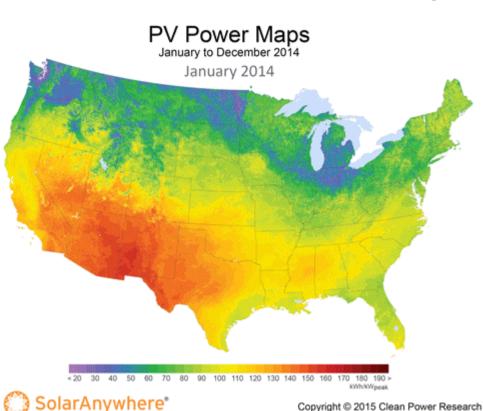


Net Metering Workgroup Session I

Docket No. 14-035-114


April 27, 2015

Prepared for

Utah Department of Commerce Division of Public Utilities

Prepared by

Ben Norris, Clean Power Research on behalf of Utah Clean Energy

2014 Average Monthly PV Power Map

Dual-Atis tracher

ne = South)

to 1.750

PV System

Ranges Select

SolarAnywhere © 2015 Clean Power Research www.cleanpower.com

Agenda

py System

Solar characteristics in Utah

to 1.750

- Impacts of solar in the distribution system
- Differences between utility-scale and distributed solar

Dual-Alis Tracks

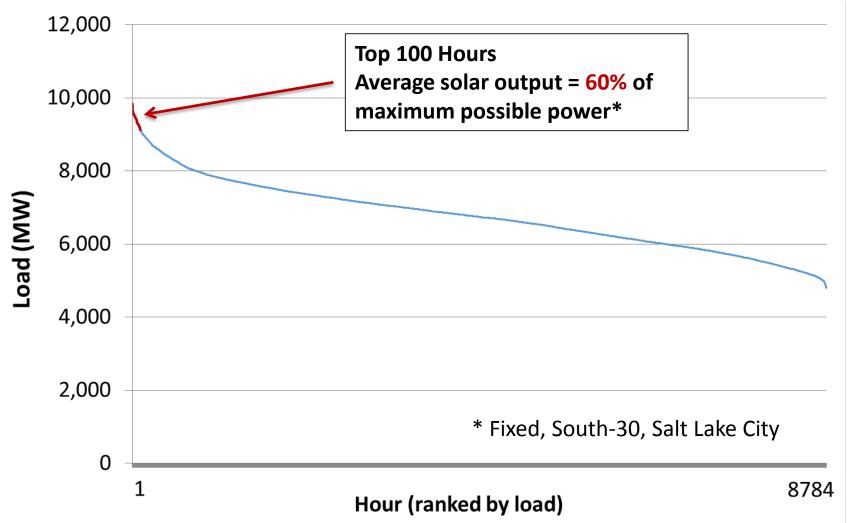
Solar Characteristics in Utah

pv System

Ranges C Select

to 1.750

Dual-Alis Trackes


Load Match Between Solar and System

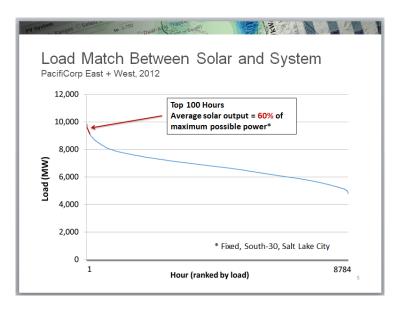
Dual-Atis traction

PacifiCorp East + West, 2012

to 1.750

pv System

How to Improve Load Match Analysis


Dual-Atis Traches

 For generation coincidence, should use load data from <u>PacifiCorp East</u> load balancing area (not available to public)

to 1.750

by System

- For distribution coincidence, should use load data from <u>RMP Utah</u> (not available to public)
- Solar modeling should be based on fleet data, rather than a single system

Production Profiles by Orientation

Dual-Atis Trautur

s = South)

