BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)	
In the Matter of the Investigation of the Costs)	Docket No. 14-035-114
and Benefits of PacifiCorp's Net Metering)	DPU Exhibit 1.0 DIR
Program)	
)	
)	

DIRECT TESTIMONY

OF

ROBERT A. DAVIS

ON BEHALF OF THE

UTAH DIVISION OF PUBLIC UTILITIES

July 30, 2015

TABLE OF CONTENTS

١.	INTRODUCTION	2
н.	PURPOSE AND SUMMARY OF TESTIMONY	3
III.	DOCKET BACKGROUND	4
IV.	RECOMMENDATION	5
V.	COST OF SERVICE FRAMEWORK	6
VI.	COMPLEXITIES OF DISTRIBUTED GENERATION	8
VII.	APPLICATION OF DEMAND SIDE MANAGEMENT TESTS	12
VIII.	DIVISION-LED WORKGROUP SESSIONS	13
IX.	CONCLUSION	14
х.	DPU EXHIBIT 1.1, APPENDIX A - DIVISION-LED WORKGROUP SESSIONS	
XI.	DPU EXHIBIT 1.2 – SOLAR ENERGY PROFILE	

1		Introduction
2	Q:	Please state your name and occupation.
3	A:	My name is Robert A. Davis. I am employed by the Division of Public Utilities
4		(Division) of the Utah Department of Commerce as a Utility Analyst in the Energy
5		Section.
6	Q:	What is your business address?
7	A:	My business address is 160 East 300 South, 4 th Floor, Salt Lake City, Utah, 84114.
8	Q:	On whose behalf are you testifying?
9	A:	The Division.
10	Q:	Do you have any exhibits that you are filing along with your testimony?
11	A:	Yes I do. DPU Exhibit 1.1, Appendix A, offers an overview of the workgroup
12		sessions conducted by the Division in this docket. DPU Exhibit 1.2, is a slide from a
13		presentation prepared by PacifiCorp (Company) comparing solar peak production to
14		system peak on a single circuit in Salt Lake City where the Company performed a solar
15		study in 2010.
16	Q:	Please summarize your educational and professional experience.
17	A:	I received a Master's in Business Administration with Master's Certificates in
18		Finance and Economics from Westminster College in May of 2005. I am a Certified
19		Valuation Analyst (CVA) by the National Association of Valuators and Analysts. I am a
20		Certified General Appraiser in the State of Utah. I have been employed with the Division
21		since May of 2012 where I have worked on various telecommunications and energy
22		related assignments.

23		Prior to my present position, I was employed for approximately seven years at
24		the Utah State Tax Commission in the Centrally Assessed Property Tax Division-Utilities
25		Section where I assessed telecommunication, energy and airline companies for property
26		tax purposes.
27		Prior to working for the Property Tax Division, I was employed as an Electronic
28		Engineering Technician at Fairchild Semiconductor for 22 years.
29	Q:	Have you testified before the Public Service Commission of Utah (Commission) on
30		prior occasions?
31	A:	Yes I have.
32		Purpose and Summary of Testimony
33	Q:	What is the purpose of your testimony in this proceeding?
34	A:	My testimony is primarily intended to explain the Division's recommendation
35		that the Commission should adopt a "cost of service" framework for evaluating net
36		metering customers' costs and benefits to the system. Specifically, similar to the
37		evaluation of avoided costs, the Division recommends that two separate cost of service
38		studies be conducted. The first study would treat net metering customers as full
39		requirements or load customers ignoring their net metering. The second study would
40		treat them as net metering customers with their net loads. The difference in the two
41		studies should reveal to a great degree the benefits net metering customers bring to the
42		system through a reduction in costs. This method of evaluation will capture and quantify
43		reduced allocations to Utah through existing inter-jurisdictional allocation protocols as

3

44		well as costs imposed on other customers. The Division believes such an approach
45		represents a reasonable and prudent approach to a general framework and is consistent
46		with recent Commission directives. Further, it should prove flexible as increased
47		information about such customers and their effects becomes available.
48		Organizationally, my testimony proceeds as follows: (1) I give a brief background
49		of this Docket; (2) I summarize the Division's recommendation and proposal for an
50		analytical framework to be used in future net metering related proceedings; (3) I
51		summarize the complexities of distributed generation (DG) from the utility's and net
52		metering customers' perspectives, respectively; (4) I discuss the consideration and use
53		of Demand Side Management (DSM) tests and the Division's current position on the use
54		of the tests for DG; and (5) I summarize the Division-led workgroup sessions.
55		Docket Background
56	Q:	Will you provide a brief history of this docket?
57	A:	Yes. On August 29, 2014, at the conclusion of the Company's last general rate
58		case, Docket No. 13-035-184, the Commission opened this docket to adopt a framework
59		to determine the costs and benefits of the Company's net metering program.
60		The Commission scheduled this docket to progress in steps. The first step
61		occurred on November 5, 2014 when the Company presented its plan for performing a
62		load and research study focused on residential net metered customers and a schedule
63		for the study's completion in September 2015.
64		During the March 16, 2015 follow-up technical, status and scheduling

65		conference, the Commission outlined the second step, a series of workgroups to be led
66		by the Division to explore an appropriate analytical framework to be used to determine
67		costs and benefits of net metering. (November 21, 2014 Notice). Further guidelines
68		offered by the Commission can be found in DPU Exhibit 1.1, Appendix A.
69		On July 1, 2015, the Commission issued its "Conclusions of Law on Statutory
70		Interpretation and Order Denying Motion to Strike." The Commission ordered that for
71		purposes of performing the analysis under Utah Code Ann. § 54-15-105.1(1), the
72		relevant costs and benefits are those that accrue to the utility or its non-net metering
73		customers in their capacity as ratepayers of the utility. Costs or benefits that do not
74		directly affect the Company's cost of service will not be included in the final framework
75		to be established in this phase of the docket. (July 1, 2015 Order). ¹
76		Recommendation
77	Q:	Will you please offer your recommendation to the Commission?
78	A:	Yes. The Division believes the Commission should adopt a type of cost of service
79		framework for determining how to apportion costs and benefits to net metering
80		customers. The Division has not found the use of DSM tests to be beneficial as an
81		analytical framework to determine costs and benefits of net metering to the utility and
82		its other non-net metering customers. The Division in its earlier comments had initially
83		thought that the DSM tests would be more useful. After further evaluation, the Division

¹ Commission's "Order RE: Conclusions of Law on Statutory Interpretation and Order Denying Motion to Strike" at p. 17.

84		does not believe that a DSM test framework will readily lead to the development of a
85		reasonable rate structure. On the other hand, a cost of service framework will naturally
86		lend itself to that end.
87		The result of the net metering statute's command is a payment, charge, or
88		combination thereof made to net metering customers for their impact on the system. A
89		cost of service study is generally a starting point for establishing what set of costs and
90		revenues are appropriately assigned to each group of customers. In fact, some of the
91		identifiable and quantifiable costs and benefits of net metering customers are already
92		included in the cost of service model through a reduction in Utah's apportioned revenue
93		requirement.
94		Any other pertinent costs and benefits could be considered outside the cost of
95		service model in some fashion, similar to the way avoided capacity costs are defined
96		outside of the Generation and Regulation Initiative Decision (GRID) model. For these
97		reasons, the cost of service model offers the best basic framework to use for calculation
98		of costs and benefits of net metering to the utility and its customers.
99		Cost of Service Framework
100	Q:	Will you describe the Division's proposed cost of service approach and how the
101		Commission can use it as a framework for future proceedings?
102	A:	Yes. As I previously described, the Division recommends conducting two cost of
103		service studies. While the Division's initial proposal is to focus on residential customers,
104		the concept could be expanded to include non-residential net metering customers in the

105 future.

