Sophie Hayes (12546) Utah Clean Energy 1014 2nd Ave. Salt Lake City, UT 84103 801-363-4046 *Attorney for Utah Clean Energy*

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

In the Matter of Review of Electric Service	DOCKET NO. 14-035-140
Schedule No. 38, Qualifying Facilities	
Procedures, and Other Related Procedural	Utah Clean Energy Exhibit 1.0
Issues	REDACTED

DIRECT TESTIMONY OF KEN DRAGOON ON BEHALF OF UTAH CLEAN ENERGY

REDACTED

April 28, 2015

RESPECTFULLY SUBMITTED, Utah Clean Energy

Sophie Hayes Counsel for Utah Clean Energy

1 INTRODUCTION

- 2 Q: Please state your name and business address.
- 3 A: My name is Ken Dragoon. My business address is 3519 NE 15th Avenue, #227,
- 4 Portland, Oregon 97212.

5 Q: By whom are you employed and in what capacity?

- A: I am the Director and proprietor of Flink Energy Consulting LLC, a private
 consulting business whose mission is to advise a diverse clientele on matters relating to
 electric power planning and analysis, specializing in issues relating to renewable energy
- 9 sources.
- 10 Q: On whose behalf are you testifying?
- 11 A: I am testifying on behalf of Utah Clean Energy (UCE).

12 Q: Please provide your professional experience and qualifications.

I am the Director and proprietor of Flink Energy Consulting LLC. I began Flink A: 13 14 Energy in October 2014; however my career in the power industry is in its fourth decade, having started at the Bonneville Power Administration (BPA) in 1982. I worked at BPA 15 in a number of capacities until 1996, ranging from power system planner and hydro 16 17 modeling to risk management and runoff forecasting. After BPA, I worked for Pacificorp, also in a number of capacities that included contract pricing and structuring analysis, risk 18 management, power system modeling, and renewable resource acquisitions. I performed 19 20 PacifiCorp's first wind integration cost study for its 2003 IRP. After nine years at PacifiCorp, I spent four years at Renewable Northwest Project (now Renewable 21 Northwest) as their Research Director, primarily working on wind integration and 22 23 integration cost issues. I spent two years each at the Northwest Power and Conservation

24	Council and at Ecofys, a sustainable energy consulting firm headquartered in The					
25	Netherlands. I authored a book on wind integration cost methods in 2010 ¹ and was an					
26	invited	coauthor to a second book on renewable energy integration published in 2014 ² . I				
27	have a	uthored or coauthored a number of articles relating to renewable resource				
28	integra	tion and capacity valuation methods, including two of the papers referenced in the				
29	Compa	any's direct testimony of witness Rick Link, Exhibit RTL-2 ³ . One of the papers				
30	was a	survey of wind power capacity valuation methods ⁴ . I hold a master's degree in				
31	physic	s from the University of New Hampshire, 1982.				
32						
33	Q:	Have you testified previously before this Commission?				
33 34	Q: A:	Have you testified previously before this Commission?				
	•					
34	A:					
34 35	A:	No.				
34 35 36	A: POSIT	No. FION & RECOMMENDATIONS				
34 35 36 37	A: POSIT Q: A:	No. TION & RECOMMENDATIONS Please summarize your position in this matter.				
34 35 36 37 38	A: POSIT Q: A: analys	No. TION & RECOMMENDATIONS Please summarize your position in this matter. PacifiCorp's results from their Capacity Factor Approximation Method (CFAM)				

¹ Valuing Wind Energy on Integrated Power Systems, Elsevier, September 2010

² *Renewable Energy Integration: Practical management of variability, uncertainty, and flexibility in power grids,* edited by Lawrence E. Jones, Academic Press, 2014.

³ See references [2] and [20] on pages 28 and 29 respectively of RMP_(RTL-s): *Comparison of Capacity Value Methods for Photovoltaics in the Western United States*, NREL, 2012.

⁴ Capacity Value of Wind Power, IEEE Transactions on Power Systems, May 2011, Keane, Milligan, et al.

⁵ Comparison of Capacity Value Methods for Photovoltaics in the Western United States, NREL, 2012. This presentation shows capacity values for solar well above 40% in eight of ten analyses. The two exceptions were in Portland General Electric's system (~30%) and Toronto (~30-45%).

