Discussion of Alternatives

- CO₂ Plant manages interchangeability over a wide range of operating and market conditions. CO₂ Processing has proved reliable to manage heat content.
- Blending alone will not provide interchangeable gas under all circumstances. Mechanical problems or market conditions will negate precision blending's ability to manage gas heat content. Reliability of winter time gas supplies is substantially reduced.
- Precision blending coupled with winter time CO₂ processing will provide a fairly reliable combination to manage heat content for Payson & Indianola.
- Precision blending coupled with a Kern River winter back up is not reliable to manage heat content due to the lack of availability of inter day gas supply service off of Kern River.
- Precision blending with CO₂ winter operation is the most economical even compared to the blending/Kern option when considering the total of fixed costs, gas supply costs, and transition time costs.

OPTION 9 CO₂ PLANT PROCESSING

Description: Operate the existing Castle Valley CO₂ plant to process the Price area coal-seam gas. Plant can processes 200 MMcf/Day of coal seam gas to meet Questar gas interchangeability requirements. For reliability, a propane injection facility was installed at the plant site for partial back-up.

OPTION 9 CO₂ PLANT PROCESSING

PROS

- Proven ability to manage gas interchangeability
- Upstream gas quality can fluctuate with minimum impact to QGC
- Can provide Price and surrounding communities with interchangeable gas
- Reliable day-to-day operations
- 3rd party revenues
- Plant can manage long-term changes in gas quality due to changes in market and gas supplies
- Can respond quickly to potential interchangeability problems

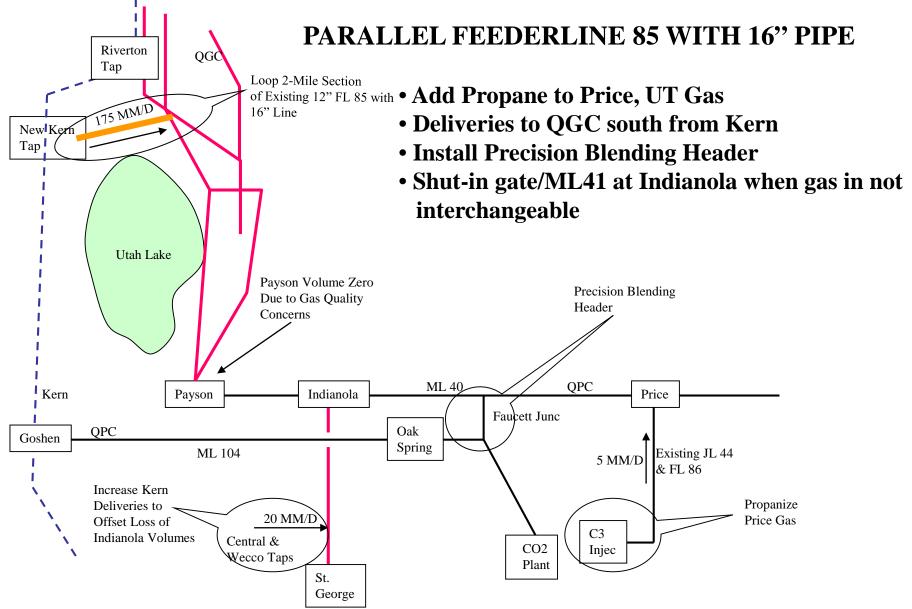
CONS

- Processing fees
- Plant fuel gas costs have gone up significantly due to run up in gas prices
- Plant owned and operated by affiliate

OPTION 9- CO₂ PLANT PROCESSING COSTS

2005 Projected Cost-of-Service:

 Return on Capital 		\$ 2.21 MM
 O&M and Depriciation 		2.63
Fuel Costs		<u>\$ 1.74</u>
	Total	\$ 6.58 MM


OPTION 9 -CO₂ PLANT PROCESSING RISK MATRIX

0 Neutral Result

-1 Negative Result

			RISK FA	CTORS
Risk Areas	Discussion	Safety	Reliability	Implementation
Operating Considerations	 Familiarity with operating plant and downstream facilities 	+1	+1	0
	 Immediate implementation of project 	0	0	+1
	 Flexibility to manage interchangeability as conditions on QPC changes 	+1	+1	0
Market/ Nominations	 Can economically manage long-term changes in gas quality due to market shifts 	+1	+1	0
	 Can economically manage long-term changes in gas supply 	+1	+1	0

OPTION 10(c2) - KERN RIVER SUPPLY

OPTION 10(c2) - KERN RIVER DESCRIPTION

- Payson deliveries rely on using precision blending as the primary means of gas quality control.
- Provide additional 175 MM/day volumes as a redundant system back-up to Utah county.
- During periods in the summer that gas is not interchangeable, QPC will shut valve at Indianola, closing in gate at Payson.
- Install a precision blending header at Faucett junction.
- Add new Kern River Tap including; meters, control valves, odorant stations, etc.
- Loop 2 miles of Feeder Line #85 with new 16" diameter line.
- Modify and use existing propane injection facility at the Castle Valley plant to insure interchangeable gas can be delivered to Price.

