Sophie Hayes (12546) Utah Clean Energy 1014 2nd Ave. Salt Lake City, UT 84103 801-363-4046 Attorney for Utah Clean Energy

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

In the Matter of Review of Electric Service	DOCKET NO. 14-035-140
Schedule No. 38, Qualifying Facilities	
Procedures, and Other Related Procedural	Utah Clean Energy Exhibit 3.0
Issues	

Surrebuttal Testimony of Ken Dragoon on behalf of Utah Clean Energy

REDACTED

June 11, 2015

RESPECTFULLY SUBMITTED, Utah Clean Energy

Sophie Hayes Counsel for Utah Clean Energy

1 INTRODUCTION

2	Q:	Please state your name and business address.
3	A:	My name is Ken Dragoon. My business address is 3519 NE 15th Avenue,
4		#227, Portland, Oregon 97212.
5	Q:	Are you the same Ken Dragoon who filed direct testimony on behalf of Utah
6		Clean Energy in this matter on April 28, 2015 and rebuttal testimony on May
7		28, 2015?
8	A:	Yes.
9	Q:	What is the purpose of your surrebuttal testimony?
10	A:	The purpose of my testimony is to respond to Mr. Peterson's rebuttal
11		testimony on behalf of the Division of Public Utilities (DPU or Division), Mr.
12		Hayet's rebuttal testimony on behalf of the Office of Consumer Services (Office
13		or OCS) and Mr. Link's rebuttal testimony on behalf of Rocky Mountain Power
14		(Company or RMP), collectively referred to herein as the Parties. My testimony
15		here clarifies some mischaracterizations and misperceptions of my earlier direct
16		and rebuttal testimony.
17		In their testimony, the parties focused on the incorrect hypothesis
18		proffered by my earlier testimony regarding the origin of wintertime loss of load
19		events and argued against positions UCE did not take regarding splitting the
20		PacifiCorp system, excluding regions or time periods from the capacity
21		contribution analysis, and making "arbitrary" changes to maintenance schedules.
22		Rather than taking these position, my testimony sought, and continues to seek,
23		explanations for unusual and potentially anomalous results from the PaR study

24	that neither NREL nor DPU investigated. Given that the PaR results are a key
25	variable input into the capacity value calculation it is critical that we carefully
26	analyze the PaR results.
27	PacifiCorp's capacity value calculations using the CFAM method rely on
28	two main inputs: 1) the characterization of wind and solar resources, which is not
29	disputed in this docket, and 2) the results from the PaR model. The results from
30	the PaR analysis are a key variable input into the CFAM analysis and, as I've
31	discussed in my direct and rebuttal testimony, these PaR results give the
32	Company lower capacity values than other sunny, summer-peaking utilities. The
33	Commission deserves a plausible explanation for these results.
34	If the Commission wants fair and accurate capacity values for wind and
35	solar resources, then it is critical to carefully analyze and understand these PaR
36	results before approving the output of the CFAM method. The fact the model
37	calculates high numbers of loss of load events during relatively lower-load April
38	and winter months, that the Company appears not to have counted all the loss of
39	load events calculated by the model, and the as-yet unexplained reason the model
40	shows significant loss of load events in Wyoming, all raise questions about the
41	results that deserve a credible response. These questions should be answered
42	before approving capacity values for wind and solar based upon these results.
43	In this surrebuttal testimony, I strive to clarify points from my direct and
44	rebuttal testimony and to state UCE's recommendations to the Commission.
45	

46 **RESPONSE TO REBUTTAL TESTIMONY**

Please summarize the issues you will address in your rebuttal testimony. 47 **Q**: 48 A: Both the Company and DPU correctly observe that the hypothesis offered 49 in my direct testimony, that the wintertime loss of load events were due to 50 transmission constrained events occurring on the west side of PacifiCorp's 51 system, proved to be incorrect. I agree that this was not the cause, as the model 52 output data shows that nearly *all* of the wintertime loss of load events occurred in 53 Northeast and Southwest Wyoming. 54 While my original hypothesis on the reason for wintertime loss of load 55 events was wrong, the bigger question remains: has the PaR model correctly 56 calculated those events? Mr. Hayet's rebuttal testimony shows that although 57 PacifiCorp's total peak *loads* are approximately1,500 MW higher in July than 58 they are in February, the number of February loss of load events is higher than in 59 July. Somewhat alarmingly, this does not seem to concern any of the parties, 60 despite the acknowledgement that the tool used to arrive at them is a "black box." 61 The purpose of our intervention in this matter is to understand whether and 62 how it makes sense for the Company's summer-peaking, relatively sunny climate 63 to have such relatively lower solar capacity values than other studies have 64 concluded. Specifically, I address three broad issues raised in rebuttal: 65 1. Our direct testimony conjecture with respect to wintertime outages, 66 and the need to better understand the Wyoming outages (loss of 67 load event count & Wyoming issues).