42	Policy Committee (TEPPC) ⁶ . Because of this, and because a model's results are only as
43	good as the inputs and assumptions that are used in the modeling, I thoroughly examined
44	the underlying inputs and assumptions used by PacifiCorp in their capacity contribution
45	analysis in order to verify the validity of their results. My testimony addresses two major
46	issues with PacifiCorp's inputs and assumptions, which significantly affect their
47	calculated capacity values for wind and solar resources. My testimony does not include a
48	review of the LOLP analysis that was a precursor to PacifiCorp's CFAM analysis. My
49	silence on any component of the LOLP or CFAM analysis should not be construed as
50	agreement with the Company's methods, assumptions or results.
51	
51 52	The first issue has to do with applying the Capacity Factor methodology to the PacifiCorp
	The first issue has to do with applying the Capacity Factor methodology to the PacifiCorp system <i>as a whole</i> instead of focusing on the capacity contribution of East side resources
52	
52 53	system <i>as a whole</i> instead of focusing on the capacity contribution of East side resources
52 53 54	system <i>as a whole</i> instead of focusing on the capacity contribution of East side resources to meeting East side loads. If PacifiCorp could freely transfer power across its system
52 53 54 55	system <i>as a whole</i> instead of focusing on the capacity contribution of East side resources to meeting East side loads. If PacifiCorp could freely transfer power across its system during peak demand periods, their analysis would not have been problematic on this
52 53 54 55 56	system <i>as a whole</i> instead of focusing on the capacity contribution of East side resources to meeting East side loads. If PacifiCorp could freely transfer power across its system during peak demand periods, their analysis would not have been problematic on this point; however, PacifiCorp's system has practical transfer capability limitations at peak
52 53 54 55 56 57	system <i>as a whole</i> instead of focusing on the capacity contribution of East side resources to meeting East side loads. If PacifiCorp could freely transfer power across its system during peak demand periods, their analysis would not have been problematic on this point; however, PacifiCorp's system has practical transfer capability limitations at peak periods-to transfer resources from the East side to the West side. This suggests that no

⁶ Comparing Resource Adequacy Metrics (Conference paper preprint), Ibanez and Milligan, November 2014, NREL/CP-5D00-62847. The review found that TEPPC's assumed 60% capacity factor was applicable to the Arizona, New Mexico, and Nevada regions.

61	In other words, including West side winter time loss of load events in the calculation
62	unfairly dilutes meaningful capacity contributions of additional East-side renewable
63	resources. As I explain below, a more accurate estimate of the capacity value of resources
64	built on the East side (i.e., in the Rocky Mountain Power service territory) would be to
65	measure the ability of those incremental resources to reduce outages within the Rocky
66	Mountain Power territory, not within the combined system.

67

The second issue relates to PacifiCorp's planned maintenance schedule assumptions, 68 which are overly aggressive for **and** place too much emphasis on renewable 69 70 resource performance in that month, further diluting their effective capacity contribution 71 values. The Company's maintenance schedule assumptions results in a disproportionate 72 number of calculated loss of load events ______nearly _____ of the Company's annual loss of load events—due to a disproportionate amount of assumed thermal unit 73 maintenance in that month (planned maintenance outages than in any 74 75 other month).

76

I recommend that PacifiCorp re-run the study to correct these two major shortcomings. My analysis, based on the Company's data and calculations, estimates that the result of correcting these shortcomings would have a very large effect on the capacity value of renewable resources. It would slightly increase the capacity value for wind and also increase the capacity value for solar to values that are more in line with the values found

- in other analysis of solar capacity values in the arid west and the values found in NREL's
 meta-analysis of different methods⁷.
- 84

REVIEW OF PACIFICORP'S CAPACITY CONTRIBUTION STUDY

86 Q: Can you explain what the Capacity Factor Approximation Method is?

87 A: Yes. The capacity factor approximation method is one of several methods used to estimate the contribution of resources to meeting demand. Historically, when generation 88 89 was comprised mainly or entirely of dispatchable resources, utilities would simply add up 90 the nameplate capacities of their generating units and compare the total with peak 91 demand. Given that generating units break down and need maintenance, and because 92 peak demand is somewhat uncertain, utilities strove to maintain more generating 93 capability than expected peak demand. Maintaining power system adequacy requires 94 having more generating capability than expected demand by a buffer amount. This buffer amount is often termed the "Planning Reserve Margin." 95 96 Variable resources, such as wind and solar, have operating characteristics significantly 97 98 different from conventional resources, so utilities recognized a need to calculate capacity contribution values that were more consistent with and comparable to the capacity 99

100 contribution values of conventional resources in order to conduct accurate resource

- adequacy analysis. The Capacity Factor Approximation Method is one method of
- 102 calculating equivalent capacity contribution figures for variable energy resources.

