Utility Scale Rooftop Solar

Ability of neighborhood solar to defer new electrical facilities

Purpose of presentation

- Describe Rocky Mountain Power's in-depth study of neighborhood solar to offset the need to build new infrastructure (power plants, substations and lines)
- Outline Rocky Mountain Power's progress on Utah carbon reduction goal
- Describe Rocky Mountain Power's support of customer-owned renewable energy

Customer use on the rise

- Rocky Mountain Power residential customers use about 26% more electricity than 20 years ago
- To meet our obligation to serve, additional power supply resources, substations and power lines are needed to meet growing customer use
- New facilities are expensive and difficult to permit
- Advocates want different solutions

Can rooftop solar defer new facilities?

- Customers questioned substation expansion in an established neighborhood
- Public opposition delayed conditional use permit
- Undertook subsequent study of rooftop solar to determine its ability to meet customer use

Scope of the solar opportunity

Category	Type of Building	Median Roof Footprint	Median # of PV Panels	Minimum # of PV Panels	Maximum # of PV Panels	Average Usable Roof Area
Residential	Single Family Residential	171 m ²	25	0	119	13.81%
Multi-Residential	Apartments, Condos, etc.	173 m ²	32	0	397	19.88%
Sm. Commercial	Restaurant, Commercial Retail	349 m ²	136	6	340	31.31%
Lg. Commercial	Offices, Hospitals, Churches	430 m ²	160	16	917	32.74%
Unknown	Unknown Land Use	196 m ²	26	2	262	14.57%

Determining panel location

- Evaluated roof shading on every structure
- Determined solar exposure
- Locate solar panels where they produce the most energy

Study aims to maximize solar output

- Two-thirds of rooftops are suitable for solar panels (237 of 356)
- Total number of panels 13,304
- Study uses high efficiency panels; solar energy to electricity = 19%

Estimated solar production

Solar Energy Conversion:

- ✓ 2,210 MWh annual energy production
 - 1,560 MWh during summer months (May-Sept.)

Maximum Solar Power Output – as calculated

- ✓ June 21 = 1.52 MW (summer solstice)
 - Temperature Corrected = 1.45 MW at 76° F

Solar Output on Circuit Peak

- ✓ August 2 = 0.54 MW (2010 circuit peak)
 - Temperature Corrected = 0.48 MW at 93° F

Projected 2011 Circuit Peak = 4.6 MVA

Solar contribution to peak