106	In the first study, net metering customers would be treated as full requirements
107	customers. That is, their total loads (their total on site usage including their own
108	production and that taken from the Company) would be included in the Company's
109	revenue requirement and the cost of service models. For this first study, any excess on-
110	site generation would be ignored, that is, the excess generation would not be used or
111	recognized as a decrement to both Utah's total demand and energy loads or to any
112	classes' loads. The total revenue requirement allocations, including the allocation
113	factors, to Utah and to the classes would be preserved for comparison to results from a
114	second run of the models.
115	In the second study, net metering customers would be treated or entered into
116	the models at their net loads, including any excess generation. ² A comparison of the
117	results from the two studies would indicate the benefits from net metering to Utah and
118	to the specific customer or rate class. Other costs and benefits not captured in the
119	Company's revenue requirement or costs of service models that naturally fall under a
120	cost of service study umbrella, could be evaluated separately. For example, the
121	Company has previously demonstrated that because fixed costs are collected through
122	volumetric rates, these costs are partially shifted to non-net metering customers and

² It is not clear that the Company can at this time adequately forecast excess generation from net metering customers. Additionally, it may be preferable to leave out excess generation from the studies so as not to create incentives for customers to purposely over-size systems for the purpose of net metering.

123		are reflected in higher energy rates for all customers within the class.
124		Further details of how the studies are to be conducted and what costs and
125		benefits to include can be determined once the Commission makes a final decision on
126		the framework. Such an approach will necessitate more decisions about how to
127		construct the studies and properly identify costs assignable to the specific group of
128		customers.
129	Q:	Is the Division advocating creating a new class of customers - net metering customers?
130	A :	Not at this time. More information about net metering customers' load profiles
131		is needed before one can determine to what extent such customers differ from existing
132		rate classes. The Company's current load research study should provide data that will
133		help address that issue. However, nothing in the Division's suggested framework
134		requires or prohibits the creation of a new class. The cost of service framework is useful
135		for identifying the costs and benefits in either scenario. The result of the inquiry can
136		then be used in constructing charges and credits for such customers regardless of
137		whether net metering customers remain under Schedule 1 or are separated into their
138		own class.
139		Complexities of Distributed Generation
140	Q:	Will you summarize for the Commission some of the complexities of DG?
141	A:	Yes. DG of the type operated by most net metering customers is solar
142		photovoltaic (PV) generation. Without storage, such generation uses the utility
143		infrastructure in unique ways. Generally speaking, it appears that the intermittent

8

144	nature of this type of DG results in relatively unstable loads with little measureable
145	reduction in peak load. Further, with DG, the utility has to be concerned about system
146	reliability, balancing of the system and unintentional islanding ³ to name a few issues.
147	At lower penetration levels, the aforementioned differences are not a
148	considerable problem for the utility. However, as higher DG penetrations are reached,
149	utilities may begin to see effects such as additional wear and tear on distribution system
150	equipment, needs for substation upgrades, re-conductoring of power lines, added safety
151	equipment for systems and personnel and Front Office Transactions (FOTs) to keep the
152	system balanced. ⁴
153	Depending on the type and class of generation resource, DG penetration levels
154	can change the efficiencies of thermal power plants because of different usage and
155	cycling profiles. ⁵ These possible inefficiencies could be captured in the Division's
156	proposed framework as changes in costs as a result of DG.
157	In reality, DG on any circuit served by the utility can potentially cause
158	operational problems for the utility and its customers. Conversely, DG on a circuit can
159	potentially help the utility and its customers. Either way, DG requires more attention
160	than single-direction dispatchable energy from the utility leading to additional costs

³ Islanding is when the grid goes offline for whatever reason but DG resources continue to supply power keeping portions of the distribution system energized.

⁴ See "WWSIS." (September 2012). NREL. <u>http://www.nrel.gov/docs/fy12osti/55999.pdf</u> and "Impacts of Wind and Solar on Fossil-Fueled Generators." (August 2012). NREL. <u>http://www.nrel.gov/docs/fy12osti/53504.pdf</u>. 5 Ibid.

