BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

Application of QUESTAR GAS COMPANY for Recovery of Gas Management Costs in its 191 Gas Cost Balancing Account

Docket Nos. 04-057-04, 04-057-09, 04-057-11, 04-057-13 and 05-057-01

DIRECT TESTIMONY OF

CHARLES BENSON

FOR

QUESTAR GAS COMPANY

APRIL 15, 2005

QGC Exhibit 6

TABLE OF CONTENTS

PAGE

I.	INTRODUCTION
II.	PURPOSE
III.	COMBUSTION AND INTERCHANGEABILITY
IV.	APPLIANCE SAFETY
V.	EXPERIENCE WITH NEW GAS SUPPLY SOURCES
VI.	MR. SCHROEDER'S ANALYSIS
VII.	APPLIANCE TESTS
VIII.	CONCLUSION

1		I. INTRODUCTION
2		
3	Q.	Please state your name, employer, and business address.
4	A.	My name is Charles Benson. I am employed by ENVIRON International Corporation
5		and work in their office located at 8 Hollis Street, Groton, Massachusetts 01450.
6		
7	Q.	Please state your employment position.
8	A.	I am a Principal of ENVIRON International Corporation.
9		
10	Q.	Please describe your educational background and employment history.
11	Α.	My educational background is in mechanical engineering. I received a Bachelor of
12		Science degree in mechanical engineering from Bucknell University and a Master of
13		Engineering degree in mechanical engineering from the University of Florida. My
14		career has focused on the development and application of combustion-based energy
15		technologies for the residential, commercial, and industrial sectors. Prior to joining
16		ENVIRON, I was Managing Director of the Energy and Transportation Technology
17		Sector at TIAX, LLC and a Vice President of Arthur D. Little, Inc. Prior to those
18		positions, I was employed by Exxon Research and Engineering Company, where I
19		managed combustion R&D activities and consulted in combustion technology for
20		Exxon's worldwide operations. Attached as QGC Exhibit 6.1 is a copy of my resume,
21		describing in more detail my educational background and experience.

22		II. PURPOSE
23		
24	Q.	What is the purpose of your direct testimony in this proceeding?
25	А.	I will provide an overview of natural gas interchangeability analysis and describe how
26		I have applied these principles to help other companies successfully manage gas
27		quality. I will discuss issues related to introducing a new gas supply into a
28		distribution system that has historically been supplied with gas having significantly
29		different quality characteristics. One of the most important issues I will discuss is the
30		safety impact on individual customers' appliances that have not been properly
31		adjusted for a new gas supply. I will review the technical work Questar Gas
32		Company (Questar Gas) has performed to identify and manage the gas
33		interchangeability issues it has encountered over the past eight years. I will show that
34		the interchangeability operating limits Questar Gas developed in 1998 are based on
35		technically sound analyses and are consistent with limits other companies have
36		developed. Finally, I will describe appliance tests demonstrating that coal bed
37		methane gas (CBM) cannot be safely utilized, without modification, in an appliance
38		that has been adjusted to operate on Questar Gas' historical gas supply.
20		

39

40 Q. Please describe the work you have performed in the area of gas 41 interchangeability.

42 A. I have directed projects that established guidelines for compositions of imported
43 liquefied natural gas (LNG) that can be distributed through three existing (Everett,
44 Cove Point, Elba Island) and three proposed North American terminals. In these

45	projects, workshops were held with key stakeholders to identify LNG
46	interchangeability issues. To establish guidelines, gas interchangeability analyses
47	were performed; residential appliances were tested; and key industrial, transportation
48	and power generation applications that utilize natural gas were evaluated. I have also
49	assessed standards for natural gas interchangeability and have developed
50	interchangeability guidelines for propane-air peak shaving operations for several local
51	natural gas distribution companies (LDC).

52

53 Q. Please describe your experience with the testing of natural gas appliances.

A. As part of the interchangeability projects described above, I directed the testing in a
laboratory of about 30 residential appliances, including space heating, water heating
and cooking equipment. This work focused on determining the impact of changes in
natural gas composition on appliance performance. I also directed the testing of
about 2500 appliances in homes to characterize the performance of entire populations
of appliances.

- 60
- III. COMBUSTION AND INTERCHANGEABILITY
- 62

61

63 Q. Would you briefly define the term interchangeability as it applies in this case?

A. The term interchangeability, as recently defined by the Natural Gas Council Plus
(NGC+) Work Group on interchangeability, is "the ability to substitute one gaseous
fuel for another in a combustion application without materially changing operational

- 67 safety, efficiency, performance or materially increasing air pollutant emissions."¹
- 68

69 Q. Is there an index commonly used in the United States and in other parts of the 70 world to predict gas interchangeability?