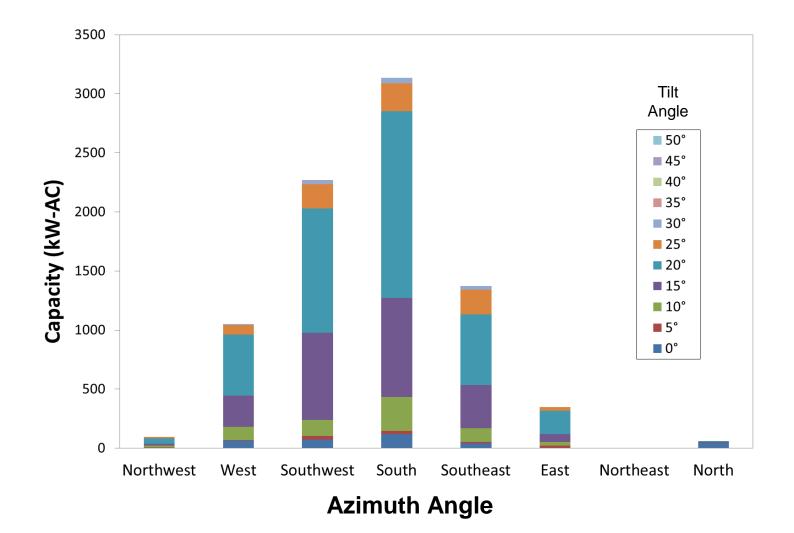
(For illustration)

Selecc

10 1.750

pv System

Capacity "Buckets" by Orientation (and location)


Dual-Alis Trackes

(Austin Energy – used for illustration)

10 1.750

Ranges C Select

pv System

Why do Fleet Modeling? SDG&E peak day, 2012 (September 14)

10 1.750

Dual-Atis traune

s South)

Oselect

pv System

4,500 1.5 SDG&E San Diego Load South-30 1.2 (SolarAnywhere) PV Ouput (MW per MW-AC) **ELCC 56%** 3,000 0.9 Load (MW) SDG&E Fleet (FleetView) **ELCC 47%** 0.6 1,500 San Diego South-30 0.3 (PVWatts/TMY2, 1968) **ELCC 43%** 0 0 6:00 12:00 18:00 Hour Ending (PST)

Impact on 2012 Peak Load Day (Preliminary) PacificCorp East+West, July 12, 2012

s = South)

Dual-Atis traction

pv System

Select

to 1.750

12,000 10,000 8,000 Load (MW) 6,000 -Total Load 4,000 - Net (50 MW Dist Solar - All States) Net (200 MW Dist Solar - 2024 PacifiCorp IRP Forecast) 2,000 Net (1000 MW Dist Solar) 0 6:00 12:00 18:00 HE (MST)

Impacts of solar in the distribution system

pv System

Ranges Select

to 1.750

Dual-Alis Tracke

Hawaiian Electric Experience

Dual-Atis Traction

to 1.750

by System

Select

Hawaiian Electric has the <u>highest DG penetration in the nation</u>. A company filing to the state PUC on DER Policies, Jan 20, 2015, Docket No. 2014-0192:

- Proposes to raise circuit penetration threshold for transient overvoltage from <u>120%</u> of "gross minimum daily load" to <u>250%</u> based on inverter testing (load rejection overvoltage, "LRO") with NREL, EPRI, and Solar City.
- Proposes to monitor impacts on safety and reliability (circuit and system).
- Proposes requiring advanced inverters.
- Proposes to make strategic and cost-effective capital investments to upgrade circuits to support increased thresholds. Seeks collaboration with stakeholders to identify high demand / high benefit circuits.
- Proposes that costs be treated as grid improvements that benefit all customers (paid by all, not just those installing DG).

Utah PV Penetration

to 1.750

Dual-Atis Tractor

e = South)

Select

PV System

	Utah (2014) 9 – 15 ¢/kWh	Utah, 10-yr forecast (2024)	California ISO (2014) 16-33 ¢/kWh	Hawaiian Electric (Oahu, 2014) 25-28 ¢/kWh
[A] Installed BTM Solar	14 MW	175 MW ^[2]	5,655 MW ^[4]	283 MW ^[6]
[B] Peak Load	5,024 MW ^[1]	5,935 MW ^[3]	45,089 MW ^[5]	1,200 MW ^[7]
Penetration = [A] / [B]	0.3%	2.9%	13%	24% (85 x Utah)

[1] Non-coincident Jurisdictional Peak for Utah, 2014, from PacifiCorp 2015 IRP, Table A.6.

