Witness FB – 1D

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)

)

)

)

)

)

)

In the Matter of the Application of Rocky Mountain Power for Authority to Increase its Retail Electric Utility Service Rates in Utah and for Approval of its Proposed Electric Service Schedules and Electric Service Regulations

Docket N. 11-035-200 Direct Testimony Leland Hogan On behalf of The Utah Farm Bureau Federation

June 22, 2012

11-035-200

1 INTRODUCTION

2 Q. WHAT IS YOUR NAME, OCCUPATION AND BUSINESS LOCATION?

- A. My name is Leland Hogan. I am President of the Utah Farm Bureau Federation, the
 state's largest farm and ranch organization with more than 30,000 member families
 statewide. I serve as Chairman of the Farm Bureau Pumper Committee representing
 members on irrigation issues. I also serve as Vice Chairman of the Governor's
 Agriculture Advisory Board. I own and operate a farm in Tooele County producing cattle
 and hay.
- 9

10 Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS GENERAL RATE CASE?

- A. I represent the interests of Rocky Mountain Power's (RMP or the Company) Utah
- 12 irrigation customers who are on electric rate schedule 10. My testimony will discuss: 1)

13 the contribution of Utah agriculture to the Utah economy; 2) the unique economics of

14 agriculture and irrigation farming; and 3) the issues that the Public Service Commission

- 15 should consider when implementing any rate increase for the irrigation customer class.
- 16

17 I. UTAH AGRICULTURE, THE UTAH ECONOMY AND IRRIGATION

18

19 Q. HOW IMPORTANT IS AGRICULTURE TO THE UTAH ECONOMY?

- 20 A. According to the 2011 Annual Utah Agriculture Statistics Report, agriculture
- 21 contributes approximately \$1.33 billion¹ in farm commodity sales.
- A 2010 study released by Utah State University evaluated the economic impact
- 23 of agriculture and food in Utah. The analysis reported agriculture and food contributes

¹ 2011 Utah Agriculture Statistics and Utah Department of Agriculture Annual Report

11-035-200

\$15.2 billion² in economic activity annually and employs more than 66,000 Utahns
 through forward and backward linkages – transportation, energy, chemicals, processing,
 manufacturing and so forth.

According to the U.S. Department of Agriculture Economic Research Service, eighty-nine (89) percent of the state's population resides in urban communities while only eleven (11) percent reside in rural communities³. Utah is the 9th most urban state in the United States. Food and agriculture are the driving force for our rural economy, vitally important to rural communities. These communities depend on agriculture for economic activity and tax revenues to fund roads, schools and other rural infrastructure

- and ultimately is a major contributor to their overall quality of life.
- 34

Q. UTAH IS AN ARID STATE. WHAT ALLOWS UTAH'S FARMERS AND RANCHERS TO ACHIEVE THE ECONOMIC IMPACT THAT YOU JUST DESCRIBED?

A. Utah farmers and ranchers rely on irrigation systems which are powered by electric

- 38 pumps to make their pastures, farm fields and orchards productive. During the growing
- 39 season, these irrigation systems often run on a continual basis when there is no
- 40 precipitation. Without irrigation, Utah farms and ranches could not produce sufficient
- 41 crop yields to remain profitable and in business.
- 42

43 Q. YOU INDICATED THAT IRRIGATION IS POWERED BY ELECTRICITY. HOW DOES

- 44 THE PRICE OF ELECTRICITY IMPACT THE ECONOMICS OF IRRIGATION
- 45 **FARMING?**
- A. Food production, as an industry, is highly energy intensive. Increased costs of electricity,

² The Economic Impact of Agriculture of the State of Utah, Utah State University, January 2010 or http://ag.utah.gov/news/documents/USUageconstudy2010-02.pdf

³ USDA Economic Research Service, State Fact Sheets – Utah or http://www.ers.usda.gov/statefacts/ut.htm

11-035-200

- 47 fuel and fertilizer in recent years means approximately half of farmer's and rancher's
 48 costs of production are energy related.
- 49

50 Q. CAN YOU PROVIDE AN EXAMPLE OF HOW CHANGES IN ELECTRIC RATES

WOULD ADVERSLEY IMPACT UTAH AGRICULTURE?

