find problems with
732		some of the methods of estimating different components of marginal distribution costs. It
733		is my expectation that the Company has overstated marginal costs. If short-run marginal
734		energy costs are added to all of the fixed components of marginal cost, the total marginal
735		cost would be \$0.1103/kwh.

737

V. RATE DESIGN PRINCIPLES

738 Q. Have you found any problems with the Company's proposed rate design?

A. Yes. Fundamentally, the Company does not seem to have attempted to design rates tosend better price signals or to improve the efficiency of use. Its major approach to rate

741		design appears to be to produce even bill impacts across different customers within rate
742		classes. While bill impacts should be considered, when the basic rate design has not
743		been examined or justified in many years, the Company's approach may actually be
744		moving rates further from appropriate price signals.
745		
746		A. Residential Customer Charge
747		
748	Q.	What has the Company proposed regarding the residential customer charge?
749	A.	The Company has proposed to increase the residential customer charge from the current
750		\$4.00 per month to \$10.00 month, an increase of 150%. I believe this change is neither
751		consistent with cost allocation or gradualism principles.
752		
753	Q.	How does the Company justify such a large increase?
754	A.	Mr. Griffith testifies that the current residential customer charge fails to recover what he
755		defines as the "fixed costs" of serving residential customers, and that it is the lowest
756		residential customer charge in the Company's system. He discusses three alternative
757		definitions of customer costs, which all support customer charges higher than the current
758		residential charge. All of these definitions include more costs than the currently
759		approved Commission methodology, which includes only the return on and depreciation
760		expense associated with meters and service drop plant, and the expense of reading meters
761		(Account 902.1) and billing expense (Account 903.2).

763 **Q.** Please describe the three alternative methods of calculating customer costs.

764 A. Mr. Griffith presents the method producing the highest customer cost first. Method 1 765 includes what he calls "fixed costs" of the distribution function, the retail function, and 766 the miscellaneous function. This results in a computed residential monthly customer cost 767 of \$28.63. Method 2 is called the Commission's 1985 Methodology. It includes the 768 return on and depreciation expense associated with meters and service drop plant, and 769 certain customer-related expenses - the expense of reading meters (Account 902.1) and 770 billing expense (Account 903.2). This results in an average customer cost of \$3.85 per 771 month. Method 3 is called the "2012 Methodology". It adds to the 1985 Methodology 772 the maintenance expense associated with meters and service drops, allocated "retail 773 costs", basically all of Accounts 901 and 919, and a portion of costs associated with 774 transformers, which the Company claims are customer related. This method produces a 775 residential customer cost of \$11.60.

776

777

Q. Do you think that Method 1 is supportable?

A. No. The Company is clearly trying to recover more of what it labels "fixed costs"
through a customer charge. This is a rather artificial concept. Essentially all utility plant
is fixed in the short run. Generation plant, for example, is certainly fixed in the short run.
However, that does not mean that it is appropriate to collect the cost of this plant through
a customer charge. Since all plant is variable in the long-run, collecting these plant costs
through a customer charge may send the wrong price signal, and could lead to
misallocating this plant. With regard to what the Company labels "retail costs", while it

785		might be argued that some of these costs are considered directly customer related, the
786		Company has not provided any evidence that these should all be included in customer
787		costs.
788		
789	Q.	Do you think it is appropriate to include all "Retail Costs" in the calculation of
790		customer costs?
791	A.	No, I do not. The cost causation principle suggests that costs should be considered as
792		customer costs only when the major cost driver of the costs is in fact the number of
793		customers – i.e. as customers are added, the costs increase. The customer accounting
794		and billing (Account 903.2, and customer metering (Account 902.1) costs that have been
795		included in the 1985 Methodology are fairly directly related to the number of customers.
796		Even with regard to these costs, I say "fairly" directly related, because there are enough
797		economies of scale in the customer accounting function that a large number of customers
798		could be added without increasing costs.
799		
800		The "All Other Retail Function" cost item, other FERC 900 accounts, that the Company
801		proposes to add to customer costs, appears to contain a number of accounts which are not
802		primarily caused by the number of customers. Demand-side Management costs, which I
803		believe are primarily reflected in Account 908, are driven by programs that are intended
804		to reduce peak load and increase the efficiency of use of electricity. This is related not to

805 the number of customers but to programs to make usage more efficient and to reduce