[2] PacifiCorp 2015 IRP (Utah only), developed by Navigant.

[3] Assumes 10-year forecasted average coincident peak load growth rate for Utah (1.68% per year), 2015-24, from PacifiCorp 2015 IRP, Table A.2.

[4] Compiled by Clean Power Research (MW-DC) for PG&E, SCE and SDG&E.

[5] California ISO.

[6] HECO, filing to PUC 1/20/2015.

[7] HECO 2013 IRP.

Technical Interconnection Issues

Dual-Atis Traches

- Voltage fluctuations
 - Fluctuations in voltage may be caused by cloud transients, requiring additional voltage regulation
 - Aggregations of systems can smooth output
 - Advanced inverters can mitigate

to 1.750

- Circuit protection not designed for backfeed
 - With DG, power can flow in both directions
 - May require upgrades to protective devices and new coordination (protection designs were based on one-way flow only)
- Distribution transformer sizing
 - Output of solar may exceed the rated capacity of the existing transformer
 - May require upgrade to accept higher power

Advanced Inverters

to 1.750

Dual-Atis Traction

by System

- Advanced inverters can:
 - Act like variable capacitors (source or sink reactive power) mitigate voltage swings
 - Provide voltage and frequency ride through improve system reliability
 - If used, would not only mitigate PV impacts, but potentially improve stability and reliability
- "Advanced" inverters use <u>old technology</u>, but <u>new interconnection</u> standards.
 - Rules do not currently allow inverters to control voltage. New standards are being developed by IEEE P1547 Working Group. Utah may wish to keep abreast of this.

Cost impacts

by System

 Upgrades to voltage regulation, distribution transformers, protective devices

Dual-Atis Traction

to 1.750

- Highly site specific
 - Requirements are specific to circuit, location and proposed installation
 - Some installations require significant upgrade, some require nothing (e.g., small PV system on heavily loaded circuit will not have significant impact)
 - Depends on other DG already installed ("hot potato")

Difference between utility-scale and distributed solar

pv System

Ranges Userect

to 1.750

Dual-Alis Tracker South)

Design Differences: Utility Scale vs DG

Dual-Atis Traction

Orientation

by System

• DG often conforms to roof slopes

to 1.750

- Commercial vs residential fleet shapes
- Tracking
 - Utility scale often designed to track the path of the sun
- Aggregation
 - Distributed systems:
 - Are more widely dispersed (more smoothing)
 - Are higher in redundancy (more reliability)

Valuation Differences: Utility Scale vs Distributed

e = South)

Dual-Afis Traund

(Illustrative - categories may not apply to Utah)

to 1.750

Select

pv System

Distributed Solar		Gross Value	Match		Loss Savings Factor			Distributed PV Value	
		A	×	B	×	(1+C)	=	D	
		Avaided Evel Cost	(\$/kWh)		(%)		(%)		(\$/kWh)
_		Avoided Fuel Cost	C1				LSF-Energy		V1
Energy		Avoided Variable O&M Cost	C2				LSF-Energy		V2
Supply		Avoided Fixed O&M Cost	C3		EC		LSF-EC		V3
		Avoided Gen. Capacity Cost	C4		EC		LSF-EC		V4
Transmission		Avoided Trans. Capacity Cost	C5		EC		LSF-EC		V5
and Distribution		Avoided Dist. Capacity Cost	C6		PLR		LSF-Dist		V6
Environmental		Avoided Environmental Compliance	C7				LSF-Energy		V7
		Avoided SO ₂ Emissions	C8				LSF-Energy		V8
Customer		Avoided Fuel Price Uncertainty	C9				LSF-Energy		V9
									Tatal

Total

Valuation Differences: Utility Scale vs Distributed

- South)

Dual-Atis traction

(Illustrative - categories may not apply to Utah)

to 1.750

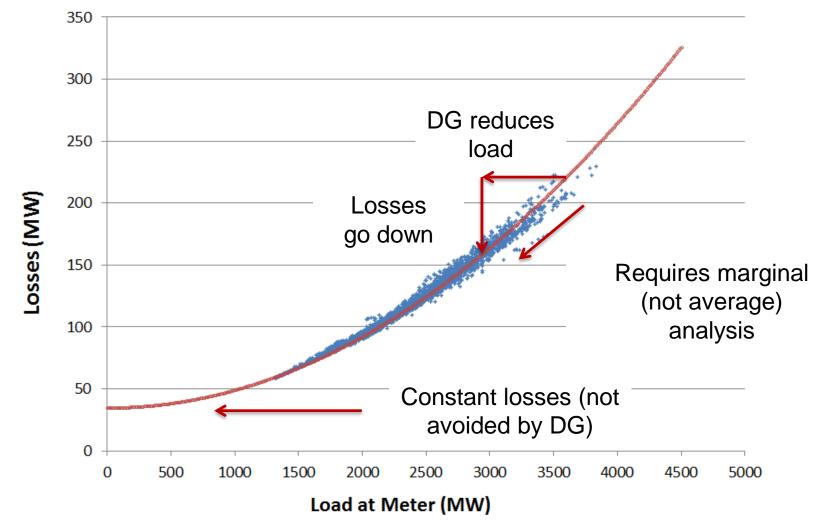
Select

pv system

Utility Scale Solar		Gross Match Value Factor		Loss Savings Factor			Distributed PV Value		
		Α	×	В	×	(1+C)	=	D	
		(\$/kWh)		(%)		(%)		(\$/kWh)	
		Avoided Fuel Cost	C1				LSF-Energy		V1
Energy		Avoided Variable O&M Cost	C2				LSF-Energy		V2
Supply		Avoided Fixed O&M Cost	C3		EC		LSF-EC		V3
		Avoided Gen. Capacity Cost	C4		EC		LSF-EC		V4
Transmission		Avoided Trans. Capacity Cost	C5		EC		LSF-EC		V5
and Distribution		Avoided Dist. Capacity Cost	C6		PLR		LSF-Dist		V6
Environmontal		Avoided Environmental Compliance	C7				LSF-Energy		V7
Environmental		Avoided SO ₂ Emissions	C8				LSF Energy		V8
Customer		Avoided Fuel Price Uncertainty	С9				LSF-Energy		V9
									—

Total

Avoiding T&D Losses with DG


Dual-Atis traction

= South)

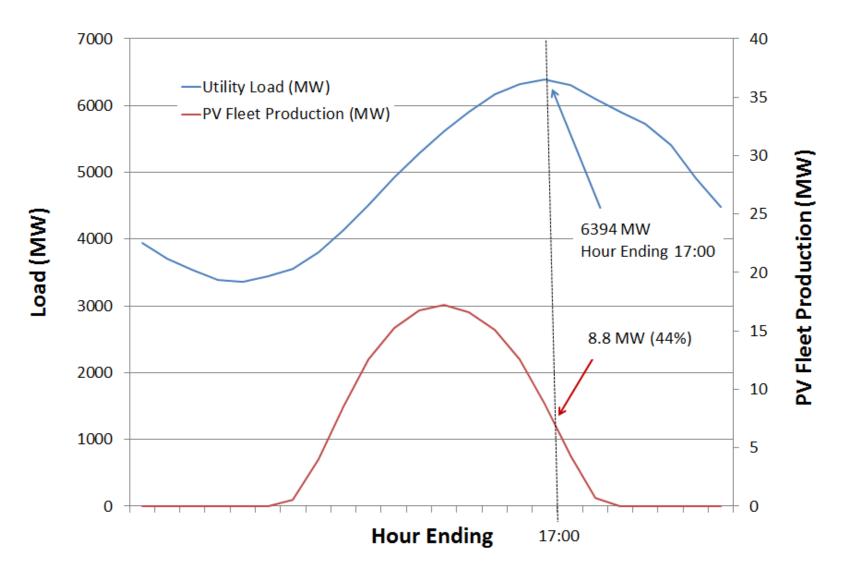
to 1.750

py System

Select

Avoided Distribution Capacity Costs

s South)


Dual-Afis Trauna

Peak Load Reduction – Illustrative (not Utah loads)

to 1.750

pv System

Select

What Costs Should Be Included in the Distribution Capacity Value Calculation?

Dual-Atis traction

to 1.750

Only capital costs

pv System

Only equipment that PV can defer/avoid ("capacity related")

Example 1: SCADA Communications Gear

Analysis: This equipment is needed to provide operators with real-time information about the grid. It is needed whether PV is present or not.

Conclusion: Do not include this as a deferrable cost.

Example 2: Substation Transformer

Analysis: This equipment is needed to serve all load in the area. If the load reaches the transformer capacity limit, it has to be replaced with a larger unit. DG can reduce the load on this equipment and potentially delay the investment of a new unit.

Conclusion: Include this as a potentially deferrable cost (depends on load match).

Thank you

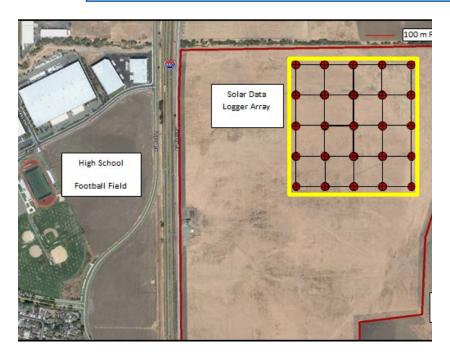
Ben Norris ben@cleanpower.com

Appendix

3

PV System

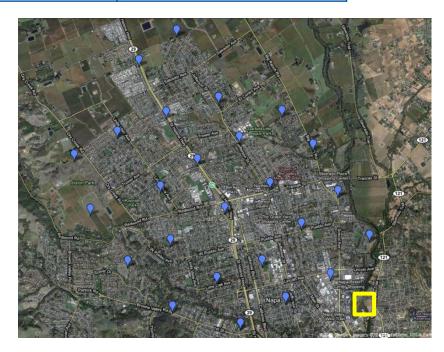
Ranges Select


to 1.750

Dual-Atis Trackes

Measured data at two high-density networks

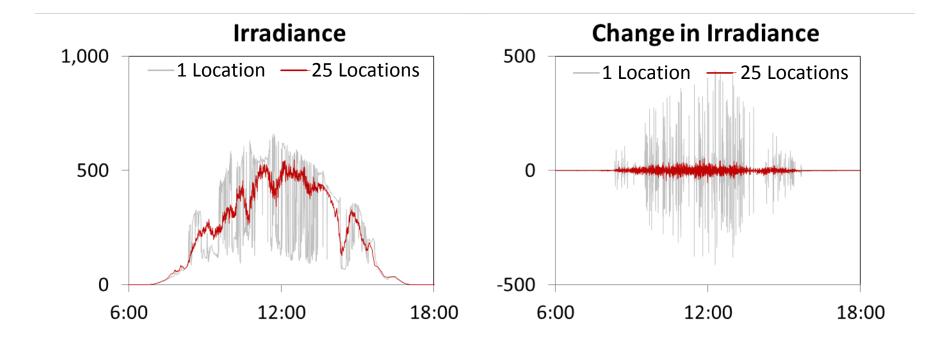
Dual-Alis Tracks


Location	Cordelia Junction, CA	Napa, CA			
Grid Size	400 m x 400 m	4 km x 4 km			
Representative Capacity	4 MW	400 MW			
Data collection rate	10 seconds	10 seconds			
Data collection period	11/6/10 to 11/12/10	11/19/10 to 11/23/10			

