Sophie Hayes (12546) Utah Clean Energy 1014 2nd Ave. Salt Lake City, UT 84103 801-363-4046 *Attorney for Utah Clean Energy*

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

1

Renewable Avoided Costs Methodology for	DOCKET NO. 12-035-100 Utah Clean Energy Exhibit 4.0(D)
---	---

DIRECT TESTIMONY OF SARAH WRIGHT ON BEHALF OF UTAH CLEAN ENERGY

[METHODOLOGY PROCEEDING]

March 29, 2013

RESPECTFULLY SUBMITTED, Utah Clean Energy

Sophie Hayes Attorney for Utah Clean Energy

1 INTRODUCTION

2	Q:	Please state your name and business address.
3	A:	My name is Sarah Wright. My business address is 1014 2 nd Ave, Salt Lake City, Utah
4		84103.
5	Q:	Did you file Direct, Rebuttal, and Surrebuttal Testimony on behalf of Utah Clean
6		Energy in the first phase of this docket (regarding the proposed stay of the avoided
7		costs methodology)?
8	A:	Yes.
9	Q:	Please review your professional experience and qualifications.
10	A:	I am the founder and director of Utah Clean Energy. Through my work with Utah Clean
11		Energy over the last 11 years, I have been involved in a number of regulatory dockets,
12		including Integrated Resource Planning, rate cases, tariff filings, and other dockets
13		relating to energy efficiency, renewable energy, and net metering. I serve on Rocky
14		Mountain Power's DSM Steering Committee and both Rocky Mountain Power's and
15		Questar Gas Company's DSM Advisory Committees.
16		I have over ten years of energy policy experience working on state, local, and national
17		energy policy, providing expertise and policy support for renewable energy and energy
18		efficiency. I have served on numerous energy policy working groups and taskforces,
19		including the Energy Efficiency and Energy Development Committees supporting
20		Governor Herbert's Energy Task Force and Ten Year Energy Plan; the Governor's Utah
21		Renewable Energy Zone Task Force; Governor Huntsman's Energy Advisory Council
22		and Blue Ribbon Climate Change Advisory Council; Utah's Legislative Energy Policy
23		Workgroup, and Salt Lake City's Climate Action Task Force. I also served on the State

24		of Utah, Division of Air Quality PM2.5 State Implementation Plan workgroup. Currently,
25		I serve on the Board of Directors for Interwest Energy Alliance and the Interstate
26		Renewable Energy Council Regulatory Advisory Board for the US Department of Energy
27		Sunshot Initiative.
28		For15 years prior to founding Utah Clean Energy, I was an occupational health and
29		environmental consultant working on occupational health and ambient air quality issues
30		for a wide variety of commercial, industrial, and governmental clients across the west.
31		I have a BS in Geology from Bradley University in Peoria, Illinois and a Master of
32		Science in Public Health from the University of Utah in Salt Lake City.
33		
34	Ovei	RVIEW AND CONCLUSIONS
35	Q:	What is Utah Clean Energy's interest in this phase of this docket?
	-	
36	A:	Utah Clean Energy strives to create a safer, more efficient, cleaner, and smarter energy
36 37		Utah Clean Energy strives to create a safer, more efficient, cleaner, and smarter energy future. We enable increased utilization of energy efficiency, distributed generation, and
37		future. We enable increased utilization of energy efficiency, distributed generation, and
37 38		future. We enable increased utilization of energy efficiency, distributed generation, and utility-scale renewable energy. The Public Utility Regulatory Policy Act (PURPA) is an
37 38 39		future. We enable increased utilization of energy efficiency, distributed generation, and utility-scale renewable energy. The Public Utility Regulatory Policy Act (PURPA) is an important mechanism for facilitating renewable energy development in Utah. Indeed, as
37 38 39 40		future. We enable increased utilization of energy efficiency, distributed generation, and utility-scale renewable energy. The Public Utility Regulatory Policy Act (PURPA) is an important mechanism for facilitating renewable energy development in Utah. Indeed, as state renewable portfolio standards are met, PURPA's ability to encourage renewable
37 38 39 40 41		future. We enable increased utilization of energy efficiency, distributed generation, and utility-scale renewable energy. The Public Utility Regulatory Policy Act (PURPA) is an important mechanism for facilitating renewable energy development in Utah. Indeed, as state renewable portfolio standards are met, PURPA's ability to encourage renewable energy development will become more and more critical for diversifying utility resource
 37 38 39 40 41 42 		future. We enable increased utilization of energy efficiency, distributed generation, and utility-scale renewable energy. The Public Utility Regulatory Policy Act (PURPA) is an important mechanism for facilitating renewable energy development in Utah. Indeed, as state renewable portfolio standards are met, PURPA's ability to encourage renewable energy development will become more and more critical for diversifying utility resource mixes and reducing our reliance on fossil fuels. Utah Clean Energy's interest in this
 37 38 39 40 41 42 43 		future. We enable increased utilization of energy efficiency, distributed generation, and utility-scale renewable energy. The Public Utility Regulatory Policy Act (PURPA) is an important mechanism for facilitating renewable energy development in Utah. Indeed, as state renewable portfolio standards are met, PURPA's ability to encourage renewable energy development will become more and more critical for diversifying utility resource mixes and reducing our reliance on fossil fuels. Utah Clean Energy's interest in this docket is to facilitate beneficial renewable energy development in Utah through

47		fossil-fueled resources, the reluctance of traditional utilities to purchase electricity from
48		small power producers, and the resulting need to encourage small power production
49		through laws and regulations. Furthermore, although natural gas prices are currently low,
50		the objective of relying less on fossil-fueled resources is critical for Utah, given the
51		contribution of fossil fuels to climate change, uncertainties around coal plant retirements,
52		as well as the risks of fuel price volatility and heavy reliance on a non-diverse resource
53		mix.
54	Q:	What is the purpose of your direct testimony?
55	A:	I will respond to the Company's witnesses, Gregory N. Duvall and Paul H. Clements. I
56		will also make recommendations for avoided costs pricing for renewable QFs.
57	Q:	What is the Company's proposal for avoided cost pricing for renewable QFs?
58	A.	The Company proposes to eliminate the IRP-based, wind-specific pricing methodology
59		(Market Proxy method), use the Proxy/PDDRR method for all resources-utilizing the
60		2010 wind integration study for both solar and wind resources, change the capacity value
61		calculation (used in the IRP as well as avoided cost calculations), and keep all RECS
62		associated with QF development. Specifically, the issues RMP wants addressed are the
63		following:
64		1. Whether the Market Proxy method continues to produce avoided costs that are in
65		the public interest, including:
66		a. The definition of the IRP target;
67		b. The timing of the need for renewable resources; and
68		c. The treatment of resources acquired for RPS compliance in other states.
69		2. Proxy/PDDRR method for renewable QFs, including:

70		a. The capacity value of variable resources;
71		b. The type of resource deferred; and
72		c. Integration costs.
73		3. The ownership of RECs from renewable QFs under the Proxy/PDDRR method,
74		including the right of a QF to buy back RECs and the associated price.
75	Q.	What of these issues will you be addressing in your testimony?
76	A.	I will address all three of these issues. I also address the high level of risk and uncertainty
77		that utilities, utility planners, and utility regulators face at this time regarding fuel costs,
78		greenhouse gases and climate changes, and the implicit risk these put on ratepayers. I
79		argue that avoided costs should include, in addition to energy and capacity payments,
80		payments for avoidable costs associated with the Company's resource decisions.
81	Q.	Please summarize your conclusions.
81 82	Q. A.	Please summarize your conclusions. I make the following conclusions and recommendations:
82		I make the following conclusions and recommendations:
82 83		I make the following conclusions and recommendations:Proper implementation of PURPA is as important now as it was when the law was
82 83 84		 I make the following conclusions and recommendations: Proper implementation of PURPA is as important now as it was when the law was passed. There are significant costs and risks associated with climate change and
82 83 84 85		 I make the following conclusions and recommendations: Proper implementation of PURPA is as important now as it was when the law was passed. There are significant costs and risks associated with climate change and heavy reliance on fossil-fueled resources and front office transactions that are
82 83 84 85 86		 I make the following conclusions and recommendations: Proper implementation of PURPA is as important now as it was when the law was passed. There are significant costs and risks associated with climate change and heavy reliance on fossil-fueled resources and front office transactions that are important to consider when evaluating avoided cost pricing.
82 83 84 85 86 87		 I make the following conclusions and recommendations: Proper implementation of PURPA is as important now as it was when the law was passed. There are significant costs and risks associated with climate change and heavy reliance on fossil-fueled resources and front office transactions that are important to consider when evaluating avoided cost pricing. Appropriately pricing electricity from renewable energy QFs is critical because
82 83 84 85 86 87 88		 I make the following conclusions and recommendations: Proper implementation of PURPA is as important now as it was when the law was passed. There are significant costs and risks associated with climate change and heavy reliance on fossil-fueled resources and front office transactions that are important to consider when evaluating avoided cost pricing. Appropriately pricing electricity from renewable energy QFs is critical because those resources can mitigate the costs and risks associated with traditional

92		Company would incur, absent QF generation, based on the risk profile and cost
93		impacts of its resource procurement decisions.
53		impacts of its resource procurement decisions.
94		• The Market Proxy method is still a sound avoided cost pricing methodology and
95		should be used in the event that the Company's integrated resource plan selects
96		renewable resources. I recommend a number of different alternative sources of
97		market proxy cost information, including the Company's IRP.
98		• The Company's proposed Proxy/PDDRR method results in "bare-bones" avoided
99		cost pricing that does not reflect true capacity value or actually avoidable costs
100		provided by renewables QFs. I recommend use of a modified Proxy/PDDRR
101		method when renewable resources are not selected in the Company's IRP
102		preferred portfolio.
103		• I recommend that the Company utilize its most recent wind integration study for
104		calculating wind integration costs. Solar should not be charged an integration
105		cost.
106		• QFs should keep RECs associated with their renewable electricity production.
107		
108	Avoi	DED COSTS SHOULD INCLUDE RISK-ASSOCIATED AVOIDABLE COSTS
109 110	Q.	What is Utah Clean Energy's position regarding appropriate avoided cost pricing?
111	А.	Avoided costs should maintain ratepayer neutrality and not discriminate against QFs.
112		"Avoided costs" does not necessarily mean the most stripped, barest costs the Company
113		can estimate it will avoid. Rather, avoided costs should be a reflection of actually
114		avoidable costs, including costs the Company would otherwise incur in the absence of QF
115		generation, based on the risk profile of its resource procurement decisions.

- 116 Q. Why is risk relevant to avoided cost pricing?
- A. Although avoided cost pricing explicitly includes compensation for avoided energy and
 capacity costs, these are not the only costs a utility avoids by purchasing electricity from
 a renewable QF. There are significant risk-associated costs that are avoidable through
 renewable QF electricity purchases.

121 Q. What risk-associated costs are avoidable through renewable QF purchases?

- A. Renewable QFs offer many risk mitigating benefits to ratepayers. Utilities purchase
- electricity from renewable QFs through typically long-term power purchase contracts.
- Because energy resources such as wind, solar, and geothermal have no fuel costs and do
- not emit pollution or greenhouse gasses, renewable QFs provide valuable long-term risk
- 126 mitigation against rising fuel costs, fuel price volatility, environmental compliance costs,
- 127 potential carbon regulation costs, and the actual costs of a changing climate.
- 128 Risks associated with rising fuel costs and fuel price volatility have actual costs
- associated with them—costs that are avoidable by displacing or deferring fossil-fueled
- 130 generation through purchases from renewable QFs. Similarly, environmental and carbon
- regulations impose real but avoidable costs on ratepayers. And although the costs of
- addressing our changing climate are increasing, we may still avoid costs associated with
- 133 climate impacts affecting electricity generation. Avoided cost rates for purchasing
- electricity from renewable QFs should include these avoidable costs.
- 135 If we fail to pay renewable QFs for their full capacity value, long-term hedge value, and 136 avoided environmental costs, and instead pay only for thermal-resource valued energy,
- 137 we will miss important opportunities to mitigate costly risks in a responsible manner for

138		ratepayers. By purchasing renewable electricity from QFs, the utility not only avoids risk
139		by investing in fuel-free electricity generation, but by diversifying its resource portfolio.
140	<u>Avoic</u>	lable climate change costs
141	Q.	Please describe costs of climate change associated with fossil-fueled resources.
142	A.	With regard to climate change, electricity generation is the largest source of greenhouse
143		gas emissions in the United States. 32% of US greenhouse gas emissions are a result of
144		fossil-fueled electricity generation. ¹
145		Americans are already incurring significant costs due to climate change. ² The impacts of
146		climate change are occurring faster than scientific models have predicted. ³ Although
147		scientists are reluctant to relate a single weather event specifically to climate change, the
148		frequency of costly weather related storms is increasing dramatically and systemically
149		due to climate change. ⁴ Weather events in 2011 and 2012 were the most extreme on
150		record. The National Oceanic and Atmospheric Administration (NOAA) keeps a record
151		of extreme weather events with cost impacts over \$1 billion: economic losses due to the
152		11 most costly weather events in 2012 have not been finalized, but in 2011, there were 14

¹ *Climate Change Indicators in the United States, 2012*, U.S. EPA, December 2012, 13, available at: <u>http://www.epa.gov/climatechange/science/indicators/download.html</u>.

² See, e.g., Coral Davenport, *The Scary Truth About How Much Climate Change is Costing You*, The National Journal (February 17, 2013), available at: <u>http://www.nationaljournal.com/member/magazine/the-scary-truth-about-how-much-climate-change-is-costing-you-20130207</u>.

³ See, e.g. Heather Stewart and Larry Elliot, *Nicolas Stern: 'I got it* Wrong *on Climate Change—It's Far Worse*,' The Observer (January 26, 2013), available at: <u>http://www.guardian.co.uk/environment/2013/jan/27/nicholas-stern-climate-change-davos</u>.

⁴ Scientists point out that natural climate variability plays a role in extreme weather events; however, scientists also explain that the backdrop of global warming caused by humanity's greenhouse gas emissions makes weather extremes more likely. For an entertaining illustration of this concept, see a short video comparing climate change to steroids in baseball, available at <u>https://www2.ucar.edu/atmosnews/attribution/steroids-baseball-climate-change</u>.

153	events that each cost over a billion dollars, at a cost of \$60.6 billion in economic losses. ⁵
154	In 2012, Congress allocated \$61 billion just to deal with superstorm Sandy. ⁶ The
155	Government Accounting Office recently added climate change to its "high risk list" of
156	significant federal government financial risk exposure. ⁷
157	With specific regard to Utah and PacifiCorp's service territory, there are observed
158	climate change indicators that are particularly significant. For example, unusually hot
159	summer days have become more common (and the occurrence of unusually hot summer
160	nights has increased even more); more precipitation is falling in the form of rain than
161	snow, which impacts snow cover, snow pack, streamflows, and run-off; the largest
162	observed decreases in snow pack are in Oregon, Washington, and Northern California;
163	low stream flows in the Pacific Northwest have decreased (streams carry less water);
164	winter stream run-off is happening earlier; and droughts have increased due to reduced
165	snow pack and snow cover. ⁸ Each of these has impacts on PacifiCorp's electricity
166	generation, including its significant hydropower resources, as well as its thermal
167	resources (which rely on water for cooling). These changes are projected to increase,
168	with increasingly costly impacts to the Company's ratepayers.
169	According to the recently released Federal Advisory Committee Draft Climate

http://www.gao.gov/highrisk/limiting_federal_government_fiscal_exposure.

⁵ NOAA National Climatic Data Center's Billion Dollar Weather/Climate Disasters database, available at: <u>http://www.ncdc.noaa.gov/billions/events</u>.

⁶ See, e.g., Coral Davenport, *The Scary Truth about How Much Climate Change is Costing You*, The National Journal (February 17, 2013), available at: <u>http://www.nationaljournal.com/member/magazine/the-scary-truth-about-how-much-climate-change-is-costing-you-20130207</u>.

⁷ Limiting the Federal Government's Fiscal Exposure by Better Managing Climate Change Risks, Government Accountability Office (2013), available at:

⁸ *Climate Change Indicators in the United States, 2012*, U.S. EPA, December 2012, *passim*, available at: <u>http://www.epa.gov/climatechange/science/indicators/download.html</u>.

170	Assessment Report, ⁹ there is "high confidence" that the following climate change impacts
171	in the Southwest region will increase:
172	• Snowpack and streamflows are projected to decline, decreasing water supply
173	for cities, agriculture, and ecosystems ¹⁰ ;
174	• Increased warming, droughts, insect infestations, tree death, and fuel
175	accumulation will increase wildfires, increasing risk to communities and
176	infrastructure across extensive areas ¹¹ ;
177	• Higher temperatures in cities will exacerbate health threats as well as increase
178	risk of disruptions to urban infrastructure, electricity generation, and water
179	supplies; ¹²
180	• Surface and groundwater supplies are already affected and are expected to be
181	reduced further by declining runoff and groundwater recharge trends,
182	increasing the likelihood of water shortages for many off-stream and in-stream
183	water uses ¹³ ; and
184	• Utah and the upper Midwest are projected to have the highest temperature
185	increases in the United States under any emission scenario (see Figure 1). ¹⁴
186	

⁹ Draft Climate Assessment Report, National Climate Assessment and Development Advisory Committee (January 2013), available at: <u>http://ncadac.globalchange.gov/</u>.

¹⁰ Draft Climate Assessment Report, National Climate Assessment and Development Advisory Committee (January 2013), 687, available at: <u>http://ncadac.globalchange.gov/</u>.

¹¹ Draft Climate Assessment Report, National Climate Assessment and Development Advisory Committee (January 2013), 687, available at: <u>http://ncadac.globalchange.gov/</u>.

¹² Id.

¹³ *Id.* at 108.

¹⁴ *Id.* at

Figure 1 187 Source: Draft Climate Assessment Report, National Climate Assessment and Development 188 Advisory Committee (January 2013), 38, available at: http://ncadac.globalchange.gov/. 189 Caption: The largest uncertainty in projecting future climate change is the level of emissions. The most recent model projections (shown [below]) take into account a wider range of options with regard to human behavior; these include a lower emissions scenario (RCP 2.6, top left) than has been considered before. This scenario assumes rapid reductions in emissions - more than 70% cuts from current levels by 2050 – and the corresponding smaller amount of warming. On the high end, they include a scenario that assumes continued increases in emissions (RCP 8.5, bottom right) and the corresponding greater amount of warming. On the high end, they include a scenario that assumes continued increases in emissions (RCP 8.5, bottom right) and the corresponding greater amount of warming. Also shown are temperature changes (°F) for the intermediate scenarios RCP 4.5 (top right, which is most similar to B1) and RCP 6.0 (bottom left, which is most similar to A1B; see the Appendix.) Projections show change in average surface air temperature in the later part of this century (2071-2099) relative to the late part of the last century (1971-2000). (Figure source: NOAA NCDC / CICS-NC. Data from CMIP5.)

BOX: Newer Simulations for Projected Temperature (CMIP5 models)

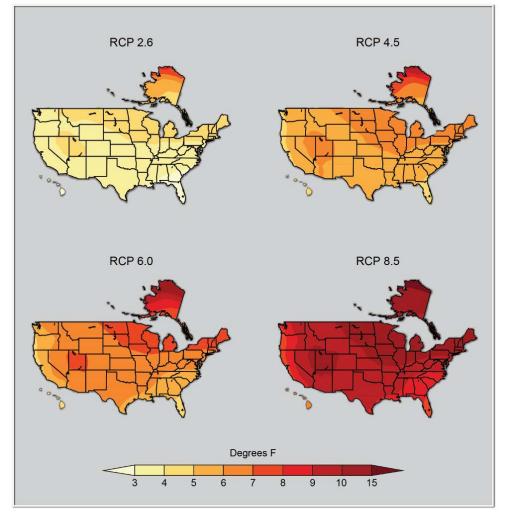


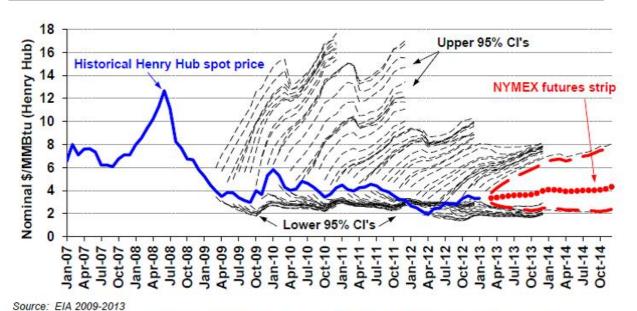
Figure 2.8:

190		
191		With specific regard to electricity generation, the Draft Report notes:
192		• "Power plant cooling is expected to be affected by changes in water supply
193		availability in areas where surface water supplies are diminishing and by
194		increasing water temperatures. Higher water temperatures affect both the
195		effectiveness of electric generation and cooling processes and the ability to
196		discharge heated water to streams from once-through cooled power
197		systems." ¹⁵
198		• "Hydropower contributes up to 60% to 70% in the Northwest
199		Climate change is expected to affect hydropower <i>directly</i> through changes in
200		runoff and <i>indirectly</i> through increased competition with other water
201		uses." ¹⁶
202		Furthermore, extreme weather events (which are projected to increase) will disrupt
203		energy supply, wildfires will disrupt energy transmission, higher summer temperatures
204		will increase energy demand, and changes in water availability will constrain energy
205		production. ¹⁷
206	Q.	How do purchases from renewable QFs help avoid costs associated with climate
207		change?
208	A:	Fuel free renewable energy sources offer an important means to reduce greenhouse gas
209		emissions and contribute to climate stabilization. Importantly, renewable resources also

¹⁵ Draft Climate Assessment Report, National Climate Assessment and Development Advisory Committee (January 2013), 122, available at: <u>http://ncadac.globalchange.gov/</u>.

¹⁶ *Id.* at 124.

¹⁷ *Id.* at 167-183.


210		mitigate costs associated with heavy reliance on fossil fuels. For example, the draft NCA
211		report illustrates how renewable resources mitigate costs associated with climate impacts:
212		The Southwest's abundant geothermal, wind, and solar power-generation
213		resources could help transform the region's electric generation system into one
214		that uses substantially more renewable energy. This transformation has already
215		started, driven in part by renewable energy portfolio standards adopted by five of
216		six Southwest states, and renewable energy goals in Utah As the regional
217		climate becomes hotter and, in parts of the Southwest, drier, there will be less
218		water available for the cooling of thermal power plants, which use about 40% of
219		the surface water withdrawn in the U.S. The projected warming of water in rivers
220		and lakes will reduce the capacity of thermal power plants, especially during
221		summer when electricity demand skyrockets. Wind and solar photovoltaic
222		installations could substantially reduce water withdrawals. A large increase in the
223		portion of power generated by renewable energy sources may be feasible at
224		reasonable costs and could substantially reduce water withdrawals. ¹⁸
225		
226	Avoi	dable fuel risk mitigation costs
227	Q.	Please describe risks associated with fuel prices.
228	A.	Currently, natural gas prices are at historic lows, thanks to horizontal drilling and
229		fracking technologies that have "unlocked" shale gas. This has led to a boom in supply
230		and an increase in natural gas-fired electricity generation, as well as a switch from coal to
231		gas. Given these low cost projections, it is likely that more and more electricity
232		generation will be gas-fired. Although gas prices are projected to remain low for several
233		years, forward price curves nevertheless all slope inexorably upward. Natural gas prices
234		are typically very volatile and hard to lock in over longer terms. Additionally, with no
235		significant room to decrease, risk associated with natural gas prices is asymmetrical,
236		being skewed to the upside because prices have almost nowhere to go but up.

¹⁸ Draft Climate Assessment Report, National Climate Assessment and Development Advisory Committee (January 2013), 692, available at: <u>http://ncadac.globalchange.gov/</u> (citations omitted).

238

Figure 2 Source: Mark Bolinger, *Revisiting the Long Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices* (LBNL, March 2013), available at <u>http://emp.lbl.gov/sites/all/files/lbnl-6103e.pdf</u>.

²³⁹

Some risks associated with natural gas are price volatility, price increases, and a tendency
to reduce resource diversity by heavy reliance on natural gas.

242 These risks are exacerbated by other factors that are less well-known: increased supply of

- 243 natural gas may lead the United States to export into the global market, which would
- have the impact of raising prices; there is an insufficient track record for fracking, but
- some evidence is starting to show that shale wells may deplete more rapidly than
- expected or that costs to recover additional gas over time will be greater than expected[;]
- and because of concerns over environmental/water impacts of fracking, as well as
- 248 mounting evidence of alarming levels of fugitive methane emissions (that counteract any

Figure 6. History of 95% Confidence Intervals Around Natural Gas Futures Strip

- greenhouse gas emission benefit natural gas has over coal), new environmentalregulations could also increase costs.
- 251 Q. How do purchases from renewable QFs help avoid fuel risk?
- A. Purchases from renewable QFs avoid fuel price risk both by diversifying a utility's
- resource mix and by locking in stable prices over long terms. Although utilities can
- 254 mitigate fuel price risk through conventional hedging instruments, there is generally no
- 255 market for hedging arrangements longer than five years, ten at the most. On the other
- hand, renewable power purchase agreements are generally long term (20 year- or more)
- 257 contracts with either flat or decreasing prices (many renewable PPAs do not include
- escalators for inflation, the result being declining energy prices in real terms over the
- contract term). A diverse resource mix is less vulnerable to changing circumstances than
- 260 one heavily dependent on a single resource.

261 Q. What is your recommendation for avoidable risk-associated costs?

- A. Below, in response to the Company's issues, I recommend that renewable QFs receive
- 263 compensation for avoided risk-associated costs.
- 264

ISSUE 1: WHETHER THE MARKET PROXY METHOD CONTINUES TO PRODUCE AVOIDED COSTS THAT ARE IN THE PUBLIC INTEREST

- 267
- 268 Q. What is UCE's position regarding the Market Proxy method?
- A. The Market Proxy method is a sound method, based on least cost, least risk planning;
- however, Utah Clean Energy is concerned that, given current planning and modeling

271		assumptions—for example, low gas prices, carbon costs that are low and start late, ¹⁹
272		projected discontinuance of renewable energy incentives, ²⁰ and a proposed changed
273		capacity valuation methodology-the IRP is unable to recognize the long-term risk
274		mitigation benefits of renewable resources. As a result, portfolio development results call
275		for new resources (excluding DSM) composed 94%-97% of new gas resources and front
276		office transactions (FOTs), ²¹ which is risky given current low natural gas price
277		projections.
278	Q.	Mr. Duvall states that the Market Proxy method is no longer in the public interest
278 279	Q.	Mr. Duvall states that the Market Proxy method is no longer in the public interest due to the flawed definition of the IRP target and the impact of the timing of the
	Q.	
279	Q.	due to the flawed definition of the IRP target and the impact of the timing of the
279 280	Q. A:	due to the flawed definition of the IRP target and the impact of the timing of the need for new resources. (Direct Testimony of Greg Duvall, lines 78-80) Do you
279 280 281	-	due to the flawed definition of the IRP target and the impact of the timing of the need for new resources. (Direct Testimony of Greg Duvall, lines 78-80) Do you agree with his assessment?

¹⁹ PacifiCorp's assumptions for greenhouse gas regulations have also changed significantly since the 2011 IRP. While the impacts of climate change are becoming more pronounced and the costs of adapting and responding to extreme weather-related events rises, the estimated cost of greenhouse gas regulation has decreased from the 2011 IRP to the current IRP, and the start time for a cost on carbon is delayed five to seven years compared to the assumptions in the 2011 IRP.

²⁰ Natural gas price assumptions are likely the biggest reason for a lack of selected renewable resources, but another driver of the IRP's reliance on natural gas and front office transactions could be the assumption about the expiration of federal incentives for renewable energy. Only one of the IRP Core Cases assumed the continuation of the renewable energy Production Tax Credit (PTC) past 2012 and the extension of the 30% Investment Tax Credit for solar past 2016. Ending the production tax credit for wind adds about \$28/MWh to the cost of a wind project, while the elimination of the tax credit for solar adds about 30% to the cost of a solar project. Core Case C-18 assumed the PTC and ITC were extended out to 2019. However, I find the results of the resulting portfolios intriguing: wind is added in 2020 and beyond, but not before (while the PTC is still in effect). It appears that the model has other constraints, perhaps transmission or otherwise, that make it choose to wait a year and pay \$28 more per MWh of wind, instead of building with the benefit of the PTC. Furthermore, the draft preferred portfolio is derived from a case where the Company is assuming "base case" regional haze requirements. If the requirements are more stringent, more coal plant retirements may be necessary, and ratepayers could be relying even more heavily on the market.

²¹ The bulk of the remaining 3 to 6 percent is Utah's distributed solar incentive program.

285		regardless of timing. There are good reasons to acquire renewable resources earlier,
286		particularly since ratepayers are on the hook for net power cost increases through the
287		energy balancing account, including the following: to take advantage of federal
288		incentives (the PTC and ITC), to secure optimal resource sites, to hedge against reliance
289		on market purchases and fuel price risk. ²²
290	Q.	Are you proposing use of the Market Proxy or Proxy/PDDRR method in this
291		docket?
292	A.	I recommend that we use a modified Market Proxy method, when renewables are
293		included in the preferred portfolio in the IRP and the Proxy/PDDRR method with
294		modifications when renewable energy is not included in the IRP.
295	Q.	Mr. Duvall questions whether the market proxy should be used when the
296		renewables in the IRP are used solely for compliance purposes in states other than
297		Utah. What are your thoughts on this issue?
298	A.	Whether or not renewable resources are added solely for compliance purposes should be
299		determined in the IRP docket after a thorough review of costs and risks. If the
300		Commission determines that renewables are added only for compliance purposes, then I
301		would agree with Mr. Duvall that the Proxy/PDDRR method, with my proposed
302		modifications, should be used.
303		

²² In PacifiCorp's draft preferred portfolio EG-2 C07, front office transactions range from 650 MW in 2013 to over 1400 MW over the planning horizon, with 16 of the 20 years relying on over 1000 MW by capacity of front office transactions.

What modifications would need to be made to the Market Proxy method to make it work in the future?

- 306 A: I acknowledge Mr. Duvall's concern with the fact that, although PacifiCorp has been acquiring wind resources, there has not been a wind RFP project since 2009. An 307 alternative approach might be to use cost assumptions that the Company uses in its IRP 308 309 for the market proxy cost. Or a second alternative would be to explore the revenue 310 streams that the Company receives for their owned wind projects, the average cost of PPAs for wind that the Company purchases through PPAs, or a weighted average by the 311 312 capacity of wind PPAs from publically available contracts from other Western utilities. Furthermore, the Commission has not approved market proxies for geothermal, solar, or 313 biomass projects. Again, we could use IRP assumptions, Company contracts where 314 315 available, or publically available PPAs. Finally, regardless of methodology, renewable energy resources need to be fairly compensated for the capacity value they bring to the 316 system, which I discuss more below. 317 Should IRP acknowledgement be the threshold test for which method should be 318 **O**.
- 319 used?

A. That's a good question. There may need to be changes in the acknowledgement process,
whereby the Commission acknowledges or doesn't acknowledge portions of the IRP or
IRP action plan.

323

ISSUE 2: PROPER IMPLEMENTATION OF THE PROXY/PDDRR METHOD FOR RENEWABLE QFS 325 326 What is Utah Clean Energy's recommendation regarding the Proxy/PDDRR 327 **Q**: method? 328 Utah Clean Energy does not oppose use of the Proxy/PDDRR method for renewable QFs 329 A: if it is modified to properly value the capacity value of renewable QFs, to account for the 330 avoided cost of mitigating fuel volatility risk, and to ensure that the inputs and 331 assumptions are transparent and clear. 332 333 As I mentioned at the beginning of my testimony, "avoided costs" should not necessarily mean the lowest, most stripped costs the Company can estimate it will avoid. Rather, 334 335 avoided costs should be a reflection of actually avoidable costs, including costs the 336 Company would otherwise incur, based on the risk profile of its resource procurement 337 decisions, in the absence of QF generation. At a minimum, avoided cost should include a 338 fair capacity payment based on the capacity value the renewable QF brings to the system 339 and a value for the long-term fuel and energy hedge that renewable energy sources 340 provide. To-date, only one renewable QF has been developed in Utah: the Spanish Fork Wind 341 342 Project that used the Market Proxy method. There have been no renewable QF's developed using the Proxy/PDDRR method. Renewable QF projects should be paid for 343 their value and the costs they avoid for the entire project period. This is especially 344 345 important now when ratepayers are facing the risks of an uncertain future with respect to gas costs, compliance costs for coal plants, carbon costs, not to mention the costs 346 associated with adapting to a changing climate. If we offer renewable QF's the most bare 347 348 bones avoided cost rate, which undervalues the hedge and capacity value that these

resources bring to the system, we are not offering renewable QFs a fair avoided cost andwe are putting rate payers at higher risk.

351 Capacity value

- Q: Do you agree with Mr. Duvall's assessment that the capacity value of renewable
 energy sources should be calculated based on their contribution during the 100 peak
 load hours?
- A: No, I disagree with using PacifiCorp's method of calculating capacity factor during the
 top hundred peak hours as an approximation of capacity value for variable energy
 sources. This method ignores reliability benefits provided by renewable QFs. These
 reliability benefits are real and should be considered in determining avoided costs.²³
 Furthermore, the Company's method appears to be an energy-focused, capacity factor
- 360 calculation, rather than an evaluation of capacity value.

361 Q: What is the difference between Capacity Factor and Capacity Value?

A: Energy resources can be characterized by both a capacity factor and a capacity value.

363 The capacity factor is used to estimate the amount of *energy* produced by a resource,

- while the capacity value (or credit) is a *reliability-based* calculation that assigns a value
- to a resource based on its ability to reduce the probability of a loss of load event (LOLE)
- and maintain system reliability. For example, Arizona Public Service designates a 50%
- 367 capacity value for fixed-tilt solar, and a 70% capacity value for single-axis trackers in
- their recently updated 2012 IRP, whereas the capacity factor for those same solar
- resources is closer to 25%. Solar's effective *capacity value* is significant, and
- considerably higher than its *capacity factor*, which (depending on region and technology)

²³ See 18 CFR 292.304.

		DUCKET NO. 12-055-100
371		is more aligned with the figures the Company provided in its study—ranging from 11%
372		to 30%. Both capacity factor and capacity value (or credit) are important for determining
373		the value of a resource; however, capacity value is not currently being included in the
374		avoided cost pricing method.
375		I agree with the Company that avoided costs calculations should be consistent with the
376		IRP; therefore, Capacity value calculations should also be used in the IRP.
377	Q:	How is capacity value determined?
378	A:	There are two general ways to determine capacity value: one is based on approximations,
379		while the other uses reliability-based modeling. UCE suggests that the latter is a better
380		approach, and recommends use of the Effective Load Carrying Capability (ELCC) or the
381		Equivalent Conventional Power (ECP) models as appropriate reliability-based
382		calculations. Both of these methods "use power system reliability evaluation techniques
383		which are based on Loss of Load Probability (LOLP) and Loss of Load Expectation
384		(LOLE)." ²⁴
385		The ECP model allows for comparison against a conventional, dispatchable resource. It
386		calculates the likelihood of LOLE with the addition of a solar resourceagainst a LOLE
387		with a benchmark conventional generator, and then adjusts the nameplate capacity of the
388		benchmark unit until it is equivalent to the LOLE with the solar resource. This
389		benchmark capacity then becomes equivalent to the solar resource's ECP.
390		The ELCC model is more complicated to run and represents a generator's ability to
391		effectively increase the generating capacity available to a utility while maintaining the

²⁴ Seyed Hossein Madaeni, Ramteen Sioshansi, and Paul Denholm, *Comparison of Capacity Value Methods for Photovoltaics in the Western United States* (NREL, July 2012), 2, available at: <u>http://www.nrel.gov/docs/fy12osti/54704.pdf</u>.

392	utility's loss of load probability. In a perfect world, dispatchable generators, with no
393	downtime, have a relative ELCC of 100%. ELCC is statistically derived from an analysis
394	of a series of time-coincident load demand and power generation data and takes into
395	consideration summer and winter peak ratios.
396	A recent National Renewable Energy Laboratory study investigated different methods for
397	evaluating and calculating the capacity value of solar. The report evaluated a number of
398	methods. Please see Table 1 that includes the capacity value results for Salt Lake City
399	presented in the study for a number of different solar installation types. All of the
400	methods that were calculated in this study produce a capacity value well above the
401	capacity value presented in Mr. Duvall's testimony. The average capacity value of the
402	reported values for solar PV fixed, single-axis tracking and double-axis tracking in Salt
403	Lake City ranges from 55.4% to 70.9%, as opposed to the 11%-26% values the Company
404	is proposing for solar.

405

Table 1.	Solar PV Capacit	y Values for Salt Lake City
TUDIC 1.	Joint i v Cupucit	y values for Suit Lake City

	Salt Lake City Location				
Type of Photovoltaic Installation	Fixed- Axis	Single- Axis Tracking	Double- Axis Tracking		
	(Percent	based on A	AC Rating)		
Table 3. Average Annual Capacity Value of PV (% - Based on System AC Rating) with Fixed-Axis, Single-Axis, and Double-Axis Tracking in Different Locations: ECP	65.7	84.7	88.6		
Table 3. Average Annual Capacity Value of PV (% - Based on System AC Rating) with Fixed-Axis, Single-Axis, and Double-Axis Tracking in Different Locations: ELCC	61.0	78.7	82.2		
Table 5. Average Annual Capacity Value of PV using CF Approximation	67.7	81.4	84.4		
Table 6. Capacity Value using Garver's Approximation Method	60.9	69.9	71.0		
Table 7. Average Annual Capacity Value of PV (% Based on System AC Rating) with Fixed-Axis, Single-Axis and Double-Axis Tracking in Different Locations using GAM	24.7	30.7	34.3		
Table 9. Average Annual Capacity Value of PV (% Based on System AC Rating) with Fixed-Axis, Single-Axis, and Double-Axis Tracking in Different Locations using the Z Method	52.4	63.9	64.9		
Averages	55.4	68.2	70.9		

Source: Comparison of Capacity Value Methods for Photovoltaics in the Western United States, July 2012²⁵

406

²⁵ Seyed Hossein Madaeni, Ramteen Sioshansi, and Paul Denholm, *Comparison of Capacity Value Methods for Photovoltaics in the Western United States* (NREL July 2012), available at: <u>http://www.nrel.gov/docs/fy12osti/54704.pdf</u>. Attached as UCE Exhibit 4.1(D).

408 Q. What method do you recommend be used to calculate the Capacity Value for 409 renewable QFs?

- 410 A: I recommend a method that values the reliability benefits that a renewable QF brings to
- 411 the system, such as the Effective Load Carrying Capability (ELCC) or the Equivalent
- 412 Conventional Power (ECP) method.

413 Calculation of capacity payment

414 Q. How should the capacity payment be calculated using the Capacity Value?

- 415 A. The capacity payment should be calculated using the capacity value for the QF resource
- 416 multiplied by the total resource fixed cost payment stream.²⁶ In Table 2 below, I
- 417 illustrate how varying the capacity value impacts the QF capacity price using the real,
- 418 levelized payment stream of PacifiCorp's 423 MW "J" 1x1 combine cycle combustion

419 turbine.

²⁶ The total resource fixed payment stream includes a capital cost real levelized payment plus an O&M component. As explained in testimony in Docket 03-035-14, the real levelized capacity payment stream component is a back-end loaded stream of values escalated by inflation that over the life of a plant produces the same present value as the front-end loaded payments used by a utility in traditional ratemaking. In general, PacifiCorp's QF contract term limits prevent a QF from realizing the higher back-end loaded values in the real levelized capacity payment stream.

Table 2

			Capacity Pric	e	
	Capacity	Capacity	Capacity	Capacity	Capacity
	Price in	Price in	Price in	Price in	Price in
	\$/kW-Yr	\$/kW-Yr	\$/kW-Yr	\$/kW-Yr	\$/kW-Yr
	@ Capacity	@ Capacity	@ Capacity	@ Capacity	@ Capacity
	Value of	Value of	Value of	Value of	Value of
	11.5%	30.0%	50.0%	60.0%	70.0%
Tear	\$/kW-yr	\$/kW-yr	\$/kW-yr	\$/kW-yr	\$/kW-yr
013	\$13.49	\$35.19	\$58.66	\$70.39	\$82.12
014	\$13.76	\$35.90	\$59.84	\$71.81	\$83.78
015	\$14.02	\$36.58	\$60.97	\$73.16	\$85.35
016	\$14.26	\$37.20	\$62.01	\$74.41	\$86.81
017	\$14.49	\$37.80	\$63.01	\$75.61	\$88.21
018	\$14.72	\$38.41	\$64.02	\$76.82	\$89.63
019	\$14.96	\$39.03	\$65.05	\$78.05	\$91.06
020	\$15.20	\$39.65	\$66.09	\$79.30	\$92.52
021	\$15.49	\$40.40	\$67.34	\$80.81	\$94.28
022	\$15.78	\$41.17	\$68.62	\$82.34	\$96.07
023	\$16.08	\$41.95	\$69.92	\$83.90	\$97.88
024	\$16.38	\$42.74	\$71.24	\$85.48	\$99.73
025	\$16.69	\$43.55	\$72.58	\$87.10	\$101.61
026	\$17.01	\$44.38	\$73.97	\$88.76	\$103.55
027	\$17.34	\$45.23	\$75.38	\$90.46	\$105.53
028	\$17.67	\$46.09	\$76.82	\$92.18	\$107.55
029	\$18.00	\$46.97	\$78.28	\$93.94	\$109.59
030	\$18.35	\$47.86	\$79.77	\$95.72	\$111.67
031	\$18.71	\$48.82	\$81.37	\$97.64	\$113.91
032	\$19.09	\$49.80	\$83.00	\$99.60	\$116.20

Illustrative Capacity Prices Using Various Capacity Credit Values Based on 423 "J" 1x1 Combined Cycle Combustion Turbine

 20-Year Levelized Prices (Nominal) @ 7.154% Discount Rate

 \$15.44
 \$40.27
 \$67.11
 \$80.53

\$93.95

422

\$/kW

423

425	Q:	What resource should be used for the proxy in the capacity value calculation?
426	A:	I recommend using the next deferrable IRP resource during periods of resource
427		deficiency. Additionally, I recommend that pricing include a capacity payment, based on
428		the next deferrable resource, during periods of resource sufficiency.
429	Q.	Why do you recommend that renewables QFs receive a capacity payment during
430		times of resource sufficiency?
431	A:	This recommendation is a departure from current practice. But renewable QFs bring
432		capacity value to the system and they should be compensated for that value in the
433		avoided cost rate. Furthermore, as discussed above, preliminary results from the 2013
434		IRP indicate that the Company and ratepayers will rely very heavily on Front Office
435		Transactions, so while PacifiCorp may not be planning to add a resource in the near term,
436		there is nevertheless a need for both energy and capacity.
437	Avoid	led risk mitigation costs
438	Q.	How do current low natural gas prices impact utility resource decisions?
439		now do current low natural gas prices impact dunity resource decisions.
	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas
440	A:	
440 441	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas
	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas development that has contributed to historically low natural gas prices. Low natural gas
441	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas development that has contributed to historically low natural gas prices. Low natural gas prices are putting downward pressure on electricity rates and leading to resource
441 442	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas development that has contributed to historically low natural gas prices. Low natural gas prices are putting downward pressure on electricity rates and leading to resource procurement decisions that heavily favor natural gas resources. This is slowing down
441 442 443	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas development that has contributed to historically low natural gas prices. Low natural gas prices are putting downward pressure on electricity rates and leading to resource procurement decisions that heavily favor natural gas resources. This is slowing down diversification of electricity resource portfolios with renewables. For example, in the
441 442 443 444	A:	Fracking, coupled with horizontal drilling, has resulted in a boom in shale gas development that has contributed to historically low natural gas prices. Low natural gas prices are putting downward pressure on electricity rates and leading to resource procurement decisions that heavily favor natural gas resources. This is slowing down diversification of electricity resource portfolios with renewables. For example, in the current IRP process, PacifiCorp ran a series of 'paired' Reference cases with the same

448	portfolio) the physical resources added to the system for the non-RPS scenarios are
449	greater than 90% natural gas by capacity. When you add in Front Office Transactions,
450	the percentage of resource additions by capacity that are natural gas and Front Office
451	Transactions is 94% or above. The only renewable resource to speak of in the non-RPS
452	scenarios is the Utah distributed solar PV incentive program that is modeled using the
453	utility cost.

454 Q. **Do you believe that this poses a risk for rate payers?**

A. Yes, this increased reliance on new gas and front office transactions, without continued
diversification with fuel-free renewables, is risky to ratepayers. There is no debate about
whether gas prices will rise in the future, the question is when and by how much. Heavy

reliance on natural gas and market purchases puts ratepayers at risk, particularly given

459 Rocky Mountain Power's energy balancing account (EBA) for net power costs.

460 Renewable QFs provide the utility and ratepayers a cost-effective means to diversify the

resource mix with fixed price power purchase contracts without significant upfront

462 investments.

463 Q: Why should the fuel volatility risk mitigation of renewable energy be included in the
464 Avoided Cost Methodology?

A: Renewable energy sources have no fuel costs, and therefore they act as an important

hedge against fuel volatility. Utilities typically participate in short-term hedging, using a

467 number of conventional instruments. Hedging for greater than five years is not common,

and it is even more uncommon to try to hedge gas prices for 10 years or longer.

469 However, renewable energy sources provide a twenty or twenty-plus year fuel hedge that

470 has real value to ratepayers. Since renewables offer a hedge against fuel volatility to

471	ratepayers, if the avoided cost methodology does not utilize a proxy method that
472	compares wind to wind and solar to solar, etc., then the avoided cost calculation should
473	account for the risk mitigation and avoided hedging costs that fuel-free renewable energy
474	provides to the system and ratepayers.
475	To explore how a different, higher priced future would impact avoided energy costs, our
476	consultant, Energy Strategies, ran GRID runs with an 80 MW PV plant in the Salt Lake
477	City area. The first run used PacifiCorp's September 2012 forward price curve and the
478	second run assumed 25% higher natural gas and energy prices starting in 2015. The
479	capacity factor used in this analysis for illustrative purposes may be lower than the actual
480	capacity factor for solar in Salt Lake. The 25% increase in fuel and energy costs was
481	selected based upon a review of PacifiCorp's forward natural gas price curves ²⁷ presented
482	in 2013 IRP public input meetings and Energy Information Administration forward price
483	curves as reported in a recent report by Lawrence Berkeley National Laboratory. ²⁸ See
484	Figures 4 and 5 below. As you can see from these figures, a 25% increase is well within
485	the realm of possibility, and indeed, prices could go much higher.
486	The difference in the levelized energy prices produced by the GRID runs on a seasonal
487	and monthly basis is shown in Tables 3 and 4 <i>below</i> . Table 5 is a summary table that
488	shows the difference in the annual avoided energy prices. As you might expect, the
489	levelized energy price produced by the 25% higher scenario is about 24% higher than the
490	levelized energy price produced by the September 2012 OFPC scenario. This

²⁷ Handout from IRP Public Input Meeting: *Comparison of Natural Gas Prices: 2011 IRP vs. 2013 IRP* (October 24, 2012), available at:

http://www.pacificorp.com/content/dam/pacificorp/doc/Energy_Sources/Integrated_Resource_Plan/2013IRP/20 13IRP_NatGas-CO2_2011v2013IRP_10-24-12.pdf.

²⁸ Mark Bolinger, *Revisiting the Long Term Hedge Value of Wind Power in an Era of Low Natural Gas Prices* (LBNL, March 2013), 18, available at <u>http://emp.lbl.gov/sites/all/files/lbnl-6103e.pdf</u>.

491	demonstrates the significant costs at stake given differences in future energy and gas
492	prices. I do not intend to argue that the future will necessarily look exactly like the
493	second run,—only that energy prices can change dramatically with alternate price
494	forecasts and, as discussed above, because natural gas prices cannot get much lower, the
495	risk that prices will be higher than projected is greater than the possibility that prices will
496	be lower.
497	

Table 3

Avoided Energy Costs - Scheduled Hours (\$/MWh) Utah Clean Energy - Solar Resource 80.0 MW and 20.0% CF Partial Displacement of East Side 423 MW CCCT (Type "J" 1x1)

Year	Annual	Winter Season				Summer Season				Winter Season			
ICal	Annuar	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Fnerøv (Energy Only												
2013	\$29.19	\$26.63	\$25.89	\$25.86	\$24.54	\$23.08	\$24.34	\$39.96	\$38.21	\$31.52	\$28.45	\$29.69	\$27.80
2014	\$29.27	\$29.24	\$30.78	\$28.19	\$24.82	\$26.78	\$25.52	\$40.31	\$42.64	\$28.59	\$24.53	\$22.64	\$16.15
2015	\$32.54	\$27.86	\$28.20	\$28.94	\$30.24	\$27.25	\$29.55	\$42.47	\$45.80	\$36.62	\$34.76	\$18.52	\$28.46
2016	\$31.51	\$26.13	\$29.45	\$30.48	\$27.16	\$28.80	\$30.62	\$46.31	\$45.32	\$31.96	\$30.06	\$21.36	\$11.79
2017	\$35.57	\$36.16	\$20.76	\$34.82	\$33.74	\$31.75	\$34.81	\$48.35	\$47.72	\$39.93	\$35.70	\$29.29	\$15.70
2018	\$36.94	\$22.64	\$30.41	\$33.26	\$35.77	\$34.86	\$37.11	\$51.97	\$51.71	\$37.47	\$41.14	\$27.06	\$16.02
2019	\$39.42	\$36.71	\$29.63	\$34.20	\$34.80	\$36.91	\$43.25	\$59.10	\$56.50	\$38.87	\$40.74	\$25.92	\$9.33
2020	\$45.99	\$41.95	\$32.87	\$39.92	\$36.80	\$41.86	\$49.02	\$65.81	\$67.21	\$51.47	\$48.31	\$27.01	\$21.94
2021	\$46.48	\$30.70	\$33.77	\$42.95	\$36.89	\$44.01	\$47.61	\$66.91	\$68.90	\$44.69	\$51.80	\$34.51	\$27.70
2022	\$52.34	\$40.90	\$42.23	\$43.82	\$42.04	\$50.86	\$57.45	\$70.07	\$71.18	\$47.42	\$55.91	\$48.43	\$37.35
2023	\$56.16	\$42.90	\$44.97	\$48.75	\$44.86	\$54.82	\$61.23	\$76.70	\$75.68	\$52.81	\$57.92	\$50.15	\$40.02
2024	\$59.10	\$51.35	\$53.06	\$50.97	\$43.75	\$55.63	\$64.83	\$78.21	\$74.62	\$55.90	\$61.63	\$55.86	\$47.83
2025	\$55.53	\$48.72	\$51.38	\$50.59	\$43.46	\$55.27	\$63.34	\$67.00	\$69.42	\$44.90	\$59.98	\$52.94	\$47.84
2026	\$58.89	\$52.65	\$54.57	\$55.59	\$49.01	\$59.55	\$62.82	\$70.24	\$72.87	\$48.15	\$63.45	\$57.03	\$48.42
2027	\$59.46	\$54.06	\$55.47	\$56.61	\$50.33	\$60.72	\$65.55	\$70.28	\$70.51	\$47.14	\$63.54	\$57.21	\$52.16
2028	\$61.48	\$56.19	\$57.53	\$58.18	\$49.81	\$61.95	\$71.39	\$72.93	\$71.81	\$48.03	\$65.99	\$59.95	\$54.36
2029	\$59.68	\$56.81	\$57.25	\$57.06	\$46.89	\$62.62	\$63.67	\$72.52	\$71.47	\$48.88	\$64.98	\$51.24	\$50.62
2030	\$60.11	\$60.27	\$61.33	\$58.75	\$50.26	\$64.29	\$63.85	\$63.94	\$65.42	\$46.28	\$68.42	\$57.51	\$58.68
2031	\$62.31	\$59.97	\$62.07	\$58.50	\$53.18	\$66.07	\$68.61	\$67.91	\$71.25	\$49.54	\$68.40	\$57.94	\$57.43
2032	\$65.92	\$61.48	\$62.61	\$61.66	\$56.46	\$67.27	\$70.65	\$75.04	\$73.95	\$62.07	\$69.64	\$59.57	\$61.31

499

500

Table 4

Avoided Energy Costs - Scheduled Hours (\$/MWh) Utah Clean Energy - Solar Resource 80.0 MW, 20.0% CF and 25% Price increase Partial Displacement of East Side 423 MW CCCT (Type "J" 1x1)