806		costs, particularly generation costs. Account 904, uncollectibles, is driven not by the
807		numbers of customers but by revenue levels and by customers' ability to pay.
808		
809	Q.	Is there evidence that other 900 accounts and subaccounts that are driven by the
810		number of customers?
811	A.	No. In fact the titles of a number of 900 subaccounts, and detailed cost categories within
812		subaccounts, suggest that the underlying costs are not customer related. For instance,
813		Account 910.0 is an "outside facilitator for joint planning effort with cities and counties
814		to set facility siting criteria." There is a "customer guarantee program" in Account 905.0.
815		Account 909, Information/Instruction, includes customer and communications group; it is
816		possible that the amount spent on larger customers is greater than that spent on residential
817		customers. Detailed data on Account 903 does not support including all of these costs
818		as customer-related (this account includes 903.2 which is included already in customer
819		costs). Detail on the 903 account is shown below in Table 8.
820		Table 8

Total Company Subaccount Detail for Account 903* July 1, 2010 - June 30, 2011

FERC Subaccount	Description	Amount	Utah	Percentage of Total
903.0	CUST RCRD/COLL EXP	\$880,302	\$450,086	1.6%
903.1	CUST RCRD/CUST SYS	\$4,036,506	\$2,063,811	7.1%
903.2	CUST ACCTG/BILL	\$12,024,229	\$6,147,826	21.3%
903.3	CUST ACCTG/COLL	\$18,414,578	\$9,415,126	32.6%
903.5	CUST ACCTG/REQ	\$164,543	\$84,129	0.29%
903.6	CUST ACCTG/COMMON	\$20,992,557	\$10,733,212	37.1%
Total 903		\$56,512,714	\$28,894,190	100%

821

822	The largest subaccount is 903.6, which seems to be a fairly general catchall that is not
823	clearly customer related. For instance, detailed data provided in response to OCS-15-3
824	shows there are many costs labeled "Business Integration". It is not at all evident why
825	this would be customer related. It also contains various renewable education (Wind Farm
826	tours), DSM and energy efficiency related expenses, and even a category labeled
827	"Establish relationships with Commission." The next largest subaccount in Account 903
828	is in 903.3. Data provided in response to OCS 15-5 indicates that much of this is related
829	to local collection offices and training. It seems that this would be more related to
830	geography rather than to numbers of customers.
831	
832	The Division and the Office, through the discovery process, have attempted to ascertain
833	why any of these costs should be considered customer related. The Company has
834	provided numbers, but has not attempted to provide appropriate explanation of
835	subaccounts that would justify them being treated as customer related. In response to the
836	question "Please explain the purpose of each of the following expenditures and why RMP
837	believes it is appropriate to recover them through the customer charge," referring to a
838	number of subaccounts, it provides no explanation but simply refers to Mr. Griffith's
839	testimony, which simply says retail costs are fixed, and should be included in the
840	customer charge.

841

842 Q. What do you recommend regarding the treatment of "Retail Costs"?

- A. It is not clear that any of the 900 accounts except for 902.1 and 903.2 should be included
- in customer costs. I recommend that the Commission not include any of the additional
- 845 900 accounts in the customer charge unless the Company fulfills its obligation to provide
- a full explanation as to how they are customer related and why the number of customers
- 847 in a class should be the basis for their allocation.
- 848

849 Q. Does Method 2 include all customer-related costs?

A. Method 2, the existing approved methodology, does not include all costs associated with meters and service drops. If these plant items are clearly and directly related to the

numbers of customers, all costs associated with them are also customer related. It is

853 inconsistent to allow the costs associated with financing the plant items, but not the

854 maintenance costs necessary to keep these items operating.

855

Q. Method 3 adds to Method 2 the costs you discussed above, but also adds a portion of
costs associated with transformers. What is the basis on which the Company claims
that a portion of transformer costs are customer costs?

- A. Mr. Griffith argues that as transformer costs increase at a lower rate than the capacity
 they can serve, a portion of transformer costs are fixed costs necessary to serve
 customers.
- 862

863	Q.	Do you think that the Company's estimate of a customer-related transformer cost is
864		meaningful for cost allocation?

No. In response to OCS-3.38, the Company provided a study that is supposed to estimate 865 A. the customer-related portion of transformers. This is basically a regression analysis of 866 867 2009 transformer installations. This equation estimates the cost of a transformer as a 868 function of the KVA size of the transformer. It produces a coefficient and an intercept. 869 The Company interprets the intercept from this equation as "commitment related" cost, 870 which it evidently considers a customer cost. This equation simply tells us that based on 871 2009 investments, as transformer sizes increase, the cost of the transformer increases at a 872 slower rate. Nor does it tell us that a major driver of transformer cost is the number of 873 customers.