pv System

Select

to 1.750

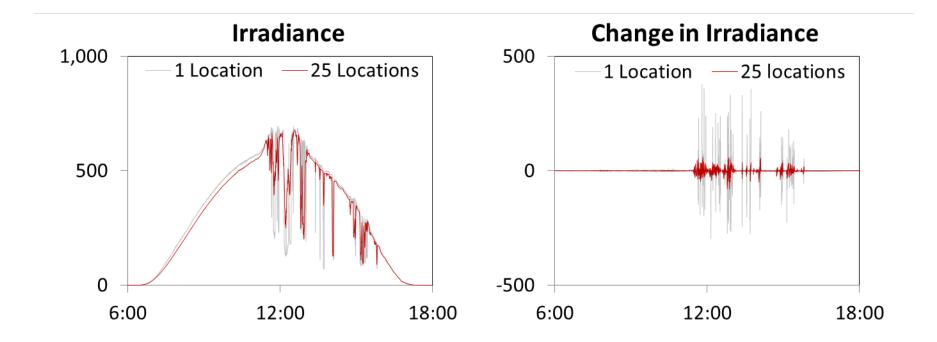

10-second data in 4 km grid (11/21/10)

Dual-Agis Tracher

to 1.750

PV System

Combining output from multiple locations reduces variability


10-second data in 400 meter grid (11/10/10)

Dual-Atis traction

to 1.750

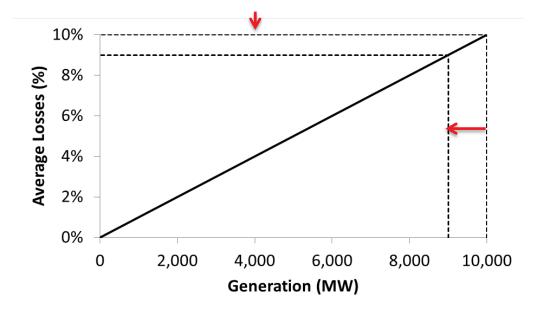
PV System

Combining output from multiple locations reduces variability

Generation Relates Linearly to Avg. Losses

a South)

Example of marginal loss savings calculation for a given hour


Dual-Atis traction

pv System

Ranges

Select

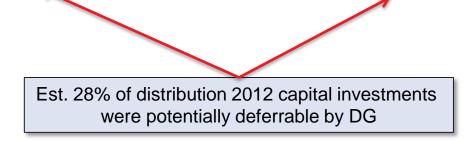
to 1.750

	Without PV	With PV	Change	
Generation	10,000 MW	9,000 MW	1,000 MW	
Avg. Losses	10%	9%		
Losses	1,000 MW	810 MW	190 MW	
Loss Savings			19%	

Example Account Evaluation

Dual-Atis Traction

e south)


to 1.750

pv System

OSelect

Ranges

		Additions (\$)		Net Additions (\$)	Capacity	
Account	Account Name	[A]	[R]	= [A] - [R]	Related?	Deferable (\$)
	DISTRIBUTION PLANT					
360	Land and Land Rights	13,931,928	233,588	13,698,340	100%	13,698,340
361	Structures and Improvements	35,910,551	279,744	35,630,807	100%	35,630,807
362	Station Equipment	478,389,052	20,808,913	457,580,139	100%	457,580,139
363	Storage Battery Equipment					
364	Poles, Towers, and Fixtures	310,476,864	9,489,470	300,987,394		
365	Overhead Conductors and Devices	349,818,997	22,090,380	327,728,617	25%	81,932,154
366	Underground Conduit	210,115,953	10,512,018	199,603,935	25%	49,900,984
367	Underground Conductors and Devices	902,527,963	32,232,966	870,294,997	25%	217,573,749
368	Line Transformers	389,984,149	19,941,075	370,043,074	10%	37,004,307
369	Services	267,451,206	5,014,559	262,436,647		
370	Meters	118,461,196	4,371,827	114,089,369		
371	Installations on Customer Premises	22,705,193		22,705,193		
372	Leased Property on Customer Premises					
373	Street Lighting and Signal Systems	53,413,993	3,022,447	50,391,546		
374	Asset Retirement Costs for Distribution Plant	15,474,098	2,432,400	13,041,698		
TOTAL		3,168,661,143	130,429,387	3,038,231,756		\$ 893,320,481