161 offset by benefits as the utility keeps the system balanced and reliable.⁶

162 Q: Do DG customers rely on the Company's transmission and distribution grid?

163 Yes. There are several ways in which net metering customers use or rely on the **A**: grid to support their net metering. For example, net metering customers may rely on 164 165 the grid to synchronize their system and provide reliable power by maintaining the frequency and voltage. Net metering customers may also rely on the grid to supply the 166 167 necessary amperage to start appliances or other electric devices with high startup 168 requirements. Excess generation is put to the grid during periods of generation and 169 pulled from the grid when systems aren't generating to meet that same customer's load 170 requirement. When this excess generation is credited to the net metering customer, the 171 grid essentially provides the net metering customer virtual storage. Finally, the 172 Company provides backup power and services to net metering customers when their 173 systems' production is insufficient to meet their immediate loads anytime of the day or 174 during less than optimal atmospheric conditions. 175 While the Division has done some research on these issues, we have not found 176 any evidence to definitively quantify them. While we do not fully understand the cost 177 implications and impacts at this time, these are the types of costs that could be included 178 under the cost of service framework as more information becomes available. 179 Do you believe the utility receives benefits as a result of DG customers? **Q**:

⁶ See "WWSIS-2." (September 2012). NREL. http://www.nrel.gov/docs/fy13osti/57874.pdf.

180	A:	Yes. The benefits provided by net metering to the grid include avoided energy
181		costs, avoided capacity costs, avoided reserve capacity costs, avoided transmission and
182		distribution costs, and avoided line losses. To the extent these benefits are not captured
183		in a typical cost of service model run, the Commission and parties will need to consider
184		how to incorporate them into the cost of service framework in future proceedings.
185		Other types of costs and benefits, such as those occurring because of future
186		development of smart inverters or other technologies that change generation and load
187		profiles, can also be incorporated later as they are better understood. ⁷
188	Q:	Do net metering customers reliably offset system peak load?
189	A:	The data we have does not indicate meaningful offsets to system peak loads.
189 190	A:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak,
189 190 191	Α:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak, net metering customers do not yet offer a steady and predictable offset to system peak
189 190 191 192	Α:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak, net metering customers do not yet offer a steady and predictable offset to system peak load that can be relied upon in capacity planning at any level despite some potential
 189 190 191 192 193 	Α:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak, net metering customers do not yet offer a steady and predictable offset to system peak load that can be relied upon in capacity planning at any level despite some potential coincidental contributions.
189 190 191 192 193 194	Α:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak, net metering customers do not yet offer a steady and predictable offset to system peak load that can be relied upon in capacity planning at any level despite some potential coincidental contributions. While limited in application, in 2010, the Company commissioned a study ⁸ of a
 189 190 191 192 193 194 195 	Α:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak, net metering customers do not yet offer a steady and predictable offset to system peak load that can be relied upon in capacity planning at any level despite some potential coincidental contributions. While limited in application, in 2010, the Company commissioned a study ⁸ of a single circuit in the North-East corner of the Salt Lake valley where one hundred percent
 189 190 191 192 193 194 195 196 	Α:	The data we have does not indicate meaningful offsets to system peak loads. Whether in terms of monthly coincident peak, annual system peak or even class peak, net metering customers do not yet offer a steady and predictable offset to system peak load that can be relied upon in capacity planning at any level despite some potential coincidental contributions. While limited in application, in 2010, the Company commissioned a study ⁸ of a single circuit in the North-East corner of the Salt Lake valley where one hundred percent of usable rooftop space was devoted to distributed solar PV generation. The Company

⁷ See "Advanced Inverter Functions to Support High Levels of Distributed Solar." (November 2012). NREL. <u>http://www.nrel.gov/docs/fy15osti/62612.pdf.</u>

⁸ See the Company's "Smart Grid Pilot Solar Energy Study." (January 2011).

http://www.psc.utah.gov/utilities/electric/13docs/13035184/257447Exhibit%20A%20to%20Marx%20Rebuttal%20T estimony%20-%204_Exhibit_RMP_DLM_1R%206-26-2014.pdf.

198		on the circuit under study was producing less than seven percent of the needed system
199		peak load requirement. ⁹ The solar peak capacity contribution occurred earlier in the day
200		as shown in DPU Exhibit 1.2. Of course, atmospheric conditions and the timing and
201		magnitude of the daily system peak can swing that number up or down. The point is
202		simply that a large consistent reduction to capacity needs does not seem to be present
203		even on broad penetrations. Some increment of capacity, however, might be reliable
204		with wide enough penetration and geographic dispersion.
205		The Company's study concluded that even at the high penetration assumptions,
206		needed distribution infrastructure upgrades in that particular area would not be
207		avoided. Furthermore, under realistic assumptions of ramp or uptake rates of roof-top
208		solar by local residents, the needed upgrades would not be significantly delayed.
209		Application of Demand Side Management Tests
210	Q:	Do you recommend that the Commission utilize DSM tests to determine costs and
211		benefits of net metering?
212	A:	No. The Division does not find DSM tests effective when used as an analytical
213		framework for evaluating net metering costs, benefits, and charges.
214	Q:	In previous comments, the Division tentatively supported the use of the DSM tests.
215		Why has the Division changed its position?
216	A:	Modifications to the tests would be needed to capture the dynamics of DG to

⁹ See the Company's "Neighborhood Solar-Ability of neighborhood solar to defer new electrical facilities." Power Point Presentation. Available upon request.

217		make the tests applicable in the net metering cases. Such modifications would be
218		significant enough that the tests, while sharing some nomenclature, would no longer be
219		DSM tests if they were to be useful for evaluating the costs and benefits of net metering
220		programs.
221		Additionally, as previously mentioned, while use of the DSM tests with significant
222		modifications may lead to some measure of costs and benefits, those measurements
223		will not readily transfer to a reasonable rate structure. Rather than making significant
224		changes to existing tests designed for a different purpose, the Commission should use
225		the more closely rate-design-related cost of service approach the Division recommends.
226		Division-Led Workgroup Sessions
227	Q:	Will you briefly summarize the four workgroup sessions held with the parties, a
228		description of which is provided in Appendix A to this testimony?
229	A:	Yes. First, the Commission's statement ¹⁰ that it was seeking to establish a
230		framework was not clear to participants. Whether the Commission intends to emerge
231		from this docket with a formula into which data can be inserted to arrive at a net cost or
232		benefit, merely a general approach to valuation of the Company's net metering
233		program, or something else is still not clear some of the participants. As a result of this
234		confusion, it was not clear what the goal of the workgroup sessions should be.
235		The workgroup never reached a consensus on applicable costs and benefits to be

^{10 &}quot;In the next step, we intend to establish the appropriate analytical framework for making the required determinations under Utah Code Ann. § 54-15-105.1." Commission's "Notice" issued March 9, 2015 at p. 1.

236		considered or how to bill and compensate net metering customers for participating in
237		the net metering program without impacting non-net metering customers. Although the
238		workgroup sessions were informative, the outcome and usefulness of the workgroup
239		was inconclusive, ending in no agreement between the parties.
240		Conclusion
241	Q:	Please summarize the Division's recommendations.
242	A:	The Commission should adopt a framework based on cost of service principles.
243		Such principles are widely known and used. They can be supplemented as necessary as
244		more data concerning net metering customers' effects on the system and other types of
245		customers becomes available. Some of the identifiable and quantifiable costs and
246		benefits are already included in the revenue requirement calculation and cost of service
247		model. Those costs and benefits should be identified so they are not counted twice. Any
248		other appropriate costs and benefits not already included in the revenue requirement
249		process should be identified and considered along with the cost of service model as
250		proposed by the Division as the study proceeds.
251		As the Commission determined in its July 1, 2015 order, the relevant costs and
252		benefits are judged from the point of view of the utility and its other customers. The net
253		metering customers should be compensated fairly for their excess generation supplied
254		to the grid while other customers should not bear additional costs as a result of net
255		metering customers' unique use of the electrical system.
256		Finding the balance between compensating net metering customers while

14

- 257 keeping the utility healthy to provide clean reliable power is not an easy task. Solving
- 258 this dilemma will likely get harder as DG penetration increases. The Division's proposed
- 259 framework allows using a well-known tool to evaluate costs and benefits of the net
- 260 metering program with whatever available data exists now and at the time of future
- 261 filings. As additional evidence emerges, it can be factored into the framework without
- 262 requiring current speculation about unknown cost and revenue impacts.
- 263 Q: Does this conclude your direct testimony?
- A: Yes it does.