- 71 Yes. The Wobbe number has been broadly accepted as a key index of natural gas A. 72 interchangeability. It is representative of the fuel energy input to combustion 73 equipment when the gas supply pressure is held constant (as is typical of residential 74 appliances). As the Wobbe number of a gas supply decreases, the amount of fuel 75 energy flowing through a typical metering orifice to an appliance decreases. On the 76 other hand, an increase in the Wobbe number for a gas supply results in an increase in 77 the amount of fuel energy supplied. Therefore, key combustion characteristics can be 78 related to the Wobbe number.
- 79

80 Q. How is the Wobbe Number calculated?

A. The Wobbe number is calculated by dividing the gas' Higher Heating Value (HHV)
by the square root of its specific gravity. In the United States, HHV is typically
expressed as British thermal units (Btu) per standard cubic foot of natural gas volume.

84 Q. Please explain the concepts of gas heating value and specific gravity.

A. The higher heating value of natural gas represents the amount of energy per unit
volume of gas that is released through complete combustion in air at standard

¹ White Paper on Natural Gas Interchangeability and Non-Combustion End Use, Interchangeability Work Group, February 28, 2005 (White Paper).

87	pressure, with the products of combustion cooled to standard temperature and with
88	water in the liquid state. The specific gravity of a gas is the ratio of the gas' density
89	at standard conditions of pressure and temperature to that of air at standard
90	conditions. ² A gas with specific gravity less than 1.0 has a density less than that of
91	air, while a gas with specific gravity greater than 1.0 has a density greater than that of
92	air. Specific gravity is calculated by dividing the molecular weight of natural gas by
93	the molecular weight of air.

94

95 Q. Please discuss how the Wobbe number can be used to establish
96 interchangeability limits for a region or a market area.

A. Through field experience, appliance testing, and interchangeability analyses, a range
of Wobbe numbers may be determined that will ensure acceptable end-use equipment
performance as well as the safety of customers in a given service area. Typically, this
range is expressed as an allowable increase and decrease in Wobbe number relative to
the Wobbe number that is representative of the natural gas characteristics for which
the population of equipment has been adjusted.

103

104 Q. What other parameters or indices are used in the gas industry to predict if a gas 105 supply is interchangeable?

A. To provide better measures of interchangeability for appliances, two multiple index
systems were developed from combustion theory and extensive testing: the American
Gas Association (AGA) Multiple Index Method and the Weaver Multiple Index

² Standard conditions are 14.73 psia and 60° F.

109	Method. These methods are commonly used in the United States and include indices
110	that characterize the impact of gas composition changes on the following combustion
111	phenomena:
112	• AGA multiple index method: characterization of lifting, flashback, and
113	yellow-tipping.
114	• Weaver multiple index method: characterization of lifting, flashback, yellow-
115	tipping, heat rate, and incomplete combustion.
116	These combustion phenomena are concisely described below:
117	• <i>Lifting</i> : movement of the flame front downstream and away from burner ports
118	as a result of decreases in flame speed relative to flow velocity. This
119	condition can cause delayed or failed ignition of an appliance burner. With
120	delayed ignition, flames can temporarily flash outside of the appliance
121	enclosure and ignite nearby flammable materials. Lifting can also produce
122	elevated carbon monoxide emissions.
123	• <i>Flashback</i> : movement of the flame front upstream through the burner ports as
124	a result of flame speed increasing relative to flow velocity. This condition can
125	result in combustion upstream of the burner head and cause unsafe appliance
126	operation.
127	• Yellow tipping: generation of soot particles within a flame that radiate
128	incandescently, exhibiting a yellow color. This condition can result in soot
129	deposition on downstream surfaces (e.g., heat exchangers, flues) and can
130	ultimately cause flue gas passages to be restricted or blocked.

131	•	Incomplete combustion: presence of carbon monoxide (CO) in the exhaust
132		because carbon in the fuel gas was not fully oxidized to carbon dioxide. If
133		flue gases are vented into the living space, either by design or through a flue
134		failure, excessive CO levels can be the cause of illness or death of occupants.
135	•	Heat rate: change in energy input (firing rate). This index is the ratio of the
136		Wobbe numbers for the two gases. Decreases in energy input, if too large,
137		can hinder the ability of an appliance to perform its intended heating function.
138		Increases in energy input, if too large, can result in overheating of
139		components.
140		

141 The index calculations require the specification of two gas compositions. The first, 142 called the *adjustment gas*, is the fuel for which combustion equipment adjustments 143 (orifice size, air-shutter setting, and gas pressure) have been made to achieve the 144 desired flame characteristics. The second, referred to as the *substitute gas*, is the fuel for which relative combustion-equipment performance is estimated. Guidelines for 145 acceptable index values have been proposed by the index developers as well as by 146 147 several local distribution companies. The use of these indices, in conjunction with 148 the Wobbe number, is warranted as the Wobbe number alone does not always predict 149 important flame characteristics such as flame lifting, yellow tipping, incomplete 150 combustion, or flashback.