51

Utah's largest cash crop is alfalfa hay, with \$226.8 million in sales in 2010⁴. Utah's dry, 52 high desert climate which makes irrigation a necessity, also provides an environment 53 54 that produces a very high quality dairy feed. Utah hay growers rely on dairy farms as their most important market. Dairy demand establishes alfalfa hay prices in Utah and in 55 the region. Utah's recognized high quality provides some sales in the price competitive 56 57 Asian export market. Utah alfalfa hay growers compete for markets with hay growers in 58 the Rocky Mountain Region, the Northwest and Canada (the latter who have a 59 government subsidized transportation system to their west coast providing a pricing advantage in the Asian market). Energy costs are major components in alfalfa hay 60 61 pricing and low electricity is key to Utah's competitiveness, especially in the Asian 62 market where they compete against subsidized farming operations.

63

64 II. ECONOMICS OF AGRICULTURE AND IRRIGATION FARMING

65

66 Q. IN YOUR INTRODUCTION, YOU DESCRIBE THE ECONOMICS OF AGRICULTURE 67 AS BEING UNIQUE. PLEASE EXPLAIN.

A. Unlike most sectors of the economy, agriculture has historically, and continues to be
 unable to effectively pass along increased costs of production to the processors and
 consumers. Commodity prices are set through national and international markets. Higher

⁴ 2011 Utah Agriculture Statistics and Utah Department of Agriculture Annual Report

11-035-200

production costs, including electricity for irrigation creates a cost/price squeeze for
 irrigators.

Agriculture is highly competitive. Increased costs of production locally means
Utah irrigators are less competitive in regional, national and global markets.
To sell Utah grown farm commodities below cost of production ultimately affects
long term economic viability of our farms and ranches. This cost/price squeeze will over
time lead to the liquidation of a limited asset – Utah's prime and unique farmland and
valuable open space.

Utah food producers are "price takers" not "price makers." To that point, farmers
and ranchers deliver a commodity locally to a limited number of processors, brokers and
middlemen who pay a price established regionally or nationally, with little local
influence.

To deal with these market realities, Utah has one of the highest percentages of its farmers and ranchers taking non-farm jobs to make economic ends meet. According to USDA National Agriculture Statistics Service (NASS) Utah is tied for second among the 50 states with 62 percent⁵ of the Utah's farming and ranching operations working off their farms, earning non-farm income to meet their financial obligations.

88

89 Q. YOU EXPRESSED THE IMPORTANCE OF THE PRICE/COST SQUEEZE ON UTAH

90

FARMERS. CAN YOU GIVE AN EXAMPLE OF SUCH A COST/PRICE SQUEEZE?

A. Yes. In 2009-10, Utah farmers and ranchers found themselves in an especially painful

- 92 cost/squeeze when diesel fuel prices in most rural areas exceeded \$4.50 per gallon.
- 93 Although demand for locally grown agriculture products was strong, the reality that

or

 $^{^{\}rm 5}$ 2007 Census of Agriculture, Vol. 1, Chapter 2, Table 46

http:www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1_Chapter_2_US_State_Level/st99_2_046_046.pdf

11-035-200

diesel fuel costs had doubled in a short period created a cost/price squeeze with food
producers unable to recoup their full cost of production in the market. This squeeze
created a financial burden that in some cases led to the sale of farms. Other food
producers renegotiated their mortgage loans or annual operating loans and even
liquidated equity in their business.

99 Q. ARE UTAH'S IRRIGATION FARMERS IN A BETTER POSITION NOW?

100 Α. No. Fuel prices declined for a time after reaching all time highs in 2008, possibly due to the global economic recession and reduced demand for oil. The political unrest in the 101 Middle East has led to global volatile in oil prices ranging from \$85 - \$118 per barrel this 102 year. At the pump, gas and diesel prices are up again, with some analysts predicting 103 gas and diesel fuel prices could exceed the record 2008 price levels in coming months. 104 Market uncertainty for alfalfa hay is creating price volatility. Alfalfa hay prices in 105 106 Utah are heavily influenced by local dairy demand, weather and the California dairy market. Prices for milk produced by dairy farmers in Utah are set under the Federal Milk 107 Marketing Order and milk produced by California dairy farmers is priced under the 108 109 California's Milk Marketing Order.

110

111 Q. WHAT ARE MILK MARKETING ORDERS?

A. In the 1930s, the U.S. Federal Government established a system of Milk Marketing Orders (MMO) to provide for the orderly marketing of milk. These Milk Marketing Orders, on a regional basis, establish pricing for what was considered a very perishable food commodity. Some consider the order system outdated because it is less than effective in recognizing market forces related to price and demand. Prices continue to be set by the Federal Government and are set based on a relationship - fluid milk usage in cheese manufacturing. It is a pricing system that is complicated and understood by

11-035-200

119 few.

120		The milk prices to Utah dairy farmers, based on Federal MMO pricing, show
121		extreme volatility between 2002 and 2007 with a low of \$11.80 and a high of \$18.90 ⁶ .
122		More recent price trends report 2009 milk prices established through the Federal MMO
123		as low as \$10.50 per hundredweight increasing to a summer 2010 average price of
124		of \$15.00 per hundredweight. Prices in 2011 have increased, averaging in the
125		\$16.00 - \$17.00 ⁷ range. Volatility returned in 2012, with prices again dropping.
126		According to the Utah Dairymen's Association, the 2011 statewide
127		average milk production cost is \$17.00 – 17.50 per hundredweight.
128		
129	Q.	HOW IS FEDERAL ENERGY POLICY AFFECTING UTAH IRRIGATORS?
130	A.	Alfalfa hay and feed corn are the major feed cost components used by dairy farmers.
131		Corn prices are being influenced by federal energy policy that is providing a market
132		subsidy to corn and blended fuel mandates converting corn into ethanol for auto fuels.
133		Approximately 40 percent of corn production is now being converted into ethanol for use
134		in automobiles as bio-fuels. Corn prices have escalated dramatically in recent years.
135		From 2001 to 2006, prices averaged just over \$2.00 per bushel ⁸ . Corn prices have
136		increased by nearly 300 percent between 2007 and 2011 exceeding \$6.50 ⁹ per bushel.
137		2012 heat and drought could increase prices and add to the cost/price squeeze.
138		
139	Q.	HOW HAS CORN PRICE INCREASES AND MILK PRICES BELOW COST OF
140		PRODUCTION ADVERSELY AFFECTED IRRIGATORS?

141 A. Lack of economic stability for Utah dairy farmers has led to uncertainty for alfalfa hay

⁶ USDA National Agricultural Statistics Service, Utah Agriculture or www.nass.usda.gov

⁷ Ibid

⁸ Agricultural Prices (February 2012) USDA, National Agricultural Statistics Service.

⁹ Ibid

	FB – 1	D Hogan	11-035-200	7 of 15
142		growers and wild fluctuations in mark	ket prices the last two years.	According to UDSA
143		NASS, Utah baled hay prices average	ged about \$150 per ton during	the winter months of
144		2009, falling to around \$100 per ton	as summer production came	on. The 2010 prices
145		showed stayed relatively constant at	\$95-113 per ton. The past 15	5 months have seen
146		increases in prices due to last year's	wet spring and 2012 potentia	al drought.
147		Escalating of energy inputs c	osts, federal energy policy ind	creasing the cost of
148		corn, a major feed component, and p	prices set through governmen	t Milk Marketing
149		Orders pricing milk at prices that do	not cover the cost of producti	on has contributed to
150		the number of dairy farms in Utah dr	opping from more than 800 ir	a 2000 to less than
151		360 in 2012.		
152		Local demand from a decrea	sing number of Utah dairy far	ms has created
153		uncertainty, volatility and downward	price pressure in the Utah alf	alfa hay market. Utah
154		irrigators continue to face local mark	et uncertainty in 2012.	
155				
156	Q.	CONSIDERING THE WEAK ECON	OMIC CONDITIONS, HOW W	VILL AN INCREASE IN
157		ELECTRICITY PRICES IMPACT UT	AH FARMERS?	
158	Α.	Because the climate in Utah during t	he production season is usua	ally dry, Utah farmers
159		and ranchers must rely on irrigation	to make their farmland produc	ctive. Utah is second
160		only to Nevada as the nation's most	arid state. Electricity is the pr	imary energy source
161 162		for the state's irrigation pumps. Incre	eased electricity costs would	increase the costs of
163		production for producing alfalfa hay,	Utah's number one cash crop	o, but would also
164		increase the cost of production for fr	uit farmers, small grain farme	rs, and vegetable
165		farms who pump irrigation water. As	s previously noted, farmers ca	annot easily pass along

166 increased costs of production to their customers.

167		FB – 1D Hogan	11-035-200	8 of 15
168		An increase in electric rate	es to pump irrigation water for farm	ing would further
169		exacerbate the cost/price squeeze	e food producers already face. As	has been previously
170		pointed out a high percentage of Utah farmers and ranchers are augmenting their		
171		incomes from non-farm jobs to he	lp meet financial obligations. Stal	bility in the cost of
172		energy inputs for Utah's farms and	d ranches would help maintain the	important economic
173		contribution agriculture makes to	our rural communities – providing j	jobs, paying taxes
174		and funding important local infrast	tructure needs and contributing to	Utah's overall
175		economy.		
176				
177	III.	RATE INCREASE CONSIDERAT	IONS FOR THE IRRIGATION CL	ASS
178				
179	Q.	WHAT RATE INCREASE HAS T	HE COMPANY PROPOSED FOR	THE SCHEDULE
180		10 IRRIGATION CLASS IN THIS	FILING?	
181	Α.	The Company has proposed an 1	3.5 % increase for the irrigation cla	ass, the largest
182		increase for any retail customer cl	ass. The average rate increase fo	r all retail customers
183		is 10.5%. The proposed increase	for farmers and ranchers using ele	ectric pumps for
184		irrigating their fields is three perce	entage points higher than the avera	age requested
185		increase. It is particularly notable	that the Company is proposing a h	higher increase for
186		Schedule 10 than Schedule 9 (pro	pposed at 12.5%) despite the fact t	that the Company's
187		own COS study indicates the retu	rn for Schedule 10 is higher than t	he return for
188		Schedule 9 (0.79 versus 0.77)		
189				
100	0			
190	પ્ય.		DECATION DATES	
191		COMPANT'S PROPOSAL FOR I	KRIGATION KATES?	

192 A. This question is extremely difficult to answer because of a number of inter-related and

	FB – 1D Hogan	11-035-200	9 of 15
193	philosophical issues.	Utah has had a proud history of embrad	cing self-sufficiency. Self
194	sufficiency in meeting	our most basic need, our food, goes ba	ck to early settlement by
195	our pioneer ancestor	s. Recognizing the volatility in the energ	y sector, it seems that as a
196	state and nation, we	would want to protect our ability to produ	ce domestically our food
197	and fiber. Placing ac	ditional economic burdens in an already	stressed economic sector,
198	will put our food prod	ucing capabilities at additional risk. We a	are currently seeing food
199	price volatility at the	procery store driven by increased fuel co	sts, adverse weather
200	conditions and politic	ally motivated policies.	
201	In the food pr	ce equation, it's important to recognize v	where the consumer dollar
202	goes. According the	USDA Economic Research Service (ER	S), 19 cents out of every
203	dollar spent at the gr	ocery store goes to the food producer – t	he farmer or rancher. That
204	means about 80% of	every consumer dollar spent on food is	attributed to non-farm

205 costs¹⁰.

When farmers and ranchers are caught in the cost/price squeeze attributed to a combination of low commodity prices coupled with escalating input costs, more are forced to take non-farm jobs and/or borrow against the equity in their property. Selling at less than the cost of production means undermining Utah's farm and ranch assets which is unfair to our food producers and undermines our local food security. In addition, during tight lending periods like we are witnessing today, getting operating loans based on equity is difficult at best.

- 213 With irrigators a small part of the overall revenue picture for the Company, 214 making up less than one percent of the total revenues, the Commission should keep any
- rate increase to a minimum to lessen the adverse impacts farmers and ranchers who

¹⁰ USDA Economic Research Service (2006) or

http://www.ers.usda.gov/Publications/eib48/Spreads/17/index.htm

	FB –	1D Hogan 11-035-200 10 of 15
216		rely on affordable power rates to run their operations. By keeping the power rate as low
217		as possible, the Commission will benefit Utah's rural communities which rely heavily on
218		agriculture as an economic engine.
219		
220	Q.	HOW DO YOU SUPPORT SUCH A POSITION?
221	Α.	As presented earlier in my testimony, any increase in the schedule 10 rates adversely
222		impacts the economic viability of irrigation farmers. Therefore, the Commission should
223		take into consideration the following factors in making its spread decision in this
224		proceeding:
225		(1) The company's actual cost to serve irrigation customers are currently
226		unknown because the load sample for irrigators is very inaccurate,
227		(2) Irrigators are a very small part of the Company's overall revenue,
228		(3) The irrigation class consumption has remained flat and therefore has not
229		been a significant driver behind the Company's need to build more power
230		plants or transmission lines, and
231		(4) Irrigators have been willing to work with the Company to help manage their
232		peak loads by actively participating in load control programs.
233		
234		I discuss in greater detail each of these factors below.
235		
236	Q.	HOW WOULD YOU DESCRIBE THE ENERGY NEEDS OF THE IRRIGATORS
237		TAKING SERVICE UNDER SCHEDULE 10?
238	A.	Inconsistent and unpredictable. There are many factors affecting their demand for
239		energy. For example, climate conditions affect demands for energy. Variability in
240		temperature, wind, and moisture complicate the consistency of energy demand.