⁷ ibid.

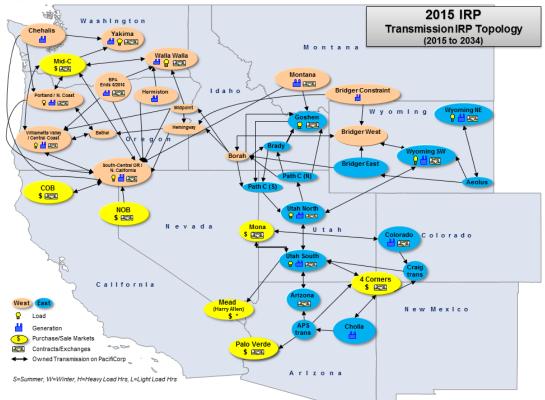
103

104	Q: Are you saying that methods to determine a capacity credit were devised to					
105	calculate the contribution of renewable energy resources for the purposes of					
106	computing resource adequacy?					
107	A: Yes. One megawatt of wind or solar generator nameplate capacity is not the same					
108	as one megawatt of a conventional resource nameplate capacity when it comes to meeting					
109	peak demand. Some means of taking account of the fact that these resources do					
110	contribute to system adequacy, though in a lesser way than conventional resources, was					
111	deemed necessary. The key here is coming up with a method to find a capacity value for					
112	renewable resources that can make them consistently comparable to conventional					
113	generation resources in meeting the planning reserve margin.					
114						
115	Q: How does the Capacity Factor Approximation Method Work?					
116	A: In effect, the capacity factor approximation method looks at the expected					
117	performance of variable resources at times when the utility would otherwise be short of					
118	energy to serve load. If the variable resources are expected to produce their maximum					
119	power capability at times when the utility would otherwise be short, they get a high					
120	credit. Conversely, if the utility is likely to be short at times when the resource is					
121	expected to produce very little power (e.g., solar power on winter nights), then the					
122	capacity credit is very low—potentially zero.					
123						

124 The capacity factor approximation method takes a weighted average of expected resource125 availability over hours that the utility is most likely to be short of meeting demand.

126	Weighting of resource availability is determined in relation to the likelihood that the				
127	power system will experience an outage in each hour of the year. Likelihood of outages is				
128	often determined, as the Company has done, by running a "stochastic" study in which a				
129	number of scenarios are examined. Each scenario consists of selections of loads and				
130	resource availability from some pre-determined probability distributions. In a reasonably				
131	adequate power system (one that has sufficient resources to meet demand under most				
132	circumstances), most hours will have zero outages. In only a few relatively extreme cases				
133	(e.g., high loads and high unit outages) will there be any outages.				
134					
135	As an example, assume that a study shows only two hours of the year where the utility				
136	was short. Say one of the hours is in the middle of the night when solar power is				
137	unavailable, and that the other hour happens to be in the middle of a summer day when				
138	the solar plant is expected to produce at 80% rated output. If the daytime outage is three				
139	times more likely to occur than the nighttime outage the Capacity Factor method would				
140	calculate the overall contribution as follows:				
141	(Relative Likelihood in Hour 1) X (Resource Availability in Hour 1) +				
142	(Relative Likelihood in Hour 2) X (Resource Availability in Hour 2) =				
143	25% X 0% + 75% X 80% = 60%				
144					
145	Q: What assumptions are critical to this calculation?				
146	A: There are two main components to the calculation—the weights established for				
147	each hour of the year, representing relative potential for shortfalls in meeting load, and				
148	the availability of resources in each of those hours. However, there is a less apparent				

assumption the Company makes that calls into question the appropriateness of theirapproach.