151 Q. Please explain in more detail the concepts of incomplete combustion and flame 152 lifting.

153 A. Incomplete combustion of natural gas occurs when the carbon in the fuel is not fully 154 oxidized to carbon dioxide (CO_2) . A portion of that carbon is then emitted as CO. This phenomenon can be caused by an insufficient supply of combustion air. 155 156 quenching of the flame, or flame lifting. Lifting occurs when the flame speed is low relative to the flow velocity through a burner's ports. Under these conditions, a 157 158 portion of or the entire flame front moves downstream from the burner's ports. Lifting can result in fuel bypassing the reaction zone, leading to increased CO 159 emissions. 160

161

162 **Q.** Do these indices take into account the effects of elevation?

- A. Yes. The AGA and Weaver indices are measures of the relative performance of two
 different gas supplies. They are based on the premise that appliances have been tuned
 to perform on the adjustment gas at the elevation of interest.
- 166

167 Q. For a system like Questar Gas', is it important to take elevation into account 168 when adjusting appliances?

A. Yes. Due to the decrease in air density with increased elevation, it is common practice to derate (reduce energy input into) appliances to compensate for the reduction in combustion air flow at higher elevations. For installations above an elevation of 2,000 feet, the appliance gas input rate is typically reduced by 4% per 1,000 feet of elevation above sea level.

174 Q. Briefly explain how these indices were derived.

The AGA interchangeability indices were developed through extensive testing at the 175 A. 176 AGA Testing Laboratories in the 1930s and 1940s, culminating in AGA Research Bulletin #36, "Interchangeability of Other Fuel Gases with Natural Gases" (1946). 177 178 These tests were conducted using the AGA precision burner as well as a range of 179 appliances selected to "represent extreme conditions of utilization." A range of gases were used to compare flame characteristics and a set of indices were developed that 180 181 describe the burner or appliance flame characteristics on a substitute gas with respect to an adjustment gas for which the burner or appliance was initially tuned to operate. 182 The Weaver indices were also developed through appliance testing, and are an 183 expansion to the AGA indices. The inclusion of flame speed in this empirical set of 184 185 indices improved the prediction of lifting and flashback. This research was 186 conducted in the early 1950s at the U.S. Bureau of Mines by E.R. Weaver and is 187 documented in a report entitled "Formulas and Graphs for Representing the 188 Interchangeability of Fuel Gases" (1951).

189

190 Q. Are these indices still applicable?

A. Yes. In 2003 I directed the testing of many new and used appliances to develop
interchangeability guidelines for the Cove Point, Maryland LNG import terminal.
This work validated use of the multiple-index method for current appliance
populations. Indeed, Weaver Index limits are specified in the Cove Point Tariff.

195 Q. Can the Wobbe number be substituted for these other more complex indices to 196 establish a safe operating limit?

A. Although the Wobbe number provides a good measure of energy input to appliances,
it does not fully characterize all important flame characteristics. Thus, the Wobbe
number should be used in conjunction with the multiple index methods for
determination of safe operating limits.

201

202 Q. Are calculated gas interchangeability indices alone sufficient to predict if a gas
203 supply is interchangeable?

A. The Wobbe number, AGA, and Weaver index methods are useful tools for determining gas quality limits. However, since service areas may differ with respect to historical gas supplies, maintenance practices, as well as types and ages of end use combustion equipment, testing is often warranted to verify the acceptability of a new gas supply.

209

Q. Are you familiar with the White Paper on Natural Gas Interchangeability and
 Non-combustion End Use produced by the NGC+ Interchangeability Work
 Group.

213 A. Yes.

214

215 Q. Please describe the participants in the NGC+ Interchangeability Work Group.

A. A wide range of natural gas industry stakeholders having experience withinterchangeability issues participated in the preparation of the White Paper. These

218		included representatives from LNG suppliers local distribution companies, pipeline
219		companies, energy supply companies, industrial consumers, power producers,
220		industry associations, natural gas equipment manufacturers, and one state official.
221		
222	Q.	What was the purpose of this group?
223	A.	The Federal Energy Regulatory Commission requested the group to examine and
224		update natural gas interchangeability standards.
225		
226	Q.	Are the recommendations of this group consistent with your experience?
227	A.	Yes. Specifically, