

STATE OF UTAH
BEFORE THE PUBLIC SERVICE COMMISSION

The Application of Rocky Mountain)
Power for Authority To Increase its) **Docket No. 11-035-200**
Retail Electric Utility Service Rates in) **Witness OCS-7D COS RD**
Utah and for Approval of its Proposed)
Electric Service Schedules and Electric)
Service Regulations)

DIRECT TESTIMONY OF
PAUL CHERNICK
ON BEHALF OF
THE UTAH OFFICE OF CONSUMER SERVICES

Resource Insight, Inc.

JUNE 22, 2012

TABLE OF CONTENTS

I.	Identification and Qualifications	1
II.	Introduction.....	3
III.	Evaluation of the Company's Cost-of-Service Study.....	3
	A. Evaluation of the Load Data	4
	1. Calibration.....	5
	2. Weather Normalization	15
	3. Irrigator Load Data.....	16
	B. Classification and Allocation of Generation Costs.....	19
	1. The Classification of Generation Plant	20
	2. Allocation of Demand-Related Generation Plant	32
	3. Treatment of Firm Non-Seasonal Purchases	33
	C. Allocation of Service Drops	36
	D. Summary of Cost-of-Service Corrections	39
IV.	Marginal-Cost Study.....	40
V.	Recommendations.....	45

TABLE OF EXHIBITS

OCS Exhibit 7.1 *Qualifications*

1 **I. Identification and Qualifications**

2 **Q: Mr. Chernick, please state your name, occupation and business address.**

3 A: I am Paul L. Chernick. I am the president of Resource Insight, Inc., 5 Water
4 Street, Arlington, Massachusetts.

5 **Q: Summarize your professional education and experience.**

6 A: I received an SB degree from the Massachusetts Institute of Technology in June
7 1974 from the Civil Engineering Department, and an SM degree from the
8 Massachusetts Institute of Technology in February 1978 in technology and
9 policy. I have been elected to membership in the civil engineering honorary
10 society Chi Epsilon, and the engineering honor society Tau Beta Pi, and to
11 associate membership in the research honorary society Sigma Xi.

12 I was a utility analyst for the Massachusetts Attorney General for more
13 than three years, and was involved in numerous aspects of utility rate design,
14 costing, load forecasting, and the evaluation of power supply options. Since
15 1981, I have been a consultant in utility regulation and planning, first as a
16 research associate at Analysis and Inference, after 1986 as president of PLC, Inc.,
17 and in my current position at Resource Insight. In these capacities, I have
18 advised a variety of clients on utility matters.

19 My work has considered, among other things, the cost-effectiveness of
20 prospective new generation plants and transmission lines, retrospective review
21 of generation-planning decisions, ratemaking for plant under construction,
22 ratemaking for excess and/or uneconomical plant entering service, conservation
23 program design, cost recovery for utility efficiency programs, the valuation of
24 environmental externalities from energy production and use, allocation of costs
25 of service between rate classes and jurisdictions, design of retail and wholesale

26 rates, and performance-based ratemaking and cost recovery in restructured gas
27 and electric industries. My professional qualifications are further described in
28 my Exhibit COS 7.1 (Chernick).

29 **Q: Have you testified previously in utility proceedings?**

30 A: Yes. I have testified more than two hundred and fifty times on utility issues
31 before various regulatory, legislative, and judicial bodies, including utility
32 regulators in thirty states and five Canadian provinces, and two U.S. Federal
33 agencies.

34 **Q: Have you testified previously before the Commission?**

35 A: Yes. I testified on behalf of the Utah Office of Consumer Services (“the Office”)
36 in the following dockets:

- 37 • Docket No. 98-2035-04, on the proposed acquisition of PacifiCorp by
38 Scottish Power. My testimony addressed proposed performance standards
39 and valuation of performance.
- 40 • Docket No. 99-2035-03, on the sale of the Centralia coal plant. My testi-
41 mony addressed the costs of replacement power, the allocation of plant sale
42 proceeds, and the potential rate impacts on Utah customers of PacifiCorp’s
43 decision to sell the plant. I testified that the sale of Centralia was not in the
44 interest of ratepayers and that if the Commission approved the sale it
45 should allocate more of the sale proceeds to Utah to mitigate potentially
46 high replacement power costs. The Commission adopted this latter recom-
47 mendation as part of approving the sale.
- 48 • Docket Nos. 07-035-93, 09-035-23, and 10-035-124 on the reasonableness
49 of RMP’s Cost-of-Service study. I also assisted the Office in the develop-
50 ment of its rate-design proposal.

51 • Docket No. 09-35-15, on the need for RMP's proposed Energy Cost Adjustment
52 Mechanism.

53 I also assisted the Office in analyzing various issues in the multi-state
54 process. These issues included resource planning, cost allocation of generation-
55 and-transmission plant, regulatory policy and risk analysis.

56 **II. Introduction**

57 **Q: On whose behalf are you testifying in this rate case proceeding?**

58 A: My testimony is sponsored by the Office of Consumer Services.

59 **Q: What issues does your testimony address?**

60 A: I evaluate the Cost-of-Service Study ("COS Study" or "COSS") and the Marginal-
61 Cost Study filed by Rocky Mountain Power ("RMP" or "the Company") and
62 recommend certain improvements be made to the Company's analyses in the
63 next rate case filing. I pay particular attention to the calibration of the COS-Study
64 load data, which was first introduced by RMP in Docket 10-035-124, and to
65 certain classification and allocation methods. In addition, I address RMP's
66 reliance on these COS and Marginal-Cost studies for its revenue-spread and
67 residential-rate-design proposals.

68 **III. Evaluation of the Company's Cost-of-Service Study**

69 **Q: What is the purpose of the cost-allocation process?**

70 A: The purpose of the cost-allocation process is the fair assignment of the total
71 Utah jurisdictional revenue requirement to the various tariffed rate classes.¹ A

¹There are also cost-allocation implications for certain special contract customers due to pricing provisions in their respective contracts.

72 fundamental principle of the process is that allocation based on cost causation
73 results in an equitable sharing of embedded costs.

74 **Q: What role should the embedded COS Study play in revenue allocation?**

75 A: Any embedded-cost-based COS study is approximate and based on judgment. Its
76 reliability is also affected by limits on the accuracy of the load data. For these
77 reasons, it should serve only as a guide to class rate spread.

78 **Q: Should the Commission expect classification and allocation methods to
79 change over time?**

80 A: Yes. A COS-study methodology should not be fixed in stone. It should be revised
81 as needed to address changes in any of the following:

82 • the conceptual models of cost causation;
83 • data availability;
84 • the environment in which utilities operate, such as the structure of whole-
85 sale markets and cost patterns;
86 • energy and regulatory policy.

87 **Q: What COS-study issues does your testimony address?**

88 A: My testimony on the COS Study addresses two basic areas:
89 • the reliability of the Company's load data,
90 • specific classification and allocation factors.

91 **A. Evaluation of the Load Data**

92 **Q: What load data issues does your testimony address?**

93 A: My testimony addresses the following issues:
94 • the validity of the RMP's use of calibration to reduce a so-called gap be-
95 tween the sum of retail class peaks and the Utah jurisdictional peak,
96 • the unreliability of irrigator load data,

97 • the failure by RMP to weather normalize retail class peak loads.

98 *I. Calibration*

99 **Q: What is the Company's justification for the calibration of load data?**

100 A: According to Mr. Thornton's Direct (at 18), "The calibration process is based on
101 the expectation that the sum of base year class loads should equal the total
102 forecast jurisdictional load estimates" at PacifiCorp system monthly peaks.
103 Calibration concerns only the forecasts of retail loads at the time of PacifiCorp
104 monthly system peaks ("CP").

105 Mr. Thornton (at 19) cites the Division's conclusions from the Working
106 Group as support for RMP's calibration process, while noting that "not all parties
107 agreed with the process." The OCS opposed calibration.

108 **Q: Please describe RMP's calibration process.**

109 A: The Company follows several steps to develop load data for its COS. The
110 calibration process (as described in Mr. Thornton's Direct at 18-21 and shown
111 in Attachments OCS 3.29 1st Revision and OCS 3.33), is by no means a simple
112 and transparent algorithm. The steps are as follows:

- 113 1. For the sum of retail class peaks, the process starts with the monthly dates
114 and times of the system peaks in the base year.
- 115 2. The Company estimates the class contributions to system peaks in the base
116 year, using adjusted hourly load research data.
- 117 3. The Company forecasts class loads in every hour in the month by applying
118 class energy growth factors to the adjusted base-year load research data.
119 This forecast is based on the assumption that class monthly load shapes are
120 fixed.

4. The Company sets each monthly class contribution to system peak (CP) as the forecasted hourly load at the time of base year system peaks.
5. The Company then sums the forecasted class CPs at the base-year dates and times, and compares the results, by month, to the forecasted Utah jurisdictional CP. The jurisdictional CP forecasts are based on a different methodology and may occur at different dates and times than the class CP's.
6. Monthly class loads are adjusted to reduce the so-called gap between class and jurisdictional peaks. These adjustments are applied to the sampled classes only. The forecasted loads of the interval-metered classes are assumed to be 100% certain.
7. Where the two Utah forecasts (the sum of class and the jurisdictional peaks, both excluding the interval-metered loads) differ in any month by more than 5%, the sampled class peaks are adjusted as follows:
 - If the initial gap is between 5% and 10%, the difference in excess of 5% is spread proportionally over the sampled classes.
 - If the initial gap exceeds 10%, RMP follows somewhat of a trial- and error process to reduce the gap by considering sum of class peaks at dates and/or times that are closer to the jurisdictional peak hour.
 - If changing the date and time fails to reduce a monthly difference to 10% or less, the excess over 5% is spread among the sampled-class loads at the original date and time. The Company used this adjustment for the May peak loads for the current COSS, because the trial-and-error process failed to reduce the May gap below 10%.
8. Finally, if necessary, monthly class CP's are adjusted in 0.5% increments to reduce the annual gap to 2%. This adjustment was not required.

147 **Q: In what ways is the calibration of load data unsound?**

148 A: Seeking to “correct” monthly sampling data is not a valid basis for calibration,
149 for several reasons:

150 • Individual monthly differences between jurisdictional and sum of class
151 peaks are essentially irrelevant to the COS Study.

152 • Calibration has little effect on the annual average difference between the
153 sum-of-class and the jurisdictional peak loads. The “gap” is small without
154 any calibration adjustments.

155 • Calibration is not a statistically valid process.

156 • The load research data is not the sole source of statistical error.

157 • Other non-statistical elements of the two jurisdictional peak forecasts
158 contribute to the “gap.”

159 • The calibration process in the 2012 COSS has only a small effect on the
160 COSS results, adding an unnecessary as well as unsound element to the
161 COSS process.

162 In short, a gap should be expected, given all the possible causes for
163 differences between the two estimates of jurisdictional peak.

164 a) *Calibration Is Essentially Irrelevant to the Cost-of-Service Study*

165 **Q: Why are the monthly differences irrelevant to the COSS?**

166 A: The annual average coincident peaks, not the individual monthly peaks, are the
167 basis for allocation of generation and transmission costs. And only that average
168 is important for cost allocation. Errors in individual months may offset one
169 another; accuracy in monthly peaks is not essential for equitable cost allocation.

170 **Q: How close is the average sum of class peaks to the average jurisdictional
171 peak without calibration?**

172 A: Even before calibration, the difference between the two measures of average
173 peak was far less than RMP's 2% target (see Table 1).

174 **Table 1: Company Estimates of Utah vs. PacifiCorp Peak (@ Input)**

Jurisdictional	Sum of Class	
	Pre-Calib.	Calibrated
kW	43,931,266	43,557,029
% Gap		-0.9% -0.6%

Source: Attachment OCS 3.29 1st Revision

175 Given that the annual gap is almost zero, that the individual monthly peak gaps
176 are statistically unreliable, and that the monthly peaks are not used in the COS
177 Study, RMP's calibration process addresses a problem that does not exist.

178 b) *Statistical Validity of Calibration*

179 **Q: Why is RMP's calibration process an inappropriate basis for adjusting the
180 monthly peaks of sampled classes?**

181 A: The calibration process is inappropriate for at least the following reasons:

- 182 • When calibration alters relative class peaks, there is no way of determining
183 whether the changes are an improvement.
- 184 • The calibration process is not a precise algorithm. For the month of May,
185 the Company tried three different dates and ended up using the original
186 peak hour. The choice of the trial dates (each of which produces a different
187 F10 allocator) appears to be arbitrary.
- 188 • Calibration of individual monthly peaks holds the class load estimates to a
189 higher reliability standard than the load research data support.

190 • The same adjustment is applied to all sampled classes even though the
 191 residential load research study is designed to provide data that are more
 192 accurate than the load-research samples for the other sampled classes.²

193 **Q: How does RMP's calibration affect the COSS class load data?**

194 A: The calibration increased the relative annual average peak of the Schedules 1
 195 and 6 and reduced the relative peak of Schedules 23 and 10. See Table 2.

196 **Table 2: Effect of Calibration on cos-Study Load Data (@ Input)**

Class	Total Annual		Difference		Percent of Total Class Sum		
	Pre-Calib.	Calibrated	kW	%	Pre-Calib.	Calibrated	Increase
Res 001	15,485,218	15,615,358	130,140	0.83%	35.55%	35.74%	0.19%
Com 006	12,207,346	12,268,215	60,869	0.50%	28.03%	28.08%	0.06%
Com 023	3,082,148	3,044,949	-37,199	-1.22%	7.08%	6.97%	-0.11%
Irr 010	311,206	310,315	-891	-0.29%	0.71%	0.71%	0.00%
<i>Sum of Sampled Classes</i>		31,085,918	31,238,837	152,919	0.49%	71.37%	71.50%
<i>Total Class Sum</i>		43,557,029	43,687,655	152,919	0.35%		

197 *Note: Annual Load of the Irrigator Class includes load in all months.*

198 *Source: Attachments OCS 3.29 1st Rev and OCS 3.33*

199 The algorithms RMP uses to adjust class monthly peaks have different
 200 effects on relative class peaks. The proportional spread among sampled classes
 201 maintains the relationship among those classes, but changes the allocations
 202 between large customers and sampled customers. Changes in the day and time
 203 of peaks can change the relative loads of *all* classes and therefore the allocations
 204 among them.

²According to Mr. Thornton, the residential class sampling was designed to achieve ± 5 percent precision at the 90 percent confidence level, while the load data for the other sampled classes was expected to meet a design criteria of ± 10 percent precision at the 90 percent confidence level (Thornton Direct at 6)

205 **Q: Do others in the field recognize the problems with “calibration” as an
206 invalid adjustment to statistical results?**

207 A: Yes. According to the 1992 NARUC Utility Cost Allocation Manual (at179):

208 ...The sum of the coincident demands for all classes for any hour adjusted
209 for losses will not equal the demand of the utility generated in that hour.
210 This is because of sampling and non-sampling errors.

211 When the historic test year is coincident with the year the load data was
212 collected, the cost analyst can use the demands as estimated and calculated
213 but usually an adjustment is made to the demands so that they sum to the
214 actual demand of the utility in that hour. Sampling statisticians prefer that
215 no adjustment be made because of the uncertainty as to whether the
216 adjusted demands by class represent more accurately the class’s proportion
217 of the total demand than the statistically estimated demands. Some cost
218 analysts have adjusted the estimated demands proportionately of only those
219 classes that are not 100% time-recorded. This procedure, however, ignores
220 the size of the sampling error of the various estimates and the measurement
221 errors present in 100% time-recorded classes.

222 **Q: How does RMP’s load-research design standard differ from the calibration
223 tolerances?**

224 A: The Company’s calibration process sets a monthly target of $\pm 5\%$, so that each
225 month’s sum of class peaks is within 95% and 105% of the month’s Utah juris-
226 dictional peak. The load research studies, on the other hand, are not designed to
227 provide any statistically valid peak estimates for single months.

228 In addition, RMP sets a calibration target for the annual average sum of
229 peaks at 2%, so that the annual average sum of class peaks is within 98% and
230 102% of the average jurisdictional peaks.

231 The load-research sampling is designed to meet a much-lower level of
232 accuracy. Annual average class peak estimates for the non-residential class are
233 designed to be within 10% of the actual average load, and the residential within
234 5%, of actual average peak, with a confidence level of 90% (Thornton Direct at

235 6 and 21; OCS 3.23).³ The $\pm 2\%$ is much more rigorous than the PURPA standard
236 on which the sampling is based.

237 **Q: Has the Company confirmed your characterization of the accuracy stand-
238 ard of its load studies?**

239 A: Yes. In response to OCS 10.1 in Docket No. 10-035-124, the Company explained
240 that the design standard applies only to the annual sum of peaks, not to the
241 individual monthly peaks:

242 Mr. Thornton's testimony does not assert individual peaks will reflect an
243 "accuracy of plus or minus 10 percent at the 90 percent confidence level."
244 Rather, it states that this is the design standard for the "variable of interest"
245 (lines 73-74). The variable of interest for the load studies referenced is the
246 average demand at the time of the monthly system peaks, as measured over
247 a twelve consecutive month period.

248 c) *Other Sources of Statistical Error*

249 **Q: What other sources of statistical error can produce a discrepancy between
250 the two estimates of jurisdictional peak?**

251 A: The following errors can produce such a discrepancy:

252 • Calibration is applied to forecasts of retail class loads, not to base-year
253 sampling data. These forecasts come with additional modeling and statis-
254 tical regression errors that can also cause discrepancies between the class
255 and jurisdictional peak loads. This error is independent of the uncertainties
256 in load research data.

257 • There is data and forecasting error in the jurisdictional CP estimates, not
258 just in the sum-of-class peak estimates.

³RMP designed its residential sampling to meet a higher standard: a confidence level of 90% that any particular load estimate is within 5% of the actual load (Thornton Direct at 6). However, RMP ignores this higher accuracy in its calibration process.

259 • The calibration process incorrectly treats historic census data and the
260 forecasted peaks of census customer classes as having zero error.

261 **Q: Please explain the source of forecasting error.**

262 A: Every regression analysis used in the forecast of retail class sales and peak has
263 a confidence interval around its estimates of the best-fit equation, and an even
264 wider prediction interval around the projection for any particular set of inputs.

265 **Q: Is the JAM estimate of Utah's contribution to system peak also based on
266 regression analysis?**

267 A: Yes. For each state, the Company uses regression analysis to develop forecasts
268 of all hourly loads (not just on the hour of the system peak), as well as forecasts
269 of monthly peaks and monthly energy.

270 The derivation of the Utah CP from these regressions is an additional
271 source of error. In this calculation, RMP turns the hourly forecasts into a monthly
272 load duration curve; shifts the curve vertically to fit the state peak and rotates
273 the curve to fit the energy forecast; turns the load duration curve back into
274 hourly loads; adds loads across states and selects the system peak hour.

275 There are clearly many assumptions and potential errors in this process and
276 they are sources of error in the historical and forecasted jurisdictional peaks.

277 **Q: Does the Company agree that there is error in the jurisdictional peak
278 forecast?**

279 A: Yes. In the Load Research Working Group, RMP took the position that
280 ...jurisdictional measurements are also not error free. (For example, meters
281 are not always functioning properly, the data sets may not be as complete
282 as assumed, and allocations of interstate transmission transactions may not
283 be completely accurate.) Division's Working Group I-II Final Report at 14.

284 **Q: Do you agree that the calibration band is large enough to encompass un-**
285 **certainty in both sum-of-class and jurisdictional peaks?**

286 A: No. First, as explained above, since there is no statistical measure of the un-
287 certainty in the individual monthly sum-of-class peak estimates, there is no
288 support for claim that a 5% band is reasonable. Second, the uncertainty in the
289 forecast of average annual sum of sampled class peaks, by itself, is greater than
290 $\pm 5\%$. Uncertainty in the jurisdictional forecast requires a band that is greater
291 than 5%. Third, The Company mischaracterizes the calibration; the process has
292 an ultimate target of no more than $\pm 2\%$, not $\pm 5\%$.

293 **Q: How does the calibration process treat the base year and forecasts of the**
294 **peaks of census classes as if they were certain?**

295 A: The calibration process makes adjustments only to the forecast peak loads of
296 sampled classes, not to the forecast peak loads of census classes.

297 **Q: Does the Company's explain why it has not allocated any part of the gap to**
298 **the census classes?**

299 A: No. In fact, RMP's statements refute this treatment of the census load data. RMP
300 agrees that there is error in the load data for the metered classes (Division's
301 Working Group I-II Final Report at 14). In addition, according to its response to
302 DR OCS 3.25,

303 The Company has not assumed that forecasted hourly load of Direct
304 Measurement customers are certain.

305 d) *Other Sources of the Gap*

306 **Q: What forecast elements other than statistical error can lead to the gap?**

307 A: In addition to statistical error, there can be several reasons why the two meas-
308 ures of Utah average peak do not agree, as follows:

309 • The class CP forecasts and the jurisdictional forecasts are based on differ-
310 ent methodologies.
311 • The JAM methodology assigns to the Utah jurisdiction the losses from
312 wholesale transactions and power transfers through Utah, inflating Utah
313 loads estimated for the jurisdictional model. This was the one of the pri-
314 mary reasons calibration was abandoned by the Company in 2002.

315 **Q: How do the methodologies used to forecast jurisdictional peaks and class
316 peaks differ?**

317 A: The jurisdictional forecasts are the result of regressions on historical jurisdic-
318 tional hourly load data, for each hour. The forecast of jurisdictional load shape is
319 normalized through regressions that contain dependent variables for weather.

320 The COS loads are the result of completely separate regressions. Further-
321 more, the load shapes and the dates and times of peaks are based on what hap-
322 pened in one actual year only, the base year. There is no attempt to develop a
323 class load shape for a normal year. Only the forecasted class energy growth is
324 normalized for weather through a regression on historic energy use.

325 There is no reason to expect that the projections resulting from two
326 different methods—using different driving variables, one weather-normalized
327 and the other not—will exactly match; and if they do not match, there is no
328 reason to assume that one projection is right and the other wrong.

329 **Q: What losses occur within Utah that are not due to Utah retail sales?**

330 A: The sources of these losses include the following:

331 • sales to utilities in other states, from generation in Utah or power flowing
332 through Utah,
333 • municipal and coop loads in Utah,

334 • power flowing from Arizona or Wyoming, through Utah, to PacifiCorp
335 loads in Idaho and beyond.

336 **Q: Has RMP attempted to measure these losses?**

337 A: No. The Company has made no effort to measure these losses. RMP gives the
338 following explanation (DR OCS 3.31):

339 The Company does not track the requested information, therefore, the
340 information is not within the Company's custody, possession or control.
341 While the Company has Utah-specific loss figures, these are limited to
342 retail uses of the transmission system in Utah. Accordingly, a Utah-specific
343 estimate of losses for third-party wholesale uses of the system cannot be
344 provided from these figures. The Company has transmission system-wide
345 loss figures, but these are not separated into individual state results.

346 **Q: In summary, why do you recommend against calibration of load data?**

347 A: There is no reason to expect that the forecasted sum of class peaks would
348 exactly equal the forecasted jurisdictional peak load, given the differences and
349 irreducible errors in these independent forecasts. The planned improvements in
350 the reliability of the sampled load data will not eliminate uncertainty in the base-
351 year class or jurisdictional peak loads, the uncertainty in the class and
352 jurisdiction load forecasts, or any of the other factors discussed above that
353 contribute to the discrepancies between the two measures of Utah monthly
354 peaks. Consequently, the adjustment of retail class loads to reduce that gap, even
355 as a supposedly interim measure, violates principles of statistics and fair
356 allocation.

357 2. *Weather Normalization*

358 **Q: How are the JAM and COSS peak-load forecasts weather normalized?**

359 A: While the Company has for some time used weather-normalized load shapes to
360 determine peak loads for the JAM model, it does not weather-normalize the class

361 load shape used in the COS Study (Thornton Direct at 17). This difference can
362 also be an important factor accounting for some of the difference or gap between
363 the jurisdictional and class peak loads. It also can affect the outcome of the COS
364 Study.

365 **Q: Can the Company eliminate this inconsistency between the JAM and COSS
366 peak forecasts?**

367 A: Yes. The Company should weather-normalize class load forecasts to eliminate
368 this portion of the inconsistency between the JAM and COSS load data. Many
369 other discrepancies will remain.

370 3. *Irrigator Load Data*

371 **Q: Does the irrigation class present special load research challenges?**

372 A: Yes. The irrigation loads are diverse, highly variable from year to year, and hard
373 to characterize. Recognizing this variability, RMP used an unusually large sample
374 size.

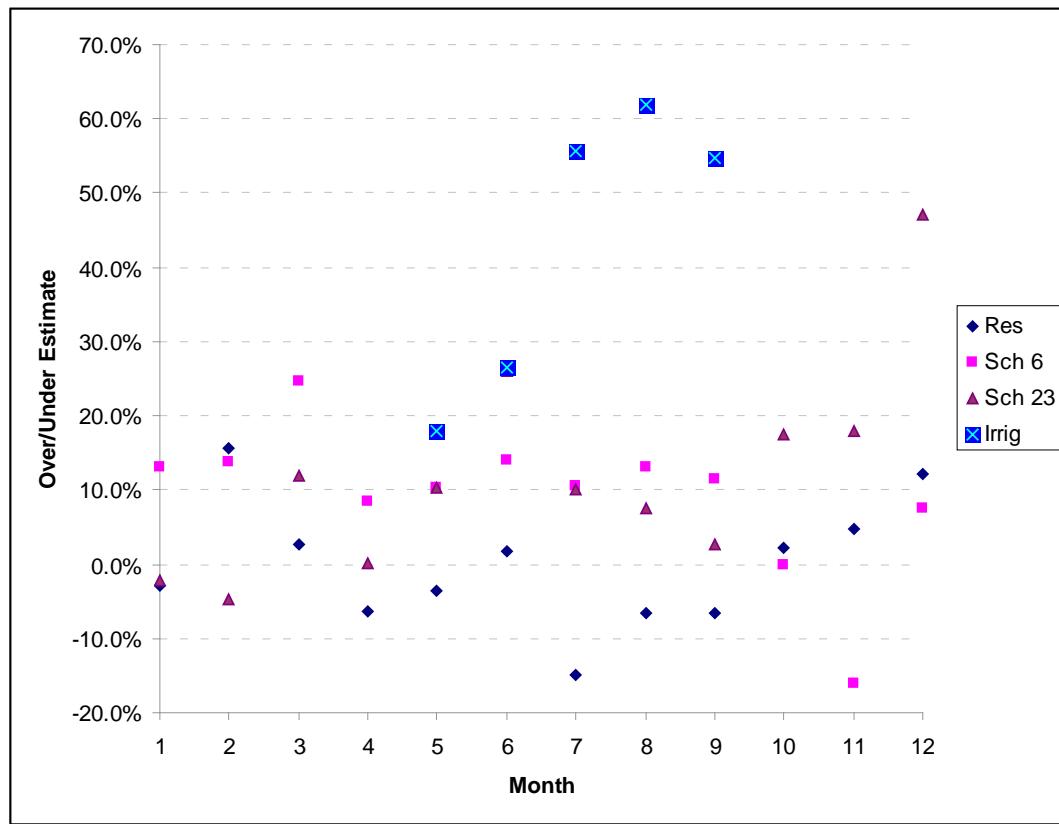
375 **Q: Has the reliability of the irrigator load data used in the current COS Study
376 been improved?**

377 A: No. RMP has not provided any analysis to indicate that the irrigator load data has
378 improved

379 **Q: What has RMP's recent experience been with its irrigator load research
380 data?**

381 A: In the data provided in Company Witness Scott Thornton's Exhibit SDT-1 in
382 Docket No. 09-035-23, there were sizeable discrepancies between estimated and
383 actual monthly usage. The overestimates of irrigation class usage in the summer

384 months (the only months for which RMP uses the irrigation load-research data)
385 ranged from 18% in May to 62% in August. See Table 3.


386 **Table 3: Errors in RMP's Irrigation Load Reconstruction**

	Sample MWh	Billing MWh	Adj. Factor	Over- Estimate
<i>May</i>	35,079	29,728	0.8475	18.0%
<i>June</i>	48,924	38,702	0.7911	26.4%
<i>July</i>	68,699	44,108	0.6420	55.8%
<i>August</i>	69,803	43,086	0.6173	62.0%
<i>September</i>	44,524	28,760	0.6459	54.8%

387 The load-research data over-predicted actual usage of irrigation customers by
388 45% in the summer months.

389 **Q: Were these estimation errors typical for RMP's load-research efforts?**

390 A: No. As shown in Figure 1 below, the five months of irrigation load data included
391 the three largest errors and five of the seven largest errors, out of the 41 monthly
392 samples in Exhibit SDT-1.

Figure 1: Errors in RMP Load Sampling

395 **Q: Can RMP's pro-rata adjustment to load in all hours provide an adequate
396 correction to the estimated irrigation loads?**

397 A: No. In its derivation of the class hourly load estimates from the sample load
398 data, RMP's adjustment holds load shape constant. In other words, RMP assumes
399 that the class demand factors are in constant proportion to energy use and the
400 load profile is unaffected, no matter what the cause of the discrepancy. This is an
401 unrealistic assumption, especially in the case of discrepancies as large as 62%.
402 The factors that significantly alter kWh usage (such as crop rotations, changes in
403 weather, temperature and rainfall, and customer diversity) are likely also to
404 affect load shape.

405 **Q: Can the current irrigator load data be relied on to support a dispropor-**
406 **tionate increase in irrigation rates?**

407 A: No. Since the load data for this class has not come close to meeting PURPA
408 standards and has differed sharply from actual class sales, no conclusions can be
409 drawn about the cost of service for the irrigation class. The current irrigator load
410 data should not be relied upon to support a major cost allocation action.

411 **Q: What do you recommend instead?**

412 A: I support the proposal of OCS Witness Dan Gimble, who suggests exploring the
413 reasonableness of using historical irrigator load data to estimate a normalized
414 load shape for the irrigation class, for normal weather and cropping patterns.

415 **B. Classification and Allocation of Generation Costs**

416 **Q: Have you identified areas in which RMP's COS Study should be improved?**

417 A: Yes. I have identified a number of improvements that should be made to the
418 Company's classification and allocation factors to reflect cost causation. In
419 particular, future RMP COS studies should recognize the following realities:

- 420 • Steam plant has become more energy-related, especially because of the
421 recent investment in pollution control equipment.
- 422 • Wind resources are largely energy-related.
- 423 • More than 50% of firm power purchase costs are energy-related.
- 424 • Some service drops are shared by two or more customers.

425 I discuss each of these further below.

426 1. *The Classification of Generation Plant*

427 **Q: How does the COS Study classify generation plant?**

428 A: The COS Study classifies generation plant as 75% demand-related and 25%
429 energy-related. RMP's approach recognizes that power-production facilities are
430 built both to serve demand (i.e., to meet reliability requirements) and to produce
431 energy economically.

432 **Q: Is there a good analytical reason for changing the demand-energy split
433 applied to generation plant?**

434 A: Yes. The 75-25 split understates the portion of generation investment—
435 particularly in coal and wind plants—that is incurred to meet energy needs,
436 rather than peak load.

437 **Q: Has the Commission endorsed your view that more generation plant should
438 be classified as energy-related?**

439 A: No, for at least two reasons. First, the Commission found that a change to the
440 classification of generation would be inconsistent with the JAM method. Second,
441 the Commission believed that the existing 75-25 method is supported by the
442 stress factor analysis. (Docket No. 09-035-23 at 123).

443 **Q: What is your understanding of the Commission's current view regarding
444 consistency between the JAM and the COSS?**

445 A: The Commission's position is not clear. In its Order in Docket No. 09-035-23,
446 the Commission did indicate that changes to reflect cost causation could meet
447 Commission approval if there were "good and sufficient cause." As the
448 Commission stated,

449 We also want to insure that these fundamental cost-of-service decisions are
450 applied consistently at interjurisdictional and class levels...*unless good and
451 sufficient cause shows otherwise* [emphasis added].

452 However, in the same Order, the Commission appeared to raise further
453 obstacles to approval of changes to the COSS that are inconsistent with the JAM
454 methodology:

455 Any party who would like to propose an alternative to the approved
456 methods must provide analysis to demonstrate the proposed method is also
457 appropriate and viable at the inter-jurisdictional level. This analysis must
458 include a level of detail to determine the impacts to Utah and other states in
459 the PacifiCorp system of a proposed change in classification and allocation
460 methods

461 It is not clear what the Commission meant by the term “viable at the inter-
462 jurisdictional level.” If that standard requires the proponent of a change to prove
463 that the change would be accepted by all five of the other PacifiCorp states for
464 use in a consensus JAM, it would be nearly impossible to meet. If, on the other
465 hand, the standard is to demonstrate that the proposed change would not
466 seriously disadvantage Utah, or would not excessively burden the majority of
467 states, it may be possible to provide the information the Commission is seeking.

468 In this testimony, I present an analysis of the energy classification of
469 generation plant, in the event that the Commission clarifies its standard so as to
470 consider allocation factors that are not identical to those of the current JAM
471 methodology.

472 **Q: Does the stress-factor analysis support the 75/25 classification of
473 generation?**

474 A: No. The Company’s stress-factor analysis determines the hours of load that
475 drive the reliability-based need for capacity. Therefore, it is relevant to the
476 allocation of the demand-related portion of generation plant. In particular, since
477 it shows that hours in all months contribute to the loss-of-load-probability, it
478 supports the 12-CP allocator. It is not relevant to the classification of plant as
479 energy- or demand-related.

480 **Q: Does the JAM's 75/25 split reflect costs to Utah even though it understates**
481 **the energy-related portion of generation plant?**

482 A: No.

483 **Q: How can the energy-related portion of generation plant costs be estimated**
484 **on a cost-causation basis?**

485 A: One approach is the *peaker method*, which considers the demand-related portion
486 of production plant to be the minimum cost of providing the current system
487 reliability level, and the remainder to be the energy-related portion.

488 **Q: Has the Company found the peaker method to be reasonable?**

489 A: Yes. The Company's current analysis of marginal generation cost is based on the
490 same peaker method. In the case of the marginal cost calculation, a new com-
491 bined cycle unit ("CC") is considered to operate as the baseload unit. The simple
492 cycle combustion turbine ("CT") is a proxy for capacity costs. The excess of the
493 cost of the CC over the CT is considered energy-related (Paice Direct at 12–13).

494 The Company's support for this methodology is a longstanding one, dating
495 back to its 1989 UP&L Distribution Study at page 11:

496 The increased cost of a baseload unit over a peaking plant represents an
497 investment made to save fuel costs. The additional investment can be
498 classified as energy related.... The generation plants have two equally
499 important ratings, energy and demand.

500 **Q: Please explain how the peaker method would be used to classify generation**
501 **plant in a COS Study.**

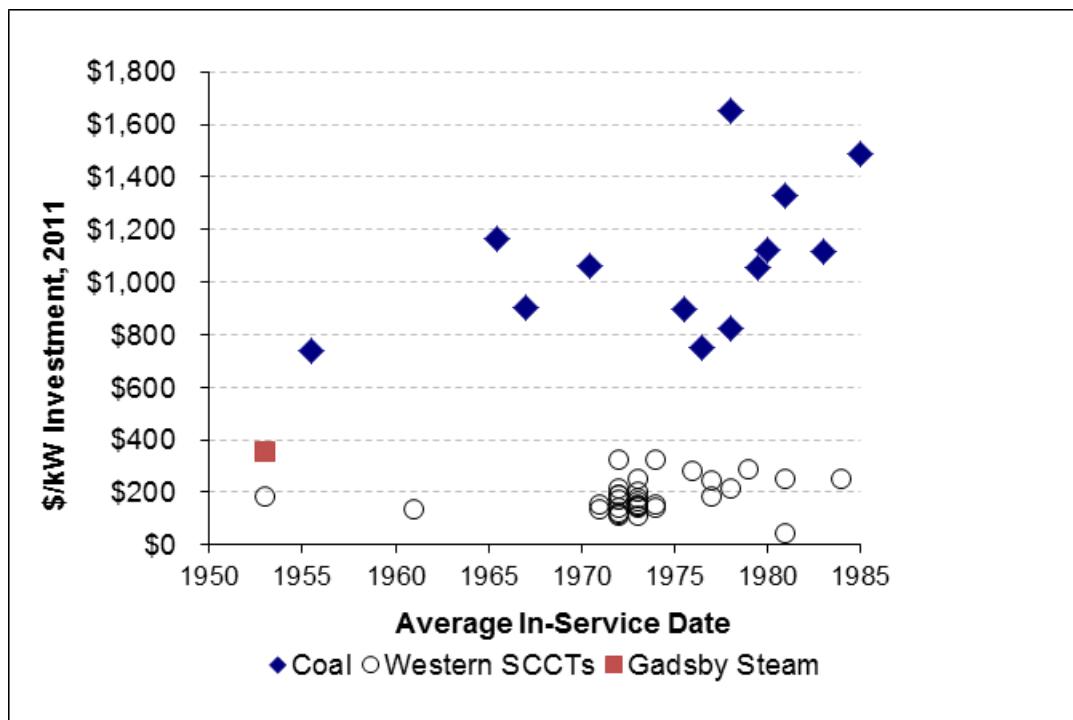
502 A: For each generation unit, a good initial estimate of the demand- or reliability-
503 related portion of its cost is the cost per kW of a peaker (generally a simple-
504 cycle combustion turbine) installed in the same period times the rated capacity