Year	Annual	Winter Season				Summer Season			Winter Season				
I Cal	Annuar	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Energy C	Only												
2013	\$29.19	\$26.63	\$25.89	\$25.86	\$24.54	\$23.08	\$24.34	\$39.96	\$38.21	\$31.52	\$28.45	\$29.69	\$27.80
2014	\$29.28	\$29.24	\$30.78	\$28.19	\$24.82	\$26.78	\$25.52	\$40.31	\$42.64	\$28.59	\$24.53	\$22.64	\$16.26
2015	\$37.73	\$22.35	\$30.90	\$37.08	\$33.83	\$34.73	\$37.17	\$49.91	\$54.35	\$42.29	\$41.97	\$23.28	\$21.40
2016	\$38.43	\$26.51	\$32.73	\$38.75	\$40.95	\$36.95	\$38.28	\$55.40	\$54.84	\$35.80	\$34.44	\$32.14	\$8.01
2017	\$42.76	\$43.62	\$25.74	\$42.98	\$44.04	\$40.63	\$43.63	\$58.11	\$57.81	\$39.72	\$44.21	\$33.51	\$16.14
2018	\$44.82	\$43.01	\$30.37	\$39.06	\$47.38	\$44.46	\$46.98	\$61.88	\$61.45	\$41.14	\$49.35	\$28.72	\$17.19
2019	\$49.22	\$43.42	\$55.48	\$44.89	\$50.71	\$47.31	\$53.45	\$69.72	\$67.41	\$44.77	\$52.05	\$20.09	\$5.98
2020	\$55.25	\$52.53	\$39.36	\$45.80	\$45.64	\$53.10	\$61.83	\$78.57	\$79.89	\$60.40	\$61.04	\$24.96	\$23.39
2021	\$57.26	\$32.06	\$40.74	\$54.95	\$46.27	\$56.31	\$59.88	\$81.31	\$83.23	\$53.14	\$66.69	\$44.11	\$32.46
2022	\$65.74	\$50.76	\$52.10	\$56.39	\$53.52	\$63.85	\$73.21	\$89.67	\$85.84	\$60.50	\$70.88	\$60.15	\$45.35
2023	\$70.13	\$53.50	\$56.17	\$62.88	\$55.61	\$69.98	\$77.98	\$91.21	\$90.45	\$66.67	\$73.29	\$62.22	\$57.09
2024	\$72.71	\$65.03	\$67.96	\$64.98	\$54.09	\$68.89	\$79.02	\$94.11	\$89.62	\$66.49	\$77.93	\$67.52	\$60.13
2025	\$71.06	\$60.25	\$64.41	\$63.70	\$53.31	\$69.52	\$78.38	\$96.10	\$87.96	\$63.64	\$75.45	\$63.03	\$55.64
2026	\$73.80	\$65.11	\$67.40	\$70.20	\$59.50	\$74.44	\$79.49	\$88.41	\$91.15	\$64.86	\$79.82	\$67.45	\$59.62
2027	\$74.52	\$66.21	\$68.44	\$71.63	\$60.77	\$75.96	\$81.09	\$88.57	\$90.66	\$66.13	\$79.67	\$68.42	\$57.66
2028	\$77.77	\$70.10	\$72.28	\$74.26	\$64.42	\$77.36	\$86.04	\$92.64	\$91.76	\$66.02	\$82.76	\$75.96	\$65.09
2029	\$75.67	\$72.34	\$72.99	\$73.70	\$57.64	\$77.53	\$80.96	\$91.49	\$89.95	\$63.43	\$82.06	\$67.42	\$64.68
2030	\$77.72	\$75.59	\$77.82	\$74.74	\$63.92	\$79.48	\$84.59	\$83.74	\$92.32	\$65.65	\$84.69	\$71.12	\$68.73
2031	\$80.50	\$75.79	\$78.30	\$74.06	\$67.25	\$82.86	\$89.42	\$97.42	\$91.24	\$67.03	\$86.13	\$72.74	\$70.11
2032	\$84.25	\$77.59	\$79.14	\$77.62	\$72.50	\$82.95	\$89.61	\$95.86	\$96.29	\$83.84	\$87.80	\$77.49	\$77.63

Table 5

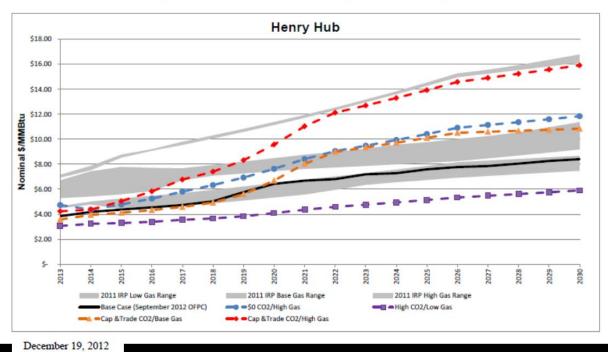
Summary Avoided Energy Price 80 MW Solar

Year	Annual Sept 2012 OFPC (\$/MWH)	Annual w/ 25% Price Increase starting 2015 (\$/ MWH)	Annual Percent Increase
2013	\$29.19	\$29.19	0.0%
2014	\$29.27	\$29.28	0.0%
2015	\$32.54	\$37.73	16.0%
2016	\$31.51	\$38.43	21.9%
2017	\$35.57	\$42.76	20.2%
2018	\$36.94	\$44.82	21.3%
2019	\$39.42	\$49.22	24.9%
2020	\$45.99	\$55.25	20.1%
2021	\$46.48	\$57.26	23.2%
2022	\$52.34	\$65.74	25.6%
2023	\$56.16	\$70.13	24.9%
2024	\$59.10	\$72.71	23.0%
2025	\$55.53	\$71.06	28.0%
2026	\$58.89	\$73.80	25.3%
2027	\$59.46	\$74.52	25.3%
2028	\$61.48	\$77.77	26.5%
2029	\$59.68	\$75.67	26.8%
2030	\$60.11	\$77.72	29.3%
2031	\$62.31	\$80.50	29.2%
2032	\$65.92	\$84.25	27.8%

20-Year Levelized	Prices (Nominal) @	7.154% Disco	ount Rate
\$/MWh	\$43.11	\$53.55	24.21%

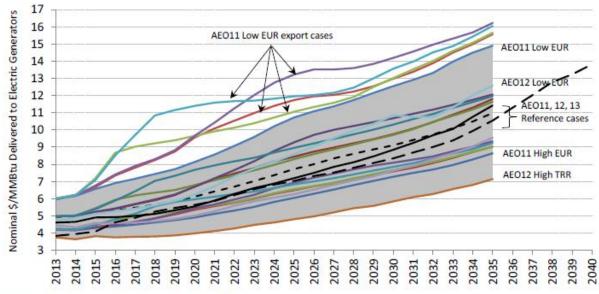
503

504


502

505

506


Figure 4

Comparison of Natural Gas Prices: 2011 IRP vs. 2013 IRP

509 510

Source: EIA 2012a, EIA 2012b, EIA 2012c, EIA 2011

Figure 7. Projected Natural Gas Prices Delivered to Electricity Generators, Total U.S.

512	Q:	How do you recommend that the Proxy/PDDRR method be modified to account for
513		the avoided cost of fuel volatility and hedging costs?
514	A:	A possible method would be to use the Company's averaged hedging costs over a twenty
515		year period, since this is generally the length of time a renewable energy PPA. The
516		average hedging costs could be translated to a cost per MMBTU and then MMBTUs
517		converted to MWHs and included in the calculation of the energy portion of the avoided
518		cost on a \$/MWH basis. This method would reflect the actual costs that the non-fuel
519		based renewable energy project brings to the system. The method may not capture the
520		extreme fuel and energy price costs to ratepayers that occurred in the early 2000 time
521		period.
522	Integ	ration costs
523	Q:	What does the Company propose with regard to renewable energy integration
523 524	Q:	What does the Company propose with regard to renewable energy integration costs?
	Q: A:	
524	-	costs?
524 525	-	costs? The Company proposes to utilize the same method it uses in the IRP to calculate wind
524 525 526	-	costs? The Company proposes to utilize the same method it uses in the IRP to calculate wind integration costs, but seems to indicate that it will use its 2010 wind integration study
524 525 526 527	-	costs? The Company proposes to utilize the same method it uses in the IRP to calculate wind integration costs, but seems to indicate that it will use its 2010 wind integration study rather than the more current study (which involved a technical review committee). The
524 525 526 527 528	-	costs? The Company proposes to utilize the same method it uses in the IRP to calculate wind integration costs, but seems to indicate that it will use its 2010 wind integration study rather than the more current study (which involved a technical review committee). The Company also proposes to use its wind integration costs as "a proxy for integrating solar
524 525 526 527 528 529	A:	costs? The Company proposes to utilize the same method it uses in the IRP to calculate wind integration costs, but seems to indicate that it will use its 2010 wind integration study rather than the more current study (which involved a technical review committee). The Company also proposes to use its wind integration costs as "a proxy for integrating solar at this time." (Direct Testimony of Gregory N. Duvall, lines 448-49)
524 525 526 527 528 529 530	A: Q:	costs? The Company proposes to utilize the same method it uses in the IRP to calculate wind integration costs, but seems to indicate that it will use its 2010 wind integration study rather than the more current study (which involved a technical review committee). The Company also proposes to use its wind integration costs as "a proxy for integrating solar at this time." (Direct Testimony of Gregory N. Duvall, lines 448-49) What is your response to this recommendation?