68	2.	The misperception of our testimony with respect to splitting
69		PacifiCorp's system and excluding certain time periods.
70	3.	The relative importance of April loss of load events and their
71		effects on the calculation.

- 72 Wintertime Outages
- 73 Q: Why are winter outages a focus of your testimony?
- A: Although the Office's testimony (Hayet at 183-184) refers to my apparent
 "desire to eliminate all wintertime loss of load events" from the capacity
 contribution analysis, my specific purpose was to illustrate the importance of the
 winter events to the capacity value calculation and to understand whether they
 were correctly calculated.
- Thus, my direct testimony examined the effects of the wintertime loss of load events on the solar capacity value computation, and showed that winter loss of load events are the *proximate reason* for the Company's solar capacity value being lower than the calculations of solar capacity values from other summerpeaking systems with a good solar resource.
- 84 My direct testimony also raised questions about the derivation of the 85 unexpected number of spring and winter loss of load events. For example, I could 86 not reproduce the Company's *count* of the loss of load events. And I continue to 87 struggle with why, if demand is greater in summer, the Company's analysis shows 88 that loss of load events are greater in winter.

89	Q:	Please respond to the Parties' contention that the wintertime loss of load
90		events did not predominantly occur on the west side of PacifiCorp's system.
91	A:	The Parties' rebuttal testimony argues that the model does not show a
92		preponderance of low of load events on the west side. (Peterson at 93-109, 150-
93		163; Hayet at 184-185, 196-196; Link at 133-145). I agree with their assessment
94		that my original conjecture was not correct. As a result, the issues I raised about
95		the appropriateness of the Company's application of CFAM to constrained
96		systems (e.g., Link at 61-69) are not relevant unless transmission constraints to
97		Wyoming are a major factor in the analysis. ¹
98		It is unclear whether transmission congestion is the cause of the
99		wintertime loss of load events that occur predominantly in Northeast and
100		Southwest Wyoming, as the Company has not provided transmission congestion
101		data. ²

¹ With regard to the relevance of transmission congestion in CFAM analysis: as I discussed in my direct testimony, CFAM was developed to compare the efficacy of renewable resources in meeting load compared with traditional resources. To wit, if a loss of load event could not be reduced by *a traditional resource* due to transmission congestion, it would not be accurate to reduce the capacity value of a renewable resource by including that loss of load event in the CFAM calculation. Logically, you would need to reduce the capacity value of all resources that are not able to meet load due to transmission congestion, not exclude specific loss of load events in the CFAM calculation that resulted from transmission congestion, not exclude specific regions, or time periods, or to split the PacifiCorp system, as I will discuss more below. If the bulk of the loss of load events arise in transmission constrained areas of the grid, the overall capacity value of renewables should not be penalized as no resource, fossil or otherwise, outside of a transmission constraint will have much value toward meeting load past the constraint.

² Utah Clean Energy has asked a series of data requests in an attempt to get to the bottom of this issue, and is currently awaiting answers to our fourth set.

102	Q:	Does your admission that your conjecture about the cause of wintertime loss
103		of load events being incorrect lend weight to the Company's analysis?
104	A:	Not necessarily. In my view, the finding only deepens the mystery of the
105		wintertime loss of load events. The purpose of the original conjecture was to
106		construe a reason for the relatively high number of loss of load events in the
107		winter for the Company's summer peaking system. The most likely cause that I
108		could think turned out not to be the cause. As a result, the mystery has only
109		deepened. Only the Office ventured an explanation for the result.
110	Q:	What was the Office's explanation for the relative abundance of wintertime
111		loss of load events?
112	A:	Hayet's rebuttal testimony (at 201-215) offers the explanation that the
113		Wyoming outages are due to the seasonal shape of Wyoming's load. Given that
114		winter and summer peak loads are similarly high in Wyoming, he posits that it is
115		reasonable to expect that the loss of load events in winter and summer would be
116		roughly equal.
117	Q:	Is that a reasonable explanation of the PaR results?
118	A:	It is a difficult explanation to accept because the State of Wyoming
119		contains many times as much generation as peak load. For there to be load in
120		excess of generation in Wyoming, a significant fraction of Wyoming's generation
121		would need to be out of service, causing shortages throughout PacifiCorp's entire
122		system—not just in Wyoming.
123		Alternatively, it could be that transmission limits generation available in
124		other parts of PacifiCorp's system from reaching the NE and SW Wyoming areas.

125	Q:	What could be the cause of the PaR model output showing a preponderance
126		of April and wintertime loss of load events occurring in Wyoming?
127	A:	It isn't clear to me, but is likely embedded in the PaR modeling logic. In
128		my opinion, the fact that the outages occur in Wyoming is likely due to PaR
129		modeling logic or transmission constraints serving those areas of Wyoming. If the
130		cause is transmission, the calculated solar capacity values are largely relevant
131		only compared with conventional generation located in Wyoming. No resource,
132		fossil or otherwise, that is outside of those areas would be able to address those
133		loss of load events. This is simply a question of physics. Again, it is important to
134		understand what is causing the loss of load events in order to validate the CFAM
135		results.
136	Q:	Is it important to understand the loss of load events in Wyoming when
137		considering whether the CFAM analysis is accurate?
138	A:	Yes, absolutely. A summary of the Company's responses to OCS data
139		request 3.10-3 (parts 1-5) that I provided in my direct testimony shows 718 loss of
140		load events in Northeast and Southwest Wyoming alone. As discussed in my
141		direct and rebuttal testimony, the Company counts just 715 events in the CFAM
142		analysis for the entirety of its system (Company workpaper "Hourly LOLP
143		2017.xlsx"). We don't yet understand why there appears to be a discrepancy
144		between their workpaper and data request response.
145		Nearly half of the Wyoming loss of load events (295) occur in April and
146		87% (626 events) occurred between November and April (in the Northeast and
147		Southwest areas of Wyoming). Given that the winter and spring events in

148		Wyoming appear to be the key events and inputs into the CFAM analysis, it is
149		critical to understand the validity and applicability of these results if the desired
150		outcome is an accurate capacity value.
151	Q:	Do you know which of the 718 loss of load events that occurred in Wyoming
152		are included in the CFAM analysis?
153	A:	No. As discussed below, I could not match the number of events from the
154		PaR model to the number of events used in the CFAM calculations, even after
155		removing the Colorado events discussed in my rebuttal testimony.
156	Q:	Is the issue with matching the Company's loss of load count related to the
157		Colorado loss of load events?
158	A:	Not directly. The Office argues (Hayet at 171-182) that the Company
159		reasonably explained its logic for not counting the Colorado events. While I agree
160		with that, my own count of remaining loss of load events, based on the
161		Company's data response to OCS 3.10, is substantially higher than the
162		Company's "Hourly LOLP 2017.xlsx" workpaper. The Company may have had
163		reasons for eliminating other loss of load events-events outside of Colorado;
164		however, despite data requests, this mismatch in the number of loss of load events
165		remains.
166	Q:	Are there other reasons to question the validity of the PaR wintertime loss of
167		load results?
168	A:	Perhaps the clearest illustration of the why the wintertime loss of load
169		events merit closer scrutiny is in the Office's testimony (Hayet, Figure 1 at 191
170		and Figure 5 at 278). Figure 1 shows February loss of load events as

171		approximately equal to those in July, while Figure 5 shows that July loads are
172		roughly 1,500 MW higher. All else being equal, the higher loads would be
173		accompanied by higher numbers of loss of load events. While these results are not
174		impossible, given that DPU approached the PaR analysis as a "black box" and
175		NREL did not comment on the assumptions or results of the model, it is
176		appropriate to seek an explanation for this result before blindly concluding that it
177		is reasonable.
178	Splitt	ing PacifiCorp's System and Excluding Time periods
179	Q:	Does your testimony advocate splitting PacifiCorp's system and excluding
180		specific time periods from the CFAM computation?
181	A:	Contrary to the Parties' contention (Peterson at 129-130; Hayet at 311-
182		312; Link 205-218), I did not intend to suggest that PacifiCorp's system be split
183		for the purpose of this analysis or otherwise, nor to categorically exclude specific
184		time periods. My original testimony suggested not counting loss of load events
185		that occurred either because of transmission congestion, or other potentially errant
186		artifacts of modeling (e.g., maintenance schedule assumptions).
187		The purpose of removing the winter and April loss of load events was
188		intended to show the <i>effect</i> of those events on the calculated result.
189		,
190		not to argue for categorically excluding April from the analysis.