505 of the unit. The cost of the unit in excess of the equivalent gas turbine capacity
506 is energy-related.⁴

507 a) *The Classification of Steam Plant*

508 Q: **Have you applied the peaker method to classify PacifiCorp's existing coal
509 plants?**

510 A: Yes. I compared the gross capital cost per kilowatt, as reported at year-end 2011,
511 for each existing PacifiCorp steam plant and for contemporaneous combustion-
512 turbine plants in the West, sorted by in-service date.⁵ The peakers averaged
513 about \$170/kW, compared to almost \$900/kW for PacifiCorp's coal plants,
514 Figure 2 shows each plant's cost at year-end 2011. I include only data through
515 1986 (the in-service date of PacifiCorp's last coal plant) in Figure 2, and omit
516 Blundell, which was built in two increments 22 years apart (which complicates
517 graphing) and would require that the vertical scale be expanded to cover its cost
518 of over \$3,000/kW.



⁴This calculation overstates the reliability-related portion of plant cost: it assumes steam plant supports as much firm demand as would be supported by the same capacity of (smaller) combustion turbines. Higher forced outage rates, large maintenance requirements, and the size of large units all tend to reduce the contribution of large units to system reliability.

⁵Since PacifiCorp does not own any peakers built in the same period as its coal plants, I used as proxies peakers built in the relevant period in areas contiguous to PacifiCorp's service territories. The peakers are those owned by investor-owned utilities in Arizona, Colorado, Montana, New Mexico, Nevada, Oregon, and Washington, and were all built during the period 1970–1981.

519
520

Figure 2: Costs of PacifiCorp Steam Plants and Contemporaneous Western Simple-Cycle Combustion-Turbine Plants

521 Q: Does this comparison reflect the full energy-related portion of all steam
522 plant investment?

523 A: Not necessarily. The FERC Form 1 data may not include all of the capital
524 additions to test year gross steam plant, in particular some additional environ-
525 mental-control investments that were not yet in service by end-of-the-year 2011.

526 Q: Have you analyzed the energy-related portion of test year steam plant?

527 A: Yes. I compared RMP's total gross steam plant in the test year (including the
528 non-coal Gadsby and Blundell plants) with the total year-end 2011 costs of a
529 representative mix of gas turbines.

530 Q: How did you derive the comparable gas turbine cost?

531 A: I matched each RMP steam plant with Western gas turbines built in the same time
532 period. I calculated the comparable gas-turbine cost as the average cost per kW
533 multiplied by the capacity of the steam plant.

534 I identified 59 simple-cycle combustion turbine (“SCCT”) plants in the
535 western states (Arizona, Colorado, Montana, New Mexico, Nevada, Oregon,
536 Washington, and Wyoming) owned by investor-owned utilities that file the FERC
537 Form 1 for which a current gross-plant value is reported.⁶ For each year’s
538 vintage, I computed the capacity-weighted cost for that year’s SCCT. For
539 PacifiCorp steam plants that entered service in years for which I have no SCCTs
540 added, I interpolated the costs of the last previous SCCT and the next SCCT.

⁶I did not look for California plants, because of the high cost of doing business in California. I also excluded any plants for which I could not distinguish simple-cycle combustion turbine plants from other technologies. In most cases, I had 2011 FERC Form data at 402–403, although in two cases I used 2009 or 2010 FERC Forms. For Sierra Pacific Power’s 1961-vintage Tracy simple-cycle combustion turbine plants (sometimes called Clark Mountain), I used FERC Form data from 1999, the last year before Sierra Pacific added new, larger units to the plant.

541 **Table 4: Cost of Western SCCTs Contemporaneous with PacifiCorp Steam Plants**

Plant	Maximum MW (PacifiCorp Share)	Unit ISD	Contemporaneous Peakers					
			<i>ISDs</i>		Gas \$/kW			
			Start	End	Start Year	End Year	Interpolated	
Gadsby 1	60	1951	1953	1953	186	186	186	
Gadsby 2	75	1952	1953	1953	186	186	186	
Carbon 1	67	1954	1953	1961	186	134	179	
Gadsby 3	100	1955	1953	1961	186	134	173	
Carbon 2	105	1957	1953	1961	186	134	160	
Dave Johnston 1	106	1959	1953	1961	186	134	147	
Dave Johnston 2	106	1961	1961	1961	134	134	134	
Naughton 1	160	1963	1961	1971	134	143	136	
Dave Johnston 3	220	1964	1961	1971	134	143	137	
Hayden 1	45	1965	1961	1971	134	143	138	
Naughton 2	210	1968	1961	1971	134	143	140	
Naughton 3	330	1971	1971	1971	143	143	143	
Dave Johnston 4	330	1972	1972	1972	194	194	194	
Huntington 1	445	1974	1974	1974	179	179	179	
Jim Bridger 1	353	1974	1974	1974	179	179	179	
Jim Bridger 2	353	1975	1974	1976	179	284	231	
Hayden 2	33	1976	1976	1976	284	284	284	
Jim Bridger 3	353	1976	1976	1976	284	284	284	
Huntington 2	450	1977	1977	1977	191	191	191	
Hunter 1	403	1978	1978	1978	213	213	213	
Wyodak 1	280	1978	1978	1978	213	213	213	
Craig 1	83	1979	1979	1979	291	291	291	
Jim Bridger 4	353	1979	1979	1979	291	291	291	
Craig 2	83	1980	1979	1981	291	148	219	
Hunter 2	259	1980	1979	1981	291	148	219	
Cholla 4	380	1981	1981	1981	148	148	148	
Hunter 3	460	1983	1981	1984	148	249	215	
Colstrip 3	74	1984	1984	1984	249	249	249	
Blundell	23	1984	1984	1984	249	249	249	
Colstrip 4	74	1986	1984	1995	249	497	294	
Blundell Bottoming	11	2007	2006	2008	342	664	503	
Total			Total Cost for Contemporaneous SCCTs:				\$1,273M	

542

543 **Q: What were the results of this comparison?**

544 A: For the test year, PacifiCorp reports its total gross steam plant to be \$6.7
545 billion.⁷ Contemporaneous gas turbines would have cost about \$1.27 billion, or
546 just 19% of total steam plant.

547 **Q: Have steam-plant costs been rising recently?**

548 A: Yes. In addition to the investments that would normally be required to extend
549 the lives of aging coal plants, PacifiCorp and other owners of older coal-fired
550 face a range of investments for environmental retrofits, including scrubbers,
551 baghouses, and low-NOx burners. The plant additions in the test year alone
552 amount to \$496 million (Attachment OCS 3.6-2).

553 **Q: How does the addition of pollution controls affect the portion of coal plants
554 that is energy-related?**

555 A: The pollution controls increase the cost of the coal plants, but not the cost of the
556 demand-related peaker equivalent, and thus increase the share of the fixed costs
557 attributable to energy.

558 **Q: Is this result appropriate?**

559 A: Yes. The purpose of pollution controls is to reduce emissions from the coal
560 plants, to allow them to continue burning low-cost coal at high load factors.
561 Peaking units that are only needed in a few high-load hours annually can afford
562 to burn expensive clean fuels, and are often allowed to have higher emission
563 rates, since they operate so little. Hence, need for the pollution controls is driven
564 by the energy-serving function of the coal plants.

⁷I computed this value from the \$2.895 billion in Utah gross steam plant from the cos Study, divided by the 43.1547% SG allocation to Utah in the JAM.

565 **Q: Has the issue of the classification of environmental retrofits been explicitly
566 dealt with in the MSP process or in a Utah proceeding?**

567 A: Not to my knowledge.⁸ The classification of scrubber retrofits represents a new
568 issue that requires Commission consideration.

569 **Q: Are PacifiCorp's projections of new generation plant costs reasonably
570 consistent with your findings from the costs of existing plants?**

571 A: Yes. According to the 2011 Integrated Resource Plan, the lowest-cost new coal
572 plant would be a Utah pulverized coal plant, at fixed costs of \$296/kW-year.
573 Netting out the fixed costs of a frame simple-cycle combustion turbine, at
574 \$89/kW-year, the energy-related fixed cost of the new coal plant would be
575 \$209/kW-year, or 70% of the total fixed cost. PacifiCorp's estimates of the costs
576 of new SCCTs has increased significantly in recent years, and the energy-related
577 share of a new coal plant based on those estimates has therefore declined. While
578 the 70% energy classification of new coal from the IRP generally supports an
579 energy classification much higher than the current 25%, the costs being allo-
580 cated in this proceeding are those of existing plants, not hypothetical new plants.

581 **Q: What do you conclude based on your peaker analysis of steam plant?**

582 A: My computation above supports classification of 80% of steam plant and
583 associated non-fuel expenses as energy-related and 20% as demand-related.

⁸I did address this issue in my testimony in Docket No. 10-035-124. However, the settlement stipulation, which the Commission accepted, made no changes to the COS methodology.

584 b) *Classification and Allocation of Wind Resources*

585 **Q: Should the inter-jurisdictional allocation of generation plant constrain the**
586 **allocation of wind resources?**

587 A: No. Since 2006, PacifiCorp has added a significant amount of wind resources to
588 its resource mix. To my knowledge, the issue of the classification and allocation
589 of wind resources has not been explicitly dealt with in the MSP process.

590 **Q: Has this issue been dealt with in any Utah general rate case?**

591 A: Yes. In Docket No. 09-035-23, Division Witness Joseph Mancinelli recommend-
592 ed that wind-generation costs should be separated out from the remaining
593 generation costs and allocated in the retail COSS based 100% on energy.

594 **Q: What was the Commission's finding in that case?**

595 A: The Commission ordered that the COS Study show a separate accounting for
596 wind investment and related expenses, but retained the use of the F10 allocator.

597 **Q: How should wind resources be classified?**

598 A: I agree with Mr. Mancinelli that wind resources are acquired and built primarily
599 to meet energy needs, and thus should be allocated primarily on energy.
600 However, wind resources do have some capacity value that should be recog-
601 nized for classification purposes.

602 **Q: Has PacifiCorp estimated the capacity value of its wind resources?**

603 A: Yes. According to its 2011 IRP at 87, Tables 5.5 and 5.6), the capacity contribu-
604 tion of PacifiCorp-owned wind plant is 12% and the capacity contribution of
605 PacifiCorp wind purchases and exchanges is 15% of the total nameplate
606 capacities.

607 **Q: Based on PacifiCorp's estimates, how should RMP's wind resources be**
608 **classified?**

609 A: Since wind is twice the price of CTs per kW-year (see 2011 IRP, Table 6.5, Total
610 Fixed Cost column), that means that only 6% of RMP's investment in wind is
611 justified by its reliability contribution. The other 94% is energy-related.

612 c) *Classification of Other Generation Resources*

613 **Q: How should the fixed costs of generation resources other than steam and**
614 **wind be classified between demand and energy?**

615 A: The Company's remaining generation resources are almost all hydro, combined-
616 cycle combustion turbine ("CCCT"), and simple-cycle combustion turbine
617 ("SCCT") plants.

618 For hydro, rather than attempting to determine the demand-related portion
619 of fixed costs of these old plants (mostly from the first half of the 20th century)
620 by comparison with a separate peaking technology, I use the traditional
621 approach of considering the factor that drive the design of hydro plants. It is my
622 understanding that Pacific Power and Light, prior to the 1989 merger, classified
623 its mostly hydro-powered system 50/50 between energy and capacity. This
624 classification makes sense, since the sizing of dams and reservoirs (and the
625 related costs) are driven in large part by the need to store enough water to
626 provide energy for many hours. Only about 20% of PacifiCorp's hydraulic
627 production investment comprises turbines, generators and electric equipment.
628 Some portion of the dams and reservoirs would also be needed to provide
629 capacity. Thus, I use the 50/50 classification for hydro plant.

630 For combined-cycle resources, I used the Utah cost estimates in Tables 6.1
631 and 6.3 of PacifiCorp's 2011 IRP for the least-expensive SCCT and various
632 existing CCCT designs. Table 5 compares the installed cost and total fixed costs

633 for the various Utah combustion turbines.⁹ Depending on the design and
634 measure of cost, 7% to 21% of the CCCT's cost is in excess of the cost of the
635 peaker. Overall, it seems reasonable to assume that the fixed costs of CCCTs are
636 about 10% energy-related, based on PacifiCorp's IRP estimates.

637 **Table 5: Costs of Simple and Combined-Cycle Combustion Turbines**

	Base Capital Cost (\$/kW)	Increase Over Peaker	Total Fixed Cost (\$/kW-yr.)	Increase Over Peaker
<i>SCCT Frame (2 Frame "F")</i>	\$991		\$89.27	
<i>Intercooled Aero SCCT</i>	\$1,174	15.6%	\$111.76	20.1%
<i>CCCT (Wet "F" 1x1)</i>	\$1,181	16.1%	\$112.90	20.9%
<i>CCCT (Wet "F" 2x1)</i>	\$1,067	7.1%	\$98.04	8.9%
<i>CCCT (Dry "F" 2x1)</i>	\$1,104	10.2%	\$102.67	13.1%
<i>CCCT (Wet "G" 1x1)</i>	\$1,117	11.3%	\$100.78	11.4%

638 PacifiCorp's only SCCTs are the Gadsby peakers, which are LM6000
639 SPRINT intercooled aeroderivative gas turbines. Table 5 shows that about 16%–
640 20% of the intercooled aeroderivative plant costs are above the costs of the pure
641 peaking combustion turbine.

642 Even if the Gadsby peakers are treated as entirely demand-related, the
643 weighted average of various components of the hydro, CCCT and SCCT costs are
644 24% to 29% energy-related. See Table 6.

⁹Hermiston and Chehalis appear to be 1×1 CCCTs, while Currant Creek and Lakeside are 2×1 CCCTs.

645

Table 6: Classification of Other Generation Fixed Costs

	Sub-Account	% Energy
<i>Non-Fuel O&M</i>		
Hydraulic	\$20,994,948	50%
CCCT	\$21,153,811	10%
SCCT	\$831,513	
Weighted Average		29%
<i>Depreciation</i>		
Hydraulic	\$11,038,053	50%
CCCT	\$13,579,754	10%
SCCT	\$1,154,626	
Weighted Average		27%
<i>Gross Plant</i>		
Hydraulic	\$364,478,545	50%
CCCT	\$522,079,728	10%
SCCT	\$34,771,758	
Weighted Average		25%
<i>Net Plant</i>		
Hydraulic	\$253,348,365	50%
CCCT	\$439,502,520	10%
SCCT	\$24,252,813	
Weighted Average		24%

646

I therefore conclude that at least 25% of the fixed costs of generation other than wind and steam should be classified as energy-related, which is consistent with PacifiCorp's treatment of these costs.

649

2. *Allocation of Demand-Related Generation Plant*

650 **Q: How does RMP allocate demand-related generation plant?**

651 A: It applies a 12-CP allocator. RMP has changed from a weighted 12-CP allocator
 652 (where the monthly weights are the ratios of monthly system peaks to the annual
 653 system peak) to be consistent with the jurisdictional method.

654 **Q: Do you agree that this change in allocation is appropriate?**

655 A: Yes. The unweighted 12-CP allocator is a better measure of how PacifiCorp
 656 peaks drive investment in G&T.

657 **Q: How does the unweighted 12 CP allocator better reflect cost causation?**

658 A: Weighting CPs by relative monthly peaks incorrectly assumed that the need for
659 and cost of capacity is a simple function of the load at system monthly peak
660 times. The significance of load in any given hour also depends on the following
661 factors:

- 662 • the amount of generation capacity that is *available*, not just installed, to
663 meet load in that hour. Because of forced outages, there are many hours
664 that contribute to the system need for capacity.
- 665 • the scheduling of maintenance outages. PacifiCorp normally schedules
666 generating-unit outages during the fall or spring months. Thus, it must have
667 generation resources to meet demand when some units are unavailable
668 because of scheduled outages in the shoulder periods.
- 669 • the effect of retail load on PacifiCorp's ability to sell capacity in the
670 wholesale market, including in the non-summer months. By reducing
671 PacifiCorp's wholesale sales, the additional load increases net power costs.

672 3. *Treatment of Firm Non-Seasonal Purchases*

673 **Q: How does RMP classify and allocate firm non-seasonal purchases?**

674 A: The Company classifies firm non-seasonal purchases as 75% demand-related
675 and 25% energy-related and allocates each month's cost separately based on
676 class coincident peak and kWh usage in that month.

677 **Q: What costs does the Company's COS Study include in the category of "firm
678 non-seasonal purchases"?**

679 A: As shown in the COS Study Model sheet labeled "NPC," the category is
680 comprised of all purchases except non-firm and seasonal. It consists of the
681 following transactions:

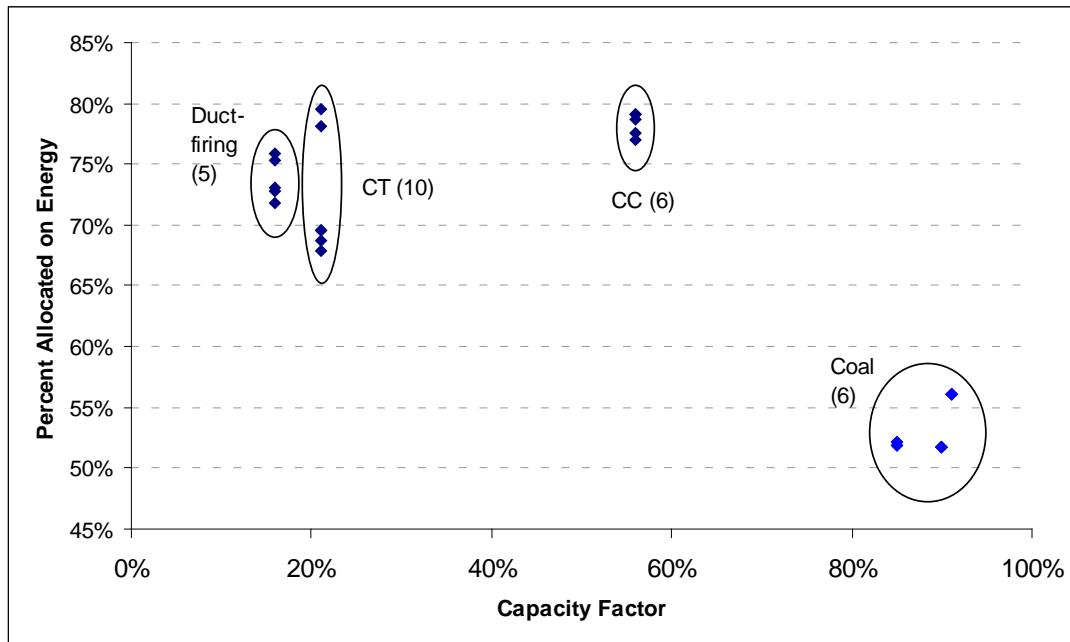
- long-term firm purchases,
- short-term firm purchases,
- storage & exchange,
- system balancing purchases.