the penetration of utility scale solar in PacifiCorp's system is so small that the integration 534 costs are negligible. 535 536 ISSUE 3: OWNERSHIP OF RECS FROM RENEWABLE QFS UNDER THE PROXY/PDDRR METHOD, 537 INCLUDING THE RIGHT OF A QF TO BUY BACK RECS (AND THE ASSOCIATED PRICE): 538 539 Q. What is the Company's position with regard to ownership of RECs from QF 540 projects? 541 The Company, in the testimony of Paul Clements, argues that it should be entitled to any 542 A. RECs associated with renewable QF energy production. Mr. Clements reasons as 543 follows: because renewable QFs must be fueled predominately by renewable energy, if 544 the Company does not get the renewable energy attributes associated with QF electricity 545 generation, then the Company is not receiving the characteristic that enabled the facility 546 547 to be designated as a QF in the first place. 548 Q. Do you agree with this reasoning? 549 A. No. I disagree with this for several reasons: 1) it conflates federal requirements with state policy objectives, 2) it is inconsistent with FERC precedent, and 3) it discriminates 550 551 against renewable QFs, contrary to PURPA. 552 First, The Company is not, as a matter of PURPA (a federal law), entitled to RECs (state 553 creations) associated with renewable QF electricity generation. PURPA was enacted in 554 1978, before the concept of energy-separable renewable energy attributes was created. PURPA is a federal statute, but RECs are creations of state policy objectives. States 555 determine what resources are able to generate RECs and for what policy ends (for 556 557 example, encouraging renewable energy development and resource diversification

558	through renewable portfolio standards). Utah has a statute that outlines what resources
559	are able to generate RECs for purposes of complying with Utah's renewable portfolio
560	standard. Utah-based RECs sold into other states must comply with purchasing states'
561	renewable portfolio standards. These requirements are independent of PURPA, and
562	PURPA's requirements are independent of state REC laws.
563	Similarly, Mr. Clements' assertion that PURPA requires that utilities retain RECs
564	associated with renewable QF development is wrong. FERC has consistently found:
565 566 567 568 569	[C]ontracts for the sale of QF capacity and energy entered into pursuant to PURPA do not convey RECs to the purchasing utility (absent an express provision in a contract to the contrary). While a state may decide that a sale of power at wholesale automatically transfers ownership of the state-created RECs, that requirement must find its authority in state law, not PURPA. ²⁹
570 571	FERC has clearly explained that an automatic transfer of RECs from renewable QF
572	generation would have to be authorized at the state level, not through PURPA.
573	Finally, granting RECs to the utility, as under the Company's proposal, would
574	disadvantage renewable QFs compared to other QFs, contrary to PURPA. RECs have
575	value and are sold and retired for compliance with renewable portfolio standards or for
576	voluntary markets. Therefore, given the same price per MWh, a renewable QF that
577	generates RECs that are then transferred to a utility would be paid less for energy and
578	capacity than a cogeneration QF because the price paid per MWh to the renewable QF
579	acquires RECs in addition to energy and capacity. This type of discrimination is
580	prohibited by PURPA.

²⁹ Am. Ref-Fuel Co., Covanta Energy Group, Montenay Power Corp., & Wheelabrator Technologies Inc., 105 FERC ¶ 61,004 (2003), request for rehearing denied, 107 FERC ¶ 61,016 (2004).

In summary, the Company's arguments in support of its acquiring ownership of RECswithout paying for them are unsupportable.

583 Q. The Company also proposes that QFs not be allowed to buy back any RECs

- 584 contractually conveyed to the utility. How do you respond?
- 585 A. Under the current wind-specific pricing method RECs are transferred to the utility, but
- renewable QFs have the option of buying back any RECs at the REC price designated in
- the Company's IRP. Given that the Company currently designates a zero dollar value
- for RECs, it is unsurprising that they do not want renewable QFs to exercise their right to
- 589 buy back RECs for free.
- 590 Q. The Company says "The Company's IRPs no longer calculate a specific direct value
- 591 for RECs in dollars per MWH, but instead determine a preferred portfolio based on
- resource needs and compliance obligations. Therefore, a dollar per MWh REC
- value from the IRP does not exist and thus can no longer be used as contemplated in
- 594 the 2005 Order." Is this different from designating a zero dollar value to RECs?
- A. No, it isn't. Not assigning RECs a specific value in the IRP is the same as giving them
 zero value. RECs do have value, however.
- 597 Q. What is Utah Clean Energy's recommendation regarding REC ownership under
 598 Schedule 38?
- A. The Commission should not grant RECs to the utility automatically through avoided cost
 pricing under PURPA. The Company is proposing to calculate avoided costs in a way
 that does not recognize any of the renewable attributes of renewable QFs; therefore to
- 602 convey the value of those attributes without compensation to the QF would be
- discriminatory and inconsistent with PURPA and FERC precedent. REC value, based on

- a QF's renewable energy attributes, exists apart from the energy and capacity paid for
 through avoided cost rates.
- 606 Q. How is renewable energy attribute defined in Utah's carbon reduction statute?
- A. Utah Code Title 54 Chapter 17, Part 6 is Utah's carbon emissions reduction statute.
- Renewable energy attributes are not defined therein (though the statute designates what
- sources are renewable). The statute allows the Commission to utilize "a regional system
- or trading program" to recognize renewable energy certificates, including the Western
- 611 Renewable Energy Generation Information System (WREGIS). The WREGIS
- definition, which follows, excludes energy, capacity, reliability, and other power
- attributes from the definition of renewable energy attributes:
- Renewable and Environmental Attributes: Any and all credits, benefits, emissions 614 615 reductions, offsets and allowances, howsoever entitled, attributable to the 616 generation from the Generating Unit, and its avoided emission of pollutants. Renewable and Environmental Attributes do not include (i) any energy, capacity, 617 reliability or other power attributes from the Generating Unit, (ii) production tax 618 619 credits associated with the construction or operation of the Generating Unit and other financial incentives in the form of credits, reductions or allowances 620 associated with the Generating Unit that are applicable to a state, provincial or 621 federal income taxation obligation, (iii) fuel-related subsidies or "tipping fees" 622 that may be paid to the seller to accept certain fuels, or local subsidies received by 623 the generator for the destruction of particular preexisting pollutants or the 624 promotion of local environmental benefits, or (iv) emission reduction credits 625 encumbered or used by the Generating Unit for compliance with local, state, 626 provincial or federal operating and/or air quality permits.³⁰ 627
- 628 629

³⁰ WREGIS Operating Rules, WECC (December 2010), available at:

http://www.wecc.biz/WREGIS/Documents/WREGIS%20Operating%20Rules.pdf.

630	Q.	How are renewable energy attributes different from risk mitigation such that they
631		should be valued distinctly?
632	A.	REC value exists beyond avoidable fuel price risk and hedging costs that I discuss above.
633		And as described above, renewable QFs can alleviate costs associated with adapting to a
634		changing climate. For example, renewable QFs utilize much less water than conventional
635		resources and will therefore be less susceptible to reduced water supply or increased
636		water temperatures. Furthermore, renewable resources do not emit greenhouse gas
637		emissions that contribute to climate impacts. Therefore, unless the Company pays a QF
638		for the renewable energy attributes associated with its energy production, the QF should
639		be able to keep the RECs associated with those attributes.
640		
641	CONC	
041	CONC	LUSION
642	Q.	Please summarize your recommendation regarding renewable QF avoided cost
642		Please summarize your recommendation regarding renewable QF avoided cost
642 643	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing?
642 643 644	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing? Utilities, utility planners, utility regulators, and ratepayers are facing great uncertainty
642 643 644 645	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing? Utilities, utility planners, utility regulators, and ratepayers are facing great uncertainty with respect to the implications and impacts of utility resource decisions. There are
642 643 644 645 646	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing? Utilities, utility planners, utility regulators, and ratepayers are facing great uncertainty with respect to the implications and impacts of utility resource decisions. There are significant costs and risks associated heavy reliance on fossil-fueled resources and front
642 643 644 645 646 647	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing? Utilities, utility planners, utility regulators, and ratepayers are facing great uncertainty with respect to the implications and impacts of utility resource decisions. There are significant costs and risks associated heavy reliance on fossil-fueled resources and front office transactions that should be accounted for in avoided cost electricity prices.
642 643 644 645 646 647 648	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing? Utilities, utility planners, utility regulators, and ratepayers are facing great uncertainty with respect to the implications and impacts of utility resource decisions. There are significant costs and risks associated heavy reliance on fossil-fueled resources and front office transactions that should be accounted for in avoided cost electricity prices. Furthermore, ratepayers are not only at risk for fuel volatility cost and regulatory costs,
642 643 644 645 646 647 648 649	Q.	Please summarize your recommendation regarding renewable QF avoided cost pricing? Utilities, utility planners, utility regulators, and ratepayers are facing great uncertainty with respect to the implications and impacts of utility resource decisions. There are significant costs and risks associated heavy reliance on fossil-fueled resources and front office transactions that should be accounted for in avoided cost electricity prices. Furthermore, ratepayers are not only at risk for fuel volatility cost and regulatory costs, they are also on the hook as citizens and taxpayers for costs associated with climate

653		electricity generation and its impacts, ultimately benefitting ratepayers. Avoided cost
654		pricing should appropriately value the capacity value of renewable QFs and include
655		actually avoidable costs, based on the risk profile and cost impacts of its resource
656		procurement decisions. I recommend use of the Market Proxy method when the
657		Company's integrated resource plan selects renewable resources and a Proxy/PDDRR
658		method with the modifications that I recommend above when the IRP does not select
659		renewable resources.
660	Q:	Does that conclude your testimony?

- 661 A: Yes, it does.
- 662
- 663