191 Maintenance Schedules

192	Q:	Is it appropriate for the Company to consider changes to the modeled
193		maintenance schedules?
194	A:	The vehemence of the Parties' objection to any consideration of the
195		assumptions relating to maintenance schedules (Peterson 68-73, 79-81, 81-83;
196		Hayet 256-260, 264-296; Link 188-197) was very surprising to me. The Parties
197		argue variously that the maintenance schedule is optimized to minimize ratepayer
198		exposure to power costs; any change to the assumption would be arbitrary;
199		changing the maintenance schedule would only move loss of load events to a
200		different time period; and that there is no evidence to suggest changing the
201		maintenance schedules would have any effect loss of load events. I
202		dispute each of these arguments, and affirm that each of them is incorrect.
203	Q:	Why do you contend that the modeled maintenance schedule is not
204		optimum?
205	A:	Every year has a different maintenance schedule—for example some
206		power plants only require major maintenance every two years. So the modeled
207		schedule cannot be "optimized" for anything but 2017-certainly not for each of
208		the years over which the Company will receive a capacity value from solar plants.
209		So even if you believe that the maintenance schedule is optimized for 2017, it is
210		certainly not optimized for any of the years during the resource deficiency period,
211		long after 2017 is over.
212		The maintenance schedule is also not optimized for additional renewable
213		resources for which this study will be used to evaluate. Furthermore, a casual

214	glance at the actual data would make most people question whether it is truly
215	optimized, even for 2017. There are zero megawatts of maintenance planned
216	
217	One must postulate an enormous and unrealistic power price differential
218	between the to believe that it is
219	optimized based on price alone.
220	I understand that there are other factors to optimize over, but all of the east
221	side maintenance begins exactly Further, when you look at
222	Figure 1, below, you see that have
223	more outages than the remainder of the month and account for nearly a
224	third of the April loss of load events. It is possible that staggering some of the
225	shorter maintenance
226	could sharply reduce the loss of load events.
227	Figure 1 demonstrates the sensitivity of the CFAM method to maintenance
228	assumptions.

Figure 1.

242	Q:	Would moving the maintenance schedule cause the model to simply switch
243		loss of load events from one month or time period to another?
244	A:	
245		. Moving some of the maintenance from an overly-stressed
246		maintenance month to a more surplus month would not increase the loss of load
247		probability in the target month appreciably if the change is modest compared to
248		the surplus. It is possible that there could be some additional loss of load events,
249		but the loss of load events in
250		would register many, or
251		even any, increase in events. In any case, this can be tested by rerunning the
252		model with a modest maintenance schedule change.
253	Q:	Would a change to the maintenance schedule increase replacement power
254		costs?
255	A:	First, it appears that moving the start of just one or two maintenance
256		schedules from one could be enough to
257		avoid many of the loss of load events. So, in order to believe that changing the
258		maintenance schedule would increase power costs, you need to believe that not
259		only power prices the lowest of the year, you must believe that prices

260		, are the lowest of the year. ³ Second, if PacifiCorp does focus
261		its east side maintenance becomes short, as this study suggests, it
262		could have the result of sending the market signals that could result in increased
263		prices. Because prices tend to rise when shortages occur, causing a large shortage
264		could send a sufficient market signal to cause prices to rise temporarily.
265	Reco	mmendations
266	Q:	Please summarize your recommendations for the Commission
267	A:	The Parties conclude (Peterson 187-189, Link 13-15) that the result of the
268		CFAM calculations is reasonable. Since DPU does not question the output or
269		inputs of the PaR model, their conclusion hinges on an assessment that the
270		Company's results are within a zone of reasonableness at levels of solar
271		penetration near the expected level on PacifiCorp's system (Peterson direct at
272		179-183). However, the Company's testimony (Link at 234-236) states that their
273		study assumed 579 MW of solar, which would produce less than 2% of
274		PacifiCorp's energy load.

275		A more appropriate comparison of the Company's proposal is based on
276		the 0-2% region of Figure 1, not the 5% level, as the chart that the DPU refers to
277		is based on energy, not capacity. (Peterson Direct Figure 1 at 171 et seq).
278		The Company's results therefore fall out of the zone of reasonableness
279		using the DPU's standard. I recommend a third party review of the PaR modeling
280		assumptions and results before approving the Company's proposed solar capacity
281		value. The Commission should not accept or approve the Company's solar
282		capacity values until questions about the anomalous results of the PaR model and
283		the applicability of certain PaR results from anomalous regions are addressed by a
284		third party.
285	Q:	Do you have any changes to the recommendation that you put forth in your
286		rebuttal testimony?
287	A:	Yes. In speaking with some of the parties it became clear to me that they
288		were very concerned with the current capacity value for solar used in the avoided
289		cost methodology. I recommend the following to address this concern: the
290		Commission should revise its interim solar capacity values while anomalous PaR
291		results are investigated. One option would be to assign solar capacity values that
292		are half way between current values of 68% and 84% and the Company's
293		proposed 34.1 and 39.1% until the third party analysis is completed.
294	Q:	Does that conclude your testimony?