The last two transaction categories are clearly 100% energy-related.

Q: Does RMP's COS Study understate the energy-related portion of long term firm purchase costs?

A: Yes. RMP allocates purchases and generation inconsistently. In the case of its own generation plant, RMP treats fuel costs and plant costs separately, and classifies fuel as 100% energy-related, and plant as 75% demand-related and 25% energy-related. However, in the case of firm non-seasonal purchases, RMP does not attempt to separate the variable and fixed components and instead treats all purchases costs as fixed plant costs. As a result, RMP allocates only 25% of all purchase costs, including fuel costs, on energy. This difference is illustrated in Table 7.

Table 7: Share of Cost Allocated on Energy


	Fixed Costs	Fuel and Variable Costs	Total if Half of Cost Is Fuel
<i>Plant</i>	25%	100%	62.5%
<i>Non-Seasonal Purchases</i>	25%	25%	25.0%

Q: How significant is the disparity between RMP's classification of purchases and generation?

A: The disparity is large. From PacifiCorp's 2011 Integrated Resource Plan, I computed the portion of total costs that RMP would allocate on energy for each potential new resource (See Figure 3). The energy-related portion of the costs is the sum of variable costs plus 25% of fixed costs. The portion of generation costs allocated on energy under RMP's current classification and allocation

705 method ranges from 53% for pulverized coal with carbon capture and seque-
706 stration to 61% to 69% for various types of combustion turbines, to 75% for
707 various combined-cycle configurations.

708 **Figure 3: Energy-Related Share of New Resource Costs under the Company's**
709 **Cost-of-Service-Study Approach**

710 **Q: What do you conclude from comparing the classification of purchases**
711 **versus plant resources?**

712 **A:** Reclassification of purchases as 50% demand-related and 50% energy-related
713 would be consistent with RMP's resource mix and current classification methods
714 for generation costs, based on the 75%-demand-to-25%-energy split applied to
715 fixed generation costs and the 100% energy classification of fuel. If the
716 Commission adopts more-realistic classification of plant costs, the classification
717 of purchases should be updated.

718 ***C. Allocation of Service Drops***

719 **Q: How does the Company allocate service lines?**

720 A: The Company allocates service lines on weighted customer number, where the
721 weights are calculated from the cost of a new service by type of customer
722 (Exhibit RMP__(CCP-3), Tab 1, at 9).

723 **Q: Does the derivation of this allocator take into account all of the important
724 cost factors?**

725 A: No. the Company's derivation of the allocator has at least the following two
726 problems:

727 • It ignores the sharing of services by customers in multi-family buildings,
728 • It assumes the same average service length (70 feet) for all rate classes.

729 **Q: How does the allocator ignore sharing of services?**

730 A: It assumes that each residential customer requires its own service line (Paice
731 Direct at 6).

732 **Q: Has RMP confirmed that some residential customers share services?**

733 A: Yes. In his Direct Testimony, Mr. Paice agrees that some residential customers
734 do share service drops. However, RMP has not modified the services allocator to
735 correct this error.

736 **Q: What is the Company's explanation for continuing to rely on an invalid
737 assumption?**

738 A: According to Mr. Paice (Direct at 6), RMP is unable to correct its services
739 allocator because "Company records do not contain data regarding the number
740 of customers per service drop." In addition, in the Company's view (as stated in
741 response to DR OCS 7.6 in Docket No. 10-035-124), a single adjustment for the
742 number of residential services is inappropriate for the following reasons:

743 • Multi-family building service drops are more expensive than single-family
744 services and there are no “clear rules of thumb” for deriving a represent-
745 ative cost figure.

746 • Some general service customers may also share service drops.

747 **Q: Have you estimated what the impact of shared services would be on the**
748 **residential services allocator?**

749 A: Yes, given the data I have available to me. Preliminary results from the 2010
750 Census of Housing indicates that about 29% of housing units in the Utah
751 counties that RMP serves are in multi-family structures.¹⁰ Of those, 13.2% of
752 RMP’s customers live in housing structures with two to nine units, and 11.5%
753 live in structures with more than nine units.

754 Depending on the number of units in each category sharing services, the
755 total number services to residential customers may be 20% less than RMP
756 assumes for allocation purposes. See Table 8.

757 While multiple customers would require larger shared services, this effect
758 offsets only a small part of the reduction in number of services. Table 8 also
759 shows the effect of conservatively high cost multipliers for multi-customer
760 services, using the relative costs of single-phase overhead services from IR OCS
761 3.17. (The cost ratios for underground services are smaller.) With this conser-
762 vative adjustment, the cost of services would be no more than 82.5% of the cost
763 derived from PacifiCorp’s analysis.

¹⁰In calculating the average mix of housing type, I weighted each county’s mix by the number of RMP customers in that county (from OCS 3.18).

764

Table 8: Estimate of Residential Sharing of Service Drops

Units in Structure	Number of Units	Customers per Service	Relative Service Cost
<i>1-unit, detached</i>	509,504	1.00	1.00
<i>1-unit, attached</i>	36,778	0.75	1.075
<i>2 units</i>	29,248	0.50	1.15
<i>3 or 4 units</i>	36,219	0.29	1.44
<i>5 to 9 units</i>	28,405	0.15	1.61
<i>10 to 19 units</i>	31,255	0.07	2.90
<i>20 to 49 units</i>	23,921	0.03	6.65
<i>50 or more</i>	24,063	0.02	6.65
<i>Total RMP housing units</i>	719,392		
<i>Number of residential services</i>		569,982	
<i>Average number of services per residential customer</i>		0.793	
<i>Weighted residential services</i>			593,656
<i>Weighted equivalent serves per residential customer</i>			0.825

765 **Q: Does this result differ much from the results you computed with final 2010
766 Census data?**

767 A: No. The final 2000 Census data on housing structures also produced an estimate
768 of 0.79 services per customer. Using the 2010 data in the calculation has not
769 significantly changed my estimate of average number of services per residential
770 customer.

771 **Q: Does RMP derive all COS Study allocators from actual data in Company
772 records?**

773 A: No. Essentially every allocator in a COS Study is based on estimates or forecasts,
774 including RMP's calculation of the unit cost of a service drop by customer class.

775 **Q: Is your use of census data to derive an adjustment to the number of shared
776 services a reasonable basis for a services allocator?**

777 A: Yes. The use of census housing data is clearly an improvement over RMP's
778 assumption that every residential customer has its own service drop.

779 **D. Summary of Cost-of-Service Corrections**

780 **Q: Please summarize your corrections to the Company's COS Study.**

781 A: Table 9 summarizes the rate-of-return index for each class, for

782 1. the Company's proposed rates and COSS;

783 2. each of the four adjustments I propose in the COSS:

784 • classification of 94% of wind costs as energy-related,

785 • classification of 80% of steam fixed costs as energy,

786 • classification of 50% of purchased power as energy, and

787 • correction of the services allocator to reflect sharing of services, so
788 that the portion of service costs allocated to the residential class is
789 reduced 17.5%;

790 and the combination of my four adjustments.

791 I derived my adjusted results by modifying the COS Allocation Options
792 sheet (and other inputs, as required) in the Company's cost-of-service model.

793 The effect of these four corrections is to raise the residential index from
794 0.93 to 1.03, slightly raise the indices for Schedules 6 and 23, and reduce the
795 indices for all other schedules.

Table 9: Rate-of-Return Index—RMP Proposed and Corrected

Schedule (Number)	RMP Proposed	Adjusted for				Combined
		Wind	Steam	Purchased Power	Shared Services	
<i>Residential (1)</i>	0.93	0.95	0.98	0.95	0.94	1.03
<i>General Service, Large (6)</i>	1.18	1.19	1.20	1.19	1.18	1.20
<i>General Service, Over 1 MW (8)</i>	1.06	1.04	1.01	1.04	1.06	0.98
<i>Street & Area Lighting (7, 11, 12)</i>	1.72	1.62	1.49	1.65	1.72	1.34
<i>General Service, High Voltage (9)</i>	0.77	0.73	0.67	0.73	0.77	0.60
<i>Irrigation (10)</i>	0.79	0.77	0.74	0.77	0.79	0.70
<i>Traffic Signals (15)</i>	1.03	1.00	0.96	1.00	0.94	0.83
<i>Outdoor Lighting (15)</i>	2.65	2.37	2.06	2.50	2.62	1.71
<i>General Service, Small (23)</i>	1.24	1.25	1.27	1.25	1.22	1.27
<i>Customer 1 (SpC)</i>	0.47	0.43	0.36	0.42	0.47	0.28
<i>Customer 2 (SpC)</i>	0.46	0.34	0.14	0.29	0.46	(0.08)

797 **IV. Marginal-Cost Study**798 **Q: What changes did RMP make to the marginal-cost study filed in this case?**

799 A: It appears that the only change since 10-035-124 is an updated estimate of the
 800 customer-related portion of line-transformer costs, which was prepared to
 801 support RMP's customer charge proposal.