OPTION 10(c2) - KERN RIVER

PROS

- Would increase reliability of precision blending alternative
- Alternate source of gas supply
- Requires minimal addition of new pipe

CONS

- Inability to call on Kern supplies on an intra-day basis
- High capital and annual costs
- Difficulty in permitting and acquiring right-of-way for pipeline
- No capacity upside existing FL 28 at capacity
- Inability to contract for Kern supplies on a longterm basis
- Reduced reliability during the shoulder months

OPTION 10(c2) - KERN RIVER -COSTS

Capital Costs:	
 Pipeline Installation (2 Miles of 16" Pipe) 	\$ 3.00 MM
 New Kern River Tap 	2.50
 Misc. Piping Mods. 	0.50
 Regulation & Control (Tie-in distribution system) 	0.50
 Blending Header (See Alternative 7) 	4.70
 Propane Injection for Price 	1.00
Total 1 st Year Cost-of-Service:	\$12.20 MM
 Return on Capital & Depreciation 	\$ 2.06 MM
O & M Costs	0.42
 Property Taxes 	0.12
Gas Costs	
– Demand ¹	3.34
 Commodity (Kern Diff. @ \$.65/Dth/day) 	0.12
 Propane (Cost for 5 winter days) 	0.03
Winter(7 Months) demand charge for an average of 175 MMBtu/day is \$3.34 Million.	\$ 6.09 MM

1.

OPTION 10(c2) - KERN RIVER RISK MATRIX RISK FACTORS Discussion

LEGEND: +1 Positive Result

0 Neutral Result

-1 Negative Result

Risk Areas

NISK AI Cas	DISCUSSION	Safety	Reliability	Implementation
Operating Considerations	 Time to Implement Project (1+ years) 	0	0	-1
	 Time to receive gas supplies from KRGT 	-1	-1	0
	 Rely on precision blending header alone to ensure gas quality to Payson/Summer and shoulder months 	+1	-1	0
	 Rely on blending/Kern River supplies for winter months 	+1	+1	0
Market/ Nominations	 KRGT markets need to stay consistent and strong to enable precision blending 	0	-1	0
	 Gas supplies upstream of Price may change in volume and quality 	0	-1	0
	 Long term ability to acquire economical KRGT gas supplies 	0	-1	-1

 KRGT gas quality is consistent and +1 0 0 interchangeable

LEGEND: +1 Positive Result **OPTION 10(c2) - KERN RIVER RISK MATRIX RISK FACTORS Risk Areas**

Safety Reliability Implementaion

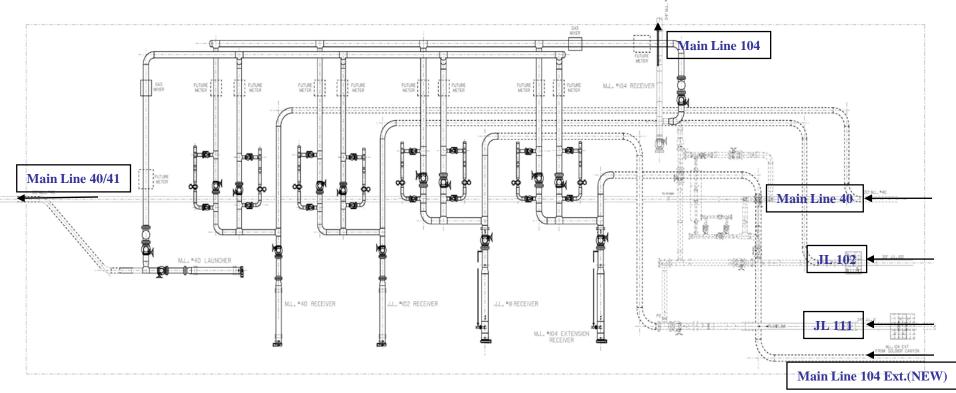
-1

0

0 Neutral Result

-1 Negative Result

-1


Discussion

Market/ Nominations

- Without a "no-notice" service contract on Kern, QGC risks customers outages within a current gas day
- Regulatory Issues
- Order 2004 issues related to QPC providing 0 -1 0 a blending service to QGC
 - Permitting pipeline and acquiring right-of-0 0 -1 way

OPTION 11

PRECISION BLENDING WITH CO₂ PLANT BACK-UP

Install a complex facility that will blend gas sources at different pressures and Btu's to meet QGC interchangeability requirements. Would require a propane injection facility for the city of Price.

	JUSTIFICATION / FUNCTION OF ASSEMBLY		REFERENCE DRAWINGS		REVISIONS	_	ENGINEERI	ENGINEERING RECORD		QUESTAR	
	LOCATE ALL UTILITIES PROR TO: CONSTRUCTION	DRHG, No.	DESCRIPTION	NQ.	DISCIPTION	DATE / BY	P.N/W.O.			Pipeline	
	COOKE ALL UTILITIES HOLE TO CONSTRUCTION						DRAWN:	COROSION APROVAL:			
							DIA/TING CHECK:	COMPLIANCE 4PCFR MART 192:			
							MOJECT ENGINEER A/R/L:	DW/RONWENTAL:		DIFICATIONS	
							PROJECT MANAGER:	APPROVED FOR CONST:	FAUSSE1	I JUNCTION	
							ENGNEERING APRAL:	SECTION:	MI #40 M	L. #102, M.L. !	•m
							OPERATIONS APRIL:	T. R.		M.L. #104 EXT	
							METER /REG AMMAL:	COUNTY,	M.L. 104, 1	W.L104 EAT	•
							ELEVATION :	LKT: LONG:	1		
							FIELD VERIFIED: BY:	DATE	SCALE	DRWG, NO.	REV.No.
	THESE FACILITIES ARE D.O.T. JURISDICTIONAL						BY:	DATE	SHEET No.: OF		
	DESIGN CONFORMS TO APPLICABLE TITLE 49									ED BY QUESTAR	
CFR PART 192 REQUIREMENTS.							CAD FLE			SERVICES COMPANY	

OPTION 11 PRECISION BLENDING W/ CO₂ PLANT BACK-UP DESCRIPTION

- Install a blending facility at Faucett Junction capable of precisely blending upstream volumes on a real-time basis to meet interchangeability requirements at Payson and Indianola
- Requires numerous valves, control valves, meters, chromatographs, automation, etc
- Rely on CO₂ processing during winter and shoulder months (7 months) to manage interchangeability if blending is not feasible
- Shut-in Payson/Indianola gates during the summer months to manage interchangeability if blending is not feasible
- May require QPC to add a blending service in its tariff
- Modify and use existing propane-injection facility at the Castle Valley plant to ensure interchangeable gas can be delivered to Price

OPTION 11

PRECISION BLENDING W/ CO₂ PLANT BACK-UP

PROS

- Moderate capital costs
- Enhanced ability to precisely blend gas streams
- Provides flexibility to manage interchangeability as markets and gas supplies change
- High winter reliability
- Eliminates uncertainty in gas supply contracting and scheduling
- Ability to respond quickly to events using QPC "no-notice" service
- Gas volumes are still able to be delivered when volumes are not available to blend with coal-seam gas due to:
 - 1. Maintenance of the pipeline facilities
 - 2. Facility failures
 - 3. Changing markets and gas supplies

CONS

- Future supply sources (KRGT, ML 104) for Utah county will affect volumes down ML 40
- Potential requirement for a tariff provision allowing QPC to blend for a specific customer's needs
- Increased operating complexity due to potential of shutting in Payson and Indianola gates during summer operations
- Potential to vent gas during summer operations

OPTION 11 PRECISION BLENDING W/ CO₂ PLANT BACK-UP COSTS

Capital Costs:

Blending Header	\$4.2 MM
 New Chromatographs 	0.4
ROW Costs	0.1
 Modify Price Propane Facility 	<u>1.0</u>
Total	\$5.7 MM
1 st Year Cost-of-Service:	
Blending	
 Return on Capital and Depreciation 	\$0.96 MM
 Property Taxes 	0.06
O & M Costs	0.29
 Cost of Propane 	<u>0.03</u>
Total	\$1.34 MM
CO ₂ Processing*	<u>\$4.82</u>

Total

\$6.16 MM

*Costs based on 7 months of plant operation a year and a 20 year book depreciation rate.

PRECISION BLEN	OPTION 11 NDING W/ CO2 PLANT BA			Positive Result Neutral Result Negative Result
	RISK MATRIX		RISK FA	CTORS
Risk Areas	Discussion	Safety	Reliability	Implementation
Operating	 Time to implement project. 	0	0	0
Considerations				
	 Injection of propane at Price 	-1	-1	0
	 Rely on precision blending header alone to ensure gas quality to Payson/Summer and shoulder months 	+1	-1	0
	 Rely on blending/CO2 plant for winter months 	+1	+1	0
	 Increased complexity of operations 	0	0	0
Market/ Nominations	 Gas supplies downstream of Price may change in volumes and heat content 	0	0	0

OPTION 11 PRECISION BLENDING W/ CO2 PLANT BACK-UP 0 Neutral Result RISK MATRIX RISK FACTORS

Risk Areas

Market/Nominations

Regulatory Issues

Discussion

into service.

 KRGT markets need to stay 0 -1 0 consistent and strong to enable precision blending during summer/shoulder periods KRGT markets need to stay 0 0 0 consistent and strong to enable precision blending during winter periods Order 2004 issues related to QPC 0 -1 0 providing a blending service to QGC Major permitting issues to put facility -1 0 0 ٠

Safety Reliability Implementation

• Shipper protests on QPC tariff filing 0 0 -1