151

152	PacifiCorp's system is divided into a West-side balancing authority and an East-side					
153	balancing authority. The Company's application of the Capacity Factor Approximation					
154	Method implicitly treated the two sides of the system as though they were an integrated					
155	whole. This is in my view a critically important assumption because the Capacity Factor					
156	Approximation Method is not broadly applicable to systems with significant transmission					
157	constraints. It calls to question the validity of the results of PacifiCorp's analysis.					
158						
159	Q: Can you explain why applying the Capacity Factor Approximation Method					
160	to PacifiCorp's combined system is not appropriate?					
161	A: The two sides of PacifiCorp's system are relatively loosely connected by its					
162	transmission system. Because loads on the East side of the system (Rocky Mountain					
163	Power) tend to peak in the summer, surplus resources on the West side fill the					
164	transmission lines heading east. Generally there is more generating capability in the East					
165	than is needed in the East during the winter because loads are lower there at that time of					
166	year than in the summer; however, the practical effect of limited transfer capability going					
167	from east to west in the winter means that not all of those East-side resources are able to					
168	contribute to meeting West-side load.					

What this suggests is that *incremental* resources on the Rocky Mountain Power side ofthe system cannot affect resource adequacy in the West during the winter, just as resource

- additions on the West side can't help meet Rocky Mountain Power's summer peak
- demand. The figure below from PacifiCorp's 2015 IRP shows the two transmission paths
- across southern Idaho (Borah to Midpoint and Borah to Hemingway) that limit
- 175 PacifiCorp's East-West access⁸.

Figure 7.2 – Transmission System Model Topology

176

- 178 In effect, including West-side winter outages in the Capacity Factor Approximation
- 179 Method computation incorrectly values the actual contribution of East-side renewable
- 180 resources compared with East-side conventional resources—the original purpose of the

⁸ In the Company's response Confidential Attachment OCS 3.10-2 the Combined Borah Midpoint and Hemingway transfer capability

181	Capacity Factor Approximation Method. RMP's Capacity Factor Calculation workbook
182	shows that of all loss of load events occurring in the study happened in the
183	December through February period, when it is unlikely that any type of resource addition
184	on the East side would materially affect loads on the West side due to full transmission
185	capacity going from east to west.
186	
187	Example:
188	Assume that a system consists of an East and West side that are connected by a
189	1,000 MW transmission line that allows power to flow in both directions. Say that
190	the West side peaks in the winter time when the East side has 1,500 MW of
191	surplus power-generating capability in excess of what is needed in the East in
192	that hour. During a peak hour in the West, once 1,000 MWs of power fill the
193	transmission capability from east to west, the remaining East side resources can
194	no longer provide assistance. If the West is still short, adding another power plant
195	in the East only has the effect of making the East more surplus. It is this situation
196	that makes PacifiCorp's broad application of the capacity factor approximation
197	method misleading.

198

The purpose of developing a capacity contribution method is to assess the contribution of variable resources *relative to conventional generation*. Conventional generation located on the west side would not significantly contribute to meeting West-side loads because of the transmission constraints. A fair capacity valuation method seeks to set an equivalency between variable and conventional resources. Basing the calculations on PacifiCorp's

204	entire	system effectively compares variable resources to an impossible conventional
205	resour	ce located simultaneously on both sides of PacifiCorp's system. The effect is most
206	promin	nent for solar resources, substantially understating them on the East side of the
207	system	and overstating their capacity contribution to the West side. If there is
208	transn	ission congestion during peak demand hours, new conventional generation
209	located	l on the East side can't contribute to West side winter demand any more than the
210	solar p	lants.
211		
212	Q:	Are you certain that PacifiCorp's system is transmission-constrained during
213	winter	time loss of load events?
214	A:	I was not able to completely corroborate that conclusion from the available data
215	yet ⁹ , b	ut this has been a long-standing issue with the Company I am aware of from the
216	time th	at I worked there.
217		
218	Q:	Did you examine data supplied by the company that addresses this concern?
219	A:	Yes, although the transmission loadings are not yet available, I looked at the
220	Compa	any's response to DR OCS 3.10 ("Attachment OCS 3.10-3"). That set of Excel
221	workb	pooks purports to contain energy not served for each area in the model, in each hour,
222	for eac	h iteration.
223		

⁹ UCE submitted the following data request to PacifiCorp, for which we are awaiting a response: "Please provide transmission path loadings over each of the loss of load event hours."