	FB – 1	ID Hogan	11-035-200	11 of 15
241		Another facto	or affecting electricity and pumping is the crop bein	ng produced.
242		Determining crop of	en is related to the irrigator's crop rotation. That n	nay be determined
243		by nutrient manager	nent or soil related disease issues. Rotating from	alfalfa hay to small
244		grains will lower the	water demands and reduce the irrigation season.	Irrigation seasons
245		for crops like alfalfa	and corn are longer than irrigation seasons for wh	leat or barley.
246		Lastly, when farmers	s fallow or idle their land for soil health, they will h	ave little or no
247		demand for electricit	y. Each of these factors, independent or combine	d, vary the
248		irrigator's power den	nand.	
249				
250	Q.	GIVEN THE UNPRE	EDICTABILITY OF PUMPER ENERGY DEMAND	, HAS IT BEEN
251		DIFFICULT TO ME	ASURE ENERGY DEMAND FOR PUMPERS?	
252	Α.	Yes.		
253				
254	Q.	WHAT EVIDENCE I	DO YOU HAVE TO DRAW THIS CONCLUSION?)
255	Α.	On November 30, 20	010, the Division of Public Utilities published a rep	ort entitled,
256		"Report of the Divis	ion of Public Utilities on Workgroups I-II: Load Re	search and Peak
257		Hour Forecasting."	("Report") Within the Report (page 12), it was ag	eed by the parties
258		collaborating on the	Report that load research for irrigation class was	"problematic."11
259				
260	Q.	HOW DOES UNREI	LIABLE LOAD RESEARCH AFFECT ENERGY S	TUDIES?
261	Α.	Any study based on	unreliable data will produce unreliable study resu	Its. If decisions
262		about energy demar	nd are based on faulty results, then the rates woul	d inaccurately
263		reflect energy dema	nd. Within the same above stated Report, the Off	ice of Consumer
264		Services (OCS) stat	ed that "problems with the irrigation load data mak	e the Cost of

¹¹ Report of the Division of Public Utilities on Workgroups I-II: Load Research and Peak Hour Forecasting, Division of Public Utilities et al., November 30, 2010 (Docket 09-035-23), p 12

	FB – 1	1D Hogan 1	1-035-200	12 of 15	
265		Service (COS) results for this custome	er class unreliable and the Company	/ has no	
266		credible support for its claim that the irrigation class is contributing substantially less than			
267		the Company's average rate of return.	"		
268					
269	Q.	BASED ON THE REPORT, WHY ARE	E THE COSTS OF SERVICE FOR ⁻	THE	
270		IRRIGATOR CLASS OVERSTATED?	,		
271	Α.	The Company's load research sample	is selected from actively irrigating of	customers, not	
272		all irrigation customers. Other classes	are sampled over an entire popula	tion. Ten	
273		percent of the irrigators are cited as ac	ctive, but have zero electricity usage	e during an	
274		irrigation season. Omitting those farm	ers who use no electricity from the	load research	
275		biases the study towards higher contri	bution to peak. Recognizing that du	ring any	
276		production season, there is a percenta	ge of the irrigators who are idling th	eir land for	
277		soil health issues.			
278					
279	Q.	GIVEN THE LOAD SAMPLING PROP	BLEM, HOW SHOULD RATES FOR	R THE	
280		IRRIGATION CLASS BE SET?			
281	Α.	Since the rate setting algorithm for irrig	gators is beset with many inaccurac	ies, setting the	
282		rate for irrigators should provide stabili	ity in this important food production	sector and not	
283		disrupt the contributions they make to	rural communities.		
284		New rates for irrigators could b	e set based on the average retail in	crease. This	
285		average rate increase should be consi	dered the upper limit for any rate in	crease to be	
286		applied to Schedule 10. Based on all	the uncontrollable issues food produ	ucers face as	
287		described in earlier testimony, the rate	s could be set using a lower than a	verage	
288		increase.			