802 **Q: Did you review RMP's Marginal Cost Study in Docket No. 10-035-124?**

803 A: Yes.

804 **Q: Have you identified any problems with RMP's estimate of marginal trans-
805 mission costs?**

806 A: Yes. As I discussed in my testimony in Docket No. 10-035-124, the Company
 807 includes less than one third of its projected transmission expenditures as load-
 808 related. While transmission is sometimes required due to drivers not directly
 809 related to load, such as the integration new generation, this ratio of load-related-
 810 to-total generation is very low. In Docket No. 10-035-124, RMP failed to provide
 811 a justification for the exclusion of so much of the planned transmission. Indeed,

812 RMP's discussion of the excluded projects indicated that most of them were
813 related to increasing capacity, and so should be considered load-related.

814 **Q: Are there similar problems in the derivation of marginal distribution costs?**

815 A: Yes. The Company's estimates of marginal distribution pole and conductor costs
816 are not based on a marginal analysis of the investments required per megawatt
817 of load growth, but on the average cost of a developed system, with identical
818 circuits (represented by one "hypothetical" circuit) and balanced loads on each
819 branch of the circuit (Workpaper PC-7 within the Marginal-Cost Study). Since
820 small amounts of load growth can require the addition of a new feeder, the
821 reconductoring of an existing feeder, or an increase in feeder voltage, RMP's use
822 of the average costs of serving a hypothetical system is a poor approximation of
823 marginal costs.

824 In addition, RMP treats the entire cost of single-phase conductors as being
825 customer-related, along with the equivalent cost per mile for the three-phase
826 branch conductors, even though the sizing of single-phase and three-phase
827 conductors is related to load.

828 Similarly, PacifiCorp's estimate of marginal distribution substation costs
829 are not based on the investment over a period of time, divided by the growth of
830 distribution load. Instead, PacifiCorp estimates the marginal cost in dollars per
831 MW by dividing the projected investment by the MVA capacity of the trans-
832 formers added. That assumption understates the marginal substation cost, since
833 substation capacity in MVA is always higher than customer load in megawatts,
834 for the following reasons:

835 • Each MW of customer load imposes more than one MVA of load, unless
836 power factor happens to be 100%.

- There are losses in the distribution system from the customer to the substation.
- Substation transformers come in discrete increments, so each a small increment in load (a megawatt or less) can require the addition of 10 or 20 MVA of substation capacity.
- Substations include back-up capacity, to cover outages of other transformers in the same substation, as well as outages of other transformers and failure along looped feeders.

Based on some regression analysis for line transformers, the Company concluded that only 18% of residential transformer costs are load-related (Workpapers XFMR-1 and 2).

848 Q: What is the basis of RMP's classification of transformer costs into customer
849 and demand components?

850 A: The Company used a regression analysis to estimate the minimum installed cost
851 of a transformer based on the Zero-Intercept Method.

852 Q: Please describe the Zero-Intercept Method.

853 A: The Zero-Intercept Method attempts to extrapolate from the cost of actual
854 equipment (including actual minimum-sized equipment) to the cost of hypotheti-
855 cal equipment that carries zero load, as in 0-kVA transformers. The idea is that
856 this procedure identifies the amount of equipment required to connect existing
857 customers, even if they had virtually no load.

858 Q: Can the Zero-Intercept Method be relied on to determine the customer-
859 related portion of transformers?

860 A: No. A system designed to connect customers but provide zero load would look
861 very different from the existing system.

862 A zero-capacity electric system would not use the overlapping primary and
863 secondary systems and line transformers that the real system uses. A system
864 with very low loads would use a single distribution voltage, eliminating the need
865 for most or all line transformers. Traditional copper telephone distribution
866 systems, for example, serve many thousands of customers without comparable
867 step-down transformers.

868 In reality, the number of transformers, as well as their size, is determined
869 by load.

870 The zero-intercept method is so abstract that it can be interpreted in many
871 ways, and can produce a wide range of results. Any use of this method must be
872 grounded in a firm understanding of the purpose and conceptual framework for
873 defining a zero-intercept.

874 **Q: How did the Company apply the Zero-Intercept Method?**

875 A: The Company used a regression analysis to estimate a relationship between
876 transformer size (kVA) and installed cost. By extrapolating from the regression
877 line to the zero intercept, the Company determined the hypothetical total “cost”
878 of all zero-kVA transformer to be \$3,625.25 times the number of residential
879 transformers, assuming that each zero-intercept transformer would serve only
880 6.07 residential customers.¹¹

881 **Q: Assuming line transformers *would* be installed in a very-low-usage system,
882 has RMP properly interpreted the results of its regression analysis?**

883 A: No, for several reasons. First, the regression results do not make sense. The
884 zero-intercept exceeds the cost of a quarter of all transformers and a third of all

¹¹Since this estimate is based on the Company’s estimate of the cost of new transformers, the Company adjusts the customer-related portion so the total transformer cost is consistent with the residential allocation in the COS Study.

885 single-phase transformers in the regression data set. RMP's estimate of the
886 customer-related portion of transformer costs assumes that the hypothetical
887 utility would install zero-capacity transformers to serve zero-load customers that
888 cost 27% more than 10 kVA transformers and 16% more than non-pad-mounted
889 25 kVA transformers (Attachment OCS 3.38).

890 Second, the Company assumes that the zero-kVA transformer could serve
891 only 6 customers with zero load. If the customers all had zero loads, there would
892 be virtually no limit on the number of customers that could be reached by lines
893 from a single transformer.

894 **Q: Have you identified specific problems with RMP's transformer regression
895 analysis?**

896 A: Yes. The regression analysis that RMP used to estimate the zero intercept (docu-
897 mented in Attachment OCS 3.38) has at least the following problems:

- 898 • The regression is based on synthetic data, rather than the actual installed
899 cost of actual individual transformer equipment.
- 900 • The "data set" includes three-phase transformers that are not used to serve
901 residential customers and do not belong in an analysis of residential trans-
902 former costs. Of the 24 transformer sizes and types represented in the "data
903 set" only ten, at most, are used for residential purposes.

904 **Q: In what way is the regression analysis based on a synthetic data set?**

905 A: The regression "data set" appears to consist of 24 numbers, each of which
906 represents some sort of estimate of installed cost by size and type of transformer.
907 By relying on averages and simple formulas, the analysis has removed from the
908 data set most of the cost variation that is supposed to be dealt with in a statistical
909 analysis.

910 Then, without actually adding pertinent information, the Company in-
911 creases the number of “observations” from 26 to 4,499. It does so by treating
912 each of the 24 “data points” as though it represents many transformers of a
913 single size at the same cost.

914 **Q: Does RMP’s Marginal-Cost Study provide any useful guidance for rate**
915 **design?**

916 A: Yes. Since the study is likely to have understated the cost of load growth, RMP’s
917 estimates of marginal energy cost plus demand cost provide a minimum target
918 for the tail block charges of non-demand rate schedules. The actual marginal
919 demand costs may be greater.

920 The estimate of marginal customer costs, on the other hand, is not valid
921 and should not be relied upon in setting the level of the residential customer
922 charge.

923 **V. Recommendations**

924 **Q: Please summarize your recommendations regarding the load data used in**
925 **the Company’s COS Study**

926 A: I recommend that the Commission order the Company to eliminate its calibra-
927 tion of load data. Instead of calibration, I recommend that the Company modify
928 its load research methods to reduce inconsistencies in its approach to forecasting
929 jurisdictional and retail-class peaks. In particular, RMP should take the following
930 steps:

931 • base both the jurisdictional and the retail class energy and peak forecasts
932 on weather-normalized load data,
933 • estimate the losses included in Utah for the JAM that may be due to whole-
934 sale transactions and interstate transfers,

935 • develop normalized long-term estimates of irrigation loads.

936 **Q: Please summarize your recommendations regarding COS-Study classifica-**
937 **tion and allocation.**

938 A: I recommend that the Commission endorse the following changes in the Cost-
939 of-Service Study:

- 940 • classify at least 80% of steam plant and associated expenses as energy-
941 related,
- 942 • classify 94% of wind plant and associated expenses as energy-related,
- 943 • classify at least 25% of other resources (SCCT, CCCT, and Hydro) and
944 associated expenses as energy-related,
- 945 • classify at least 50% of non-seasonal firm purchases as energy-related,
- 946 • recognize the sharing of service drops by residential customers in multi-
947 family dwellings.

948 I also recommend that the Commission accept the allocation demand-
949 related generation plant on an unweighted 12-CP factor, an improvement the
950 Company has introduced in this current filing.

951 **Q: Please summarize your recommendations concerning residential rate**
952 **design.**

953 A: The marginal-energy-plus-demand-cost estimates included in the Company's
954 Marginal-Cost Study provide a reasonable minimum target for the tail-block
955 charge for the residential class. However, the Company's estimate of marginal
956 customer costs is not valid and should not be relied upon in setting the level of
957 the residential customer charge.

958 **Q: Does this conclude your testimony?**

959 A: Yes.