246	system?
245	an East-side solar project providing electricity to the East side of the PacifiCorp
244	capacity value for solar would change if the capacity value was calculated based on
243	Q: Given the limited east to west transfer capabilities, did you calculate how the
242	
241	Attachment OCS 3.10-3 with their other analysis to fully understand their calculations.
240	We will need additional information from the Company to reconcile their response in
239	
238	primarily of industrial loads of the oil and gas development sector.
237	sector generally, they may not be applicable to the Wyoming area which consists
236	associated with assumptions around weather-driven uncertainties applicable to the energy
235	reading their data correctly, is reasonable. For example, if these loss of load events are
234	shown occurring in Wyoming on the East side. It is unclear whether this finding, if I am
233	Although there was a large percentage of them in April, the winter loss of load events are
232	Discounting the anomalous Colorado numbers left just over 1,000 loss of load events.
231	
230	Company's initial filing.
229	combined. These values are not consistent either in number or timing with the
228	energy not served there, in contrast to just over a thousand in the reset of the areas
227	most obvious anomaly was with the Colorado. There were more than 20,000 counts of
226	maintenance effects previously discussed. However, the data was not as expected. The
225	dominating in summer, with a separate significant grouping due to the
224	My expectation was to see west side outages dominating in winter, and east side outages

247	A: I was not able to do a complete analysis, but I was able to observe the effect of						
248	removing winter month outages from the computation. This represents a rough						
249	approximation of the effects of running an East-side only study under the assumptions						
250	that winter-time loss of load events occurred on the West side at times of transmission						
251	congestion.						
252							
253	Q: What is the effect on capacity contributions from removing winter-time loss						
254	of load events from RMP's calculation?						
255	A: The effect was greatest on Utah solar capacity values, increasing Milford Solar						
256	Fixed and Single Axis Tracking in the range of 10 to 13 percentage points to 44.4% and						
257	52%, respectively. Below is a table of the full results.						

- 258
- 259 Results from RMP Capacity Factor Calculation Workbook as submitted:

	Wind			Solar PV					
	West	East	Weighted Average	Lakeview, OR Fixed Tilt	Milford, UT Fixed Tilt	Average Fixed Tilt	Lakeview, OR Single Axis Tracking	Milford, UT Single Axis Tracking	Average Single Axis Tracking
Peak Capacity Contribution (PacifiCorp)	25.4%	14.5%	18.1%	32.2%	34.1%	33.1%	36.7%	39.1%	37.9%
Interim Capacity Contribution (Utah Commission)			20.5%			68.0%			84.0%

260

261

- 262 Results from RMP Capacity Factor Calculation Workbook, after removing
- loss of load events:

		Wind		Solar PV					
	West	East	Weighted Average	Lakeview, OR Fixed Tilt	Milford, UT Fixed Tilt	Average Fixed Tilt	Lakeview, OR Single Axis Tracking	Milford, UT Single Axis Tracking	Average Single Axis Tracking
Peak Capacity Contribution (PacifiCorp)		16.4%			44.4%			52.0%	
Interim Capacity Contribution (Utah Commission)			20.5%			68.0%			84.0%

265

266 Q: Please explain your methods and findings.

A: The values computed above were derived by simply setting all loss of load events to zero in the Company's workbook in the December through February period ("Hourly LOLP" worksheet, cells B3:Y61, B337:Y367). The workbook automatically recomputed the values above, found on the "Summary" worksheet in cells B1:K4. The result is an increase in solar capacity credit to 44.4% for fixed tilt and 52% for single axis tracking solar.

273

274 Q: What do you conclude from your analysis?

A: The analysis suggests that the Capacity Factor Approximation Method is 275 276 extremely sensitive to the assumptions used in the model and that consideration of the balancing area that resources serve is critical in accurately calculating the capacity value. 277 Solar resources are very effective in meeting east side loads, providing much more 278 279 capacity value relative to conventional resources than they are at providing winter capacity needs on the west side. If transmission is congested during peak demand 280 281 periods, solar provides much more value than the present study suggests. Transmission congestion becomes a key question. The Company's application of the Capacity Factor 282 Approximation system is not accurate when there are significant transmission limitations. 283 284 East side resource capacity contribution should be evaluated relative to east side 285

conventional generation. That means *excluding* West side loss of load events from the