FB – 1D Hogan 13 of 15 11-035-200 289 290 Q. HOW DO THE RATES FOR IRRIGATORS IMPACT THE COMPANY'S OVERALL 291 **REVENUE?** In 2009, the revenue from irrigators was 0.8% of the Company's Utah revenues. 292 Α. 293 Because irrigators are less than 1% of the Utah revenue, changes to the rates of the 294 irrigation class have almost no effect on the Company's Utah revenue. 295 296 Q. WHY SHOULD THE SIZE OF THE IRRIGATOR CLASS FACTOR INTO THE 297 COMMISSION'S DECISION ON HOW TO SET IRRIGATOR RATES? Because the irrigators are such a small class, their rates have little effect on the 298 Α. 299 rates and costs paid by other classes. Conversely, increases to the Schedule 10 rates have the potential to do great harm to the farmers and ranchers of Utah. The revenue 300 301 impact on the other customers is simply not large enough to justify the potential harm 302 done to irrigators and the customers and rural communities they support by increasing 303 irrigation rates more than other classes. 304 HAS INCREASED DEMAND FROM IRRIGATION CUSTOMERS CAUSED THE 305 Q. COMPANY TO BUILD MORE POWER PLANTS AND TRANSMISSION LINES? 306 307 Α. No. First of all, as I described earlier, irrigators are a very small customer class and 308 cannot be a driver for the Company's recent capital investments. These investments are driven by the growth in urban populations, businesses and large industrial customers. 309 Second, annual power usage by irrigators has remained relatively flat or dropped over 310 311 the last several years. According to the Company, irrigators used 198 million kWh in 312 2002 versus 184 million kWh between July 2009 and June 2010. The Company is

	FB – ′	1D Hogan	11-035-200	14 of 15
313		forecasting irrigators using 187 milli	on kWh between July 2011 and June	e 2012.12 The
314		numbers point to the fact, the irrigat	ors are not the cause of resource an	d infrastructure
315		growth in the utility's system.		
316				
317	Q.	HOW DO IRRIGATORS HELP THE	E COMPANY MANAGE SYSTEM PE	EAK DEMAND
318		IN THE SUMMER?		
319	A.	Pumpers are actively participating in	n load control programs that help the	Company
320		manage and reduce load during its	peak periods. The Company offers i	ncentives like
321 322		reduced rates to irrigators who are reduce the farmers' input costs and	willing to sign on for interruptible serving to sign on for interruptible serving peak periods. C	<i>r</i> ice. This helps ertainly, this
323		provides a mutually beneficial outco	me for food consumers, irrigators an	d the utility. In
324		short, this interruptible program pro	vides the Company with an importan	t tool that helps
325		keep down overall energy costs.		
326				
327		SUMMARY		
328				
329	Q.	PLEASE SUMMERIZE THE FARM	BUREAU'S TESTIMONY ON IRRIG	GATION RATES
330		IN THIS GENERAL RATE CASE P	ROCEEDING.	
331		The Farm Bureau asks the Commis	sion to carefully consider any rate in	creases for the
332		irrigation class, particularly recogniz	ing the unreliability of the Company's	s load sampling
333		for Schedule 10 as well as several s	special circumstances that affect this	class. In
334		summary, the Farm Bureau concluc	les the following:	
335	•	Because of load sampling problems	s, the Company cannot accurately de	termine the cost

¹² Eelkema Direct, Table 3, pg. 12.

	FB – 1	D Hogan	11-035-200	15 of 15
336		of service for Schedule 10. Therefore	ore, the Commission should not appro	ove a rate
337		increase for Schedule 10 that is an	y higher than the average retail rate ir	ncrease.
338		In addition, Farm Bureau offers the	following reasons why the Commission	on should
339		consider a lower increase:		
340				
341	•	Irrigators make up less than 1% of	the Company's Utah revenue. Their s	small size also
342		minimizes the impact of irrigator rat	es on other customer classes. This ca	annot justify
343		the disproportionate harm that rate	increases cause Utah's farmers and	ranchers.
344	•	Schedule 10 consumption has been	n flat and therefore has not been a pri	imary driver for
345		the new plant and other infrastructu	ire investments made by the Compan	y.
346	•	Irrigators are an important contribut	tor to Utah's rural economic and cultu	ral fabric.
347		Higher power rates adversely impa	cts financial stability of farmers and ra	anchers and
348		lessens the economic contribution t	food producers make to rural commur	nities.
349	•	Lastly, Schedule 10 customers hav	e assisted the Company in its manag	ement of usage
350		during the summer peak period by	their participation in irrigation load cor	ntrol programs.
351				
352	Q.	DOES THIS CONCLUDE YOUR T	ESTIMONY?	
353	Α.	Yes.		