874

875 While this relationship may be important for engineering and design, it is not a measure 876 of the marginal customer cost. An estimate of the marginal demand cost would tell us 877 how much would be spent on transformers for a given increase in peak load. This 878 analysis simply shows that the cost of the transformer does not increase linearly with the 879 size of the transformer, but that cost increases at a slower rate. The intercept of this 880 equation is not a marginal customer cost. 881 Conceptually, customers can be added in many locations without investing in additional 882 transformers, but additional load is a catalyst for transformer investment. Transformers 883 are only necessary because of the size of system loads. For very small loads, power

884 would be delivered on secondary lines, as line loss would not be an issue. The method of

885		estimating the customer related portion of transformers has a number of problems. The
886		analysis of the relationship between demand and cost uses all types and sizes of
887		transformers rather than only the transformers used for residential customers. It is also
888		based on only the plant that the Company is currently installing and on the typical size
889		customers; if customers were smaller, more of them could share transformers and the
890		results would be different.
891		
892	Q.	Does this analysis of economies of scale in transformers provide an appropriate
893		basis to include transformer costs in a customer charge?
894	A.	No, it is not. While the Company might like to collect virtually all of its plant costs
895		through monthly fixed charges, this approach results in charging too much to small
896		customers within each rate class (since smaller customers usually require less plant than
897		average customers in a class) and also may result in not providing appropriate price
898		signals. The more costs that are collected through a fixed monthly charge, the less that
899		rates will communicate that as load increases, costs increase; both generation and
900		delivery costs will increase as the Company will have to add more plant.
901		
902	Q.	Do you believe any changes to the 1985 Methodology are justified?
903	A.	Yes. I believe that it is appropriate to add in to the current definition all costs associated
904		with services and meters. I will call this the Division 2012 Methodology. All of these
905		various methods are illustrated below in Table 9.
906		

- 908
- 909

Table 9.

Comparison of Residential Customer Charge Calculation Methodologies

	1	2	3	4
	Fixed Costs	1985	2012	Division 2012
Description	Methodology	Methodology	Methodology	Methodology
Customer Billing & Accounting Expense				
(acct. 903.2)	\$0.62	\$0.62	\$0.62	\$0.62
Meter Reading (acct. 902.1)	\$0.52	\$0.52	\$0.52	\$0.52
All Other Retail Function	\$3.52		\$3.52	
Meters - Depreciation Expense	\$0.21	\$0.21	\$0.21	\$0.21
Meter Expense (acct. 586)	\$0.17		\$0.17	\$0.17
Meter Maintenance (acct. 597)	\$0.23		\$0.23	\$0.23
Meter Plant (acct. 370)	\$0.70	\$0.70	\$0.70	\$0.70
Meters - Accumulated Depreciation	-\$0.25	-\$0.25	-\$0.25	-\$0.25
Service Drop - Depreciation Expense	\$0.40	\$0.40	\$0.40	\$0.40
Service Drop Plant (acct. 369)	\$2.25	\$2.25	\$2.25	\$2.25
Service Drop - Accumulated Depreciation	-\$0.61	-\$0.61	-\$0.61	-\$0.61
Transformers - Customer Related	\$3.28		\$3.28	
All Other Distribution - Service Drop	\$0.53		\$0.53	\$0.53
All Other Distribution - Transformer	\$0.65			
All Other Distribution - Poles and Conductors	\$11.94			
All Other Distribution - Substation	\$4.10			
Miscellaneous Function	\$0.36			
All Other Distribution - Meters				\$0.18
Total Customer Charge	\$28.63	\$3.85	\$11.60	\$4.97

910

911

912

Q. Based on the Division 2012 Methodology, what would you recommend for a cost-

913 based customer charge, and what bill impacts will this charge have?

914	A.	The computation of a residential customer cost based on the Company's original filing is
915		\$4.97. The cost based on the Division's recommended rate of return will be minimally
916		less. In the interest of rate simplicity, I would set the residential customer charge at
917		\$5.00. This rate design change by itself will tend to create larger percentage decreases to
918		very small residential customers compared to larger residential customers. This impact
919		on bills should be considered in designing other rate components.
920		
921		B. <u>Company's approach to remaining components of Rate Design</u>
922		
923	Q.	What appears to have been the Company's approach to other components of rate
924		design?
925	A.	The Company proposes to increase uniformly customer, facility, demand and energy
926		charges. It makes no claim that the resulting rates provide signals for efficient use or that
927		rate changes are based on any analysis. This major characteristic of this approach is that
928		it produces even bill impacts to different customers within rate classes.
929		
930	Q.	Are the Company's time of use ("TOU") rates effective tools to encourage customers
931		to shift load from peak to off-peak hours?
932	A.	No, they are not. The rate is also clearly not very attractive as there are very few
933		customers on it. The bills of residential time of use customers are based on standard
934		rates, modified by additional energy charges for on-peak use and by credits (negative
935		rates) for off-peak use. In this case, the Company has proposed an increase to both the

936		on-peak charge and the off-peak credit. The Company has presented no analysis of how						
937		much customers on this rate can benefit from shifting load or whether it is an effective						
938		load management tool. This rate change will not make the rate any more attractive than						
939		the existing R-2.						
940		Commercial TOU customers on Schedule 6A have different peak and off-peak energy						
941		rates for each season. The resulting rates are on average much higher than for non-TOU						
942		customers on Schedule 6. The facilities charge per kW on Schedule 6A is much less than						
943		the power charge per kW on Schedule 6 but the time differentiated energy charges are						
944		much higher. Presumably, this was done deliberately so that most of the 6A bills are						
945		based on peak energy usage and not demand, and thus customers are encouraged to						
946		conserve during all peak hours.						
947								
948		C. <u>Other Rate Design Recommendations</u>						
949								
950	Q.	You recommended that the residential customer charge be set at \$5.00 for single						
951		phase residential customers. Do you have any other recommendations regarding						
952		the residential rates 1 and 2?						
953	A.	Yes. I recommend that the summer tailblock not be increased more than the Company has						
954		proposed, as this charge is greater than marginal cost. I also recommend that energy charges be						
955		designed to partially mitigate the impact on small customers of the increase in the customer						
956		charge. I will discuss specifics in Section VI below.						
957								

958 Q. What do you recommend with regard to the TOU rates?

- A. I recommend that there be no increase to the residential TOU rate. The increase to the
- 960 customer charge then requires that some component of energy charges be reduced. Since
- 961 the basic block energy charges will continue to be the same as the charges on R-1, I
- 962 recommend that this be effectuated primarily through an increase in the credit and
- 963 increase in the discount for use during off-peak hours.
- 964

965 Q. What do you recommend for other major rates?

from modifying its C&I rates.

966	А.	I recommend that other rates be adjusted through equal percentage changes to all rate
967		components. I do not believe that this will create the most effective price signals, but I
968		do think this a reasonable alternative until the Company provides an updated analysis
969		regarding how its demand and energy costs should be communicated to commercial and
970		industrial ("C&I") customers. In addition, it should review whether the present
971		definitions of C&I classes are appropriate, and determine potential bill impacts resulting

973

972

974 VI. RATE SPREAD AND RECOMMENDED RATE DESIGNS

975 Q. How has the Company proposed to spread its revenue requirement across rate976 classes?

A. The Company proposes a rate spread midpoint of 10.5%. Class increases are set atdiscrete differences from this midpoint, rather than directly referencing class cost of

979		services. Increases to Schedule 9 and 10 are considerably mitigated compared to the cost
980		of service results. The Company's resulting proposed increases are:
981		Schedule 6 and Schedule 23 – 8.5%
982		Schedule 8 – 9.5%
983		Residential – 10.5%
984		Schedule 9 – 12.5%
985		Schedule 10 - Irrigation – 13.5%
986		
987	Q.	Are you recommending an alternative rate spread based on your analysis of the
988		Division's recommended revenue requirement, and your modifications to the cost of
989		service study?
990	A.	Yes. The Division is recommending a revenue requirement that would result in an
991		average increase to all classes of 5.19%.
992		The range of percentage deficiencies to major rate classes, based on Model X, the
993		Division's recommended revenue requirement and the allocation changes that I have
994		made, is roughly from -1% to +14%, although the largest deficiency is for the irrigation
995		class, which results partly from questionable load data. These numbers suggest that
996		while classes can be moved toward equal rates of return, there is also a need for
997		mitigation of some increases. Table 10 below shows class deficiencies, rates of return,
998		and the rate of return index based on the Division's cost of service using Model X.
999		

- 1001
- 1002
- 1003

Table 10

RORs & Deficiency Based on Division Revenue Requirement

Schedule No.	Description	Annual Revenue	Return on Rate Base	Rate of Return Index	Total Cost of Service	Increase (Decrease) to = ROR	Percentage Change from Current Revenues
1	Residential	649,980,899	6.04%	0.94	700,528,417	50,547,518	7.78%
6	General Service - Large	475,082,792	7.64%	1.18	470,285,811	(4,796,981)	-1.01%
8	General Service - Over 1 MW	141,558,614	6.83%	1.06	145,986,542	4,427,928	3.13%
7,11,12	Street & Area Lighting	12,130,663	8.67%	1.34	11,607,565	(523,098)	-4.31%
9	General Service-High Voltage	229,321,174	5.06%	0.78	257,312,824	27,991,650	12.21%
10	Irrigation	13,174,523	5.08%	0.79	15,042,575	1,868,052	14.18%
15	Traffic Signals	584,894	5.63%	0.87	634,754	49,860	8.52%
15	Outdoor Lighting	1,144,626	15.30%	2.37	857,961	(286,665)	-25.04%
23	General Service - Small	129,897,908	7.81%	1.21	127,503,766	(2,394,142)	-1.84%
SpC	Customer 1	24,224,835	3.25%	0.50	29,874,676	5,649,841	23.32%
SpC	Customer 2	26,946,218	2.98%	0.46	32,861,829	5,915,612	21.95%
	Total Utah Jurisdiction	1,704,047,146	6.45%	1.00	1,792,496,720	88,449,574	5.19%

1004

1005

1006 Q. What do you recommend in terms of rate spread?

1007 A. I recommend that rate increases should be capped. I recommend a minimum increase of

1008 1.5% to each class other than the streetlighting classes, for whom I recommend no

1009 revenue change. I have set the cap on increases at 1.7 times the average increase. This

1010 results in a maximum increase that is less than 9%. The revenue that is not collected

1011 because of the rate caps is then collected through a small additional increase to the three

1012	classes whose initial increases are well below the system average increase. If the cap
1013	were lower, the maximum increase would be less but there would have to be a greater
1014	increase to the classes that are recovering the amount created by the cap. I believe these
1015	parameters result in a reasonable range of rate increases. This rate spread is shown in
1016	Table 11 below.

1017

Table 11

1018

Division Recommended Rate Spread

Sche dule No.	Description	Annual Revenue	Increase (Decrease) to = ROR	Percentage Change from Current Revenues	Capped %age Change	Revenue Impact of Caps	Final Increase (Decrease)	Final %age Change
1	Residential	649,980,899	50,547,518	7.78%	7.78%	0	50,547,518	7.78%
6	General Service - Large	475,082,792	(4,796,981)	-1.01%	1.50%	11,923,223	9,004,745	1.90%
8	General Service - > 1 MW	141,558,614	4,427,928	3.13%	3.13%	0	4,987,658	3.52%
7,11, 12	Street & Area Lighting	12,130,663	(523,098)	-4.31%	0.00%	523,098	0	0.00%
9	Gen Service-High Voltage	229,321,174	27,991,650	12.21%	8.82%	(7,756,463)	20,235,187	8.82%
10	Irrigation	13,174,523	1,868,052	14.18%	8.82%	(705,538)	1,162,513	8.82%
15	Traffic Signals	584,894	49,860	8.52%	8.52%	0	49,860	8.52%
15	Outdoor Lighting	1,144,626	(286,665)	-25.04%	0.00%	286,665	0	0.00%
23	General Service - Small	129,897,908	(2,394,142)	-1.84%	1.50%	4,342,611	2,462,092	1.90%
SpC	Customer 1	24,224,835	5,649,841	23.32%	23.32%	(5,649,841)	0	0.00%
SpC	Customer 2	26,946,218	5,915,612	21.95%	21.95%	(5,915,612)	0	0.00%
	Total Utah Jurisdiction	1,704,047,146	88,449,574	5.19%	0.00%	(2,951,857)	88,449,574	5.19%

1019

1020 Q. Have you designed rates that will collect the revenues resulting from this rate

1021 spread?

- 1022 A. Yes, for all of the major classes. These are attached as DPU Exhibit 8.2 DIR-COS. As
 1023 noted earlier, the only significant rate design changes were to the residential rates.
- 1024

1025 Q. Please discuss your proposed residential rates.

- 1026 First, they all have customer charges of \$5 and \$10 for single and three phase service A. 1027 customers. This increase in the customer charge was offset to some extent by a lower 1028 first block charge in the summer, and the creation of two blocks in the winter, with the 1029 first block set at the same rate as the summer first block. I left the third summer block at 1030 the Company's proposed rate, but increased the second block by one cent per kwh. This 1031 is in order to moderate the increase to the second winter block, while still collecting the 1032 revenue targets. As noted earlier, I set the TOU Rate R-2 to produce no increase from the 1033 forecasted revenues. I decreased the on-peak adder and increased to off-peak credit. In 1034 addition I have not introduced a block rate in the winter for this rate, as I do not have bill 1035 frequency data for this rate. These changes to Rate R-2 were designed to produce the 1036 revenue target as the customer charge and second and third blocks of the R-1 rate 1037 increased.
- 1038
- 1039 **Q.** Does this conclude your testimony?
- 1040 A. Yes, it does.