287 calculation that occur at the same time transmission is constrained. In my opinion, it is

288	inclusion of the West side loss of load events that accounts primarily for the Company's
289	method arriving at numbers far lower than other calculations of this nature. To
290	accurately characterize the capacity value of East-side renewable energy resources, the
291	capacity value should be calculated based on the East side balancing area.
292	
293	Q: If there were unlimited transfer capability between the East and West side of
294	the system, how might this change the capacity value of solar on the East side of the
295	system?
296	A: That would be an interesting study, but I can't easily estimate what the effects
297	would be, because it would require rerunning the LOLP study with unlimited transfer
298	capabilities. The model would find fewer loss of load events, and it might be necessary to
299	run more than 500 iterations in order to get reliable LOLP statistics. How it affects a
300	summer peaking resource like solar depends on whether the majority of loss of load
301	events occur on the west side in the winter, or the east side in summer. The latter would
302	tend to increase the capacity value of solar, whereas the former would reduce it. That
303	said, unless there actually are unlimited transfer capabilities, the analysis would give
304	results for loss of load probability and capacity value that do not reflect PacifiCorp's
305	actual circumstances.

306

307 Q: Are there other issues with study assumptions?

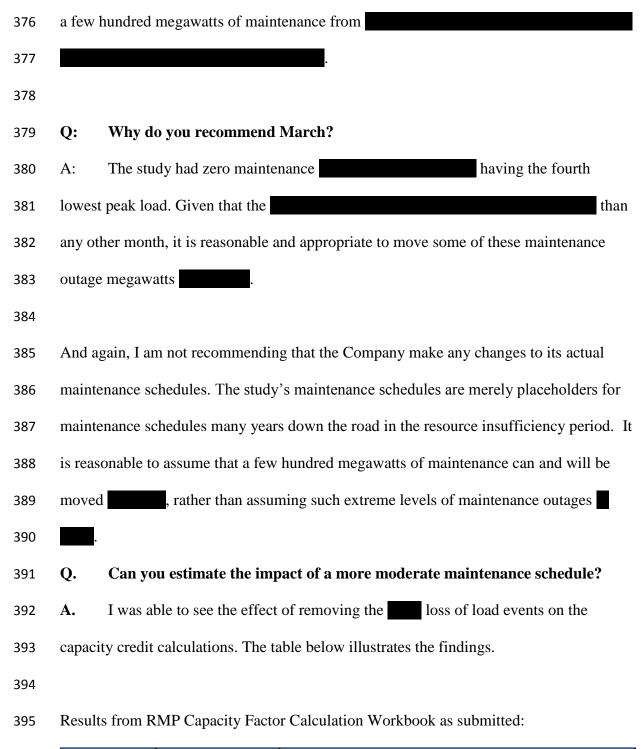
A: There are a few other technical issues, but the one that has the largest effect after
the combined-system assumption above, is the undue effect of assumed maintenance
schedules on the results. Certain loss of load events in the Company's study are an

- artifact of the company's overly-aggressive assumptions about the level of maintenance
- 312 outages
- 313

314 Q: How do maintenance schedules affect the results?

A: Maintenance schedules are periods of time when generators are intentionally 315 316 taken out of service for routine or special maintenance needs. If at all possible, generators are only taken out of service at times of the year when they are least needed (and loss of 317 load probability is lowest), and when market prices (e.g., for purchasing replacement 318 319 power) are lowest. From the Company's data request responses in OCS 2.3 and 2.7, it is 320 apparent that the maintenance schedules followed the usual pattern, concentrating maintenance outages in ; three of the four lowest peak demand 321 322 months (a smaller amount of maintenance is also scheduled in). Scheduling maintenance in that way is designed to minimize potential shortfalls in the ability to meet 323 load. 324

325


However, there can also be too much of a good thing. If too much maintenance is scheduled in a single month, it can result in additional loss of load events. In other words, maintenance outages are normally set to have no effect on the ability to meet load, but it can result in additional loss of load if too many generators are taken out of service at a given time. In this case, it appears that PacifiCorp could have avoided loss of load events by moving

332 (which I discuss further below).

334	Q: How did the Company's assumed	maintenance schedule affect the results of
335	their study?	
336	A: Again, according to OCS 2.7, the co	ompany used an assumed maintenance
337	schedule with a disproportionate amount of	outages in
338		. The effect of this is fairly dramatic. Again
339	from the Company's Capacity Factor Calcu	lation workbook, almost
340	. In contrast, e	ven though the Company's loads are
341	of loss of	f load events in that month. Moving just a
342		
343		
344	. Ideally, mainte	nance schedules should be informed by LOLP
345	studies to minimize the potential for loss of	load.
346		
347	The issue with this is that the loss of load e	vents affected the capacity
348	contribution calculation. In fact, NREL's st	udy on which the Company's analysis is
349	based ¹⁰ suggests excluding all but the highe	est load hours in the application of the
350	Capacity Factor Approximation Method in	order to avoid such anomalous results.
351	Moreover, the loss of load events are entire	ly an artifact of assuming too much
352	maintenance . If some	
353		

¹⁰ See attachment Rick Link's testimony Exhibit RMP (RTL-2) page 6: "A third technique uses the highestload hours but normalizes the capacity factors by the LOLPs." RMP appears to have used this method in normalizing LOLPs, but not applying them only to the "highest-Load" hours. The Company's April loads are not particularly high and presumably would have been excluded in a literal application of the method.

354	
355	. There is no necessity for loading so
356	much maintenance , and clearly doing so at the expense of maintaining system
357	reliability is not something the Company would actually do if it could possibly help it. I
358	am not suggesting any changes to actual maintenance schedules—schedules that will not
359	be prepared for years to come—only the model assumption that so much of the needed
360	maintenance will occur
361	
362	The potential for maintenance schedule assumptions can be critical. For example, if all
363	the maintenance were scheduled for January and February, solar resources would have
364	nearly zero capacity value in the computation. If scheduled in June and July, the capacity
365	value would soar to near 100%. The maintenance schedules need to be carefully
365 366	value would soar to near 100%. The maintenance schedules need to be carefully considered.
366	
366 367	considered.
366 367 368	considered.Q: Can the Company change maintenance schedules as easily as you imply?
366 367 368 369	 considered. Q: Can the Company change maintenance schedules as easily as you imply? A: There are typically constraints on when maintenance can occur. It can be affected
366 367 368 369 370	considered. Q: Can the Company change maintenance schedules as easily as you imply? A: There are typically constraints on when maintenance can occur. It can be affected by equipment warranties, availability of crews and equipment to perform maintenance,
366 367 368 369 370 371	 considered. Q: Can the Company change maintenance schedules as easily as you imply? A: There are typically constraints on when maintenance can occur. It can be affected by equipment warranties, availability of crews and equipment to perform maintenance, and immediacy of the need for maintenance. That said, the study's maintenance
366 367 368 369 370 371 372	considered. Q: Can the Company change maintenance schedules as easily as you imply? A: There are typically constraints on when maintenance can occur. It can be affected by equipment warranties, availability of crews and equipment to perform maintenance, and immediacy of the need for maintenance. That said, the study's maintenance schedules are simply placeholders for what might be expected to occur many years from

		Wind		Solar PV						
	West	East	Weighted Average	Lakeview, OR Fixed Tilt	Milford, UT Fixed Tilt	Average Fixed Tilt	Lakeview, OR Single Axis Tracking	Milford, UT Single Axis Tracking	Average Single Axis Tracking	
Peak Capacity Contribution (PacifiCorp)	25.4%	14.5%	18.1%	32.2%	34.1%	33.1%	36.7%	39.1%	37.9%	
Interim Capacity Contribution (Utah Commission)			20.5%			68.0%			84.0%	

397

398 Results from removing April loss of load events:

		Wind		Solar PV					
	West	East	Weighted Average	Lakeview, OR Fixed Tilt	Milford, UT Fixed Tilt	Average Fixed Tilt		Milford, UT Single Axis Tracking	Average Single Axis Tracking
Peak Capacity Contribution (PacifiCorp)		13.1%			37.0%			40.2%	
Interim Capacity Contribution (Utah Commission)			20.5%			68.0%			84.0%

399

400

401 Q. Given that you recommend that both of these modeling assumptions should

402 be corrected to fairly calculate the capacity value of renewable resources, did you

403 examine the combined effects of a more moderate maintenance schedule and

404 calculating capacity credit based on an East side examination?

- 405 A. Yes, I did. The combined effects are shown in comparison to PacifiCorp's
- 406 findings in the pair of tables below:
- 407
- 408 Results from RMP Capacity Factor Calculation Workbook as submitted:

		Wind		Solar PV						
	West	East	Weighted Average	Lakeview, OR Fixed Tilt	Milford, UT Fixed Tilt	Average Fixed Tilt	Lakeview, OR Single Axis Tracking	Milford, UT Single Axis Tracking	Average Single Axis Tracking	
Peak Capacity Contribution (PacifiCorp)	25.4%	14.5%	18.1%	32.2%	34.1%	33.1%	36.7%	39.1%	37.9%	
Interim Capacity Contribution (Utah Commission)			20.5%			68.0%			84.0%	

409

410

411 Results from removing and loss of load events:

		Wind		Solar PV					
	West	East	Weighted Average	Lakeview, OR Fixed Tilt	Milford, UT Fixed Tilt	Average Fixed Tilt	Lakeview, OR Single Axis Tracking	Milford, UT Single Axis Tracking	Average Single Axis Tracking
Peak Capacity Contribution (PacifiCorp)		15.3%			67.0%			73.4%	
Interim Capacity Contribution (Utah Commission)			20.5%			68.0 %			84.0%

413

414 These results are more aligned with other reported capacity value analyses.

415

416 Q: Can you summarize the changes you recommend?

417 A: Yes. The company should either re-run the analysis with an East side scope or

418 else demonstrate that loss of load events during the winter time are not coincident in time

419 with transmission congestion. The Company should also either re-run the study with 200-

420 400 MW of maintenance moved from to some other month (is a good

421 candidate). Failing that, the weights for ought to be excluded, either because it is

422 likely that a revised maintenance schedule would have that result or because their

423 inclusion is inconsistent with the NREL method, or both.

424

425 If winter loss of load events in Wyoming dominate wintertime loss of load, we need to

426 better understand the assumptions that resulted in the events and determine the

427 underlying causes and the applicability to the Capacity Factor Approximation Method.

428

429 CONCLUSION

430 Q: Please summarize your conclusions and recommendations.

431 A: I conclude that the Company's study finds a much lower capacity credit for432 renewable resources than other such studies for two main reasons:

1) It dilutes the capacity value of solar by averaging its contribution across

434 PacifiCorp's system—this would make sense *but for* the fact that there is

435	insufficient transmission from east to west to make the capacity credit a sensible
436	comparison to conventional resources.
437	2) The Company's study assumed too much maintenance in 1999 , which ends up
438	overstating the effect of renewable resource availability in the spring.
439	3) In the loss of load analysis for the Capacity Factor Approximation Method
440	assumptions around load uncertainty need to be revisited.
441	
442	The Company can remedy these issues by re-running the analysis including only East
443	side loss of load events, and moving some maintenance schedules from
444	. The practical effect of these changes would be to diminish or eliminate the
445	weights established in the present study in and the winter months, resulting in a
446	capacity credit that more accurately reflects wind and solar capacity values.
447	
448	OTHER ISSUES

449 **Q:** Do you have any other comments on the study?

450 A: Yes, one other issue bears mentioning. The Company used TMY data, or "Typical

451 Meteorological Year" data to produce its solar generation profiles. These profiles are

452 publicly available data sets based on historically "typical" weather, which are not time

453 correlated to the meteorological data underlying the Company's load forecasts.

454 Ultimately, this produces incorrect results.

455

456 Evaluations of capacity contribution, for example, for solar resources, such as those

457 based on LOLP, should be based on solar data that is time correlated with load rather

458	than based on "typical meteorological year" (TMY) data. If load is simulated based on
459	assumed temperatures, then the underlying meteorological data set should be the same for
460	both the solar profile and the load. For example, the underlying data might include solar
461	irradiance, temperature, and wind speed. In any given simulation hour, the same data
462	should be used to simulate solar production and simulate load. If load and solar output are
463	based on meteorological conditions for different times (such as taking "typical" data from
464	different years), then the relationship between solar production and load is lost and the
465	evaluation method will miss an important effect.
466	
467	While I think this represents a significant issue, solutions to it remain relatively scarce at
468	this point. I raise it because it should be monitored and remedied going forward.
469	
470	Q: Does that conclude your testimony?

471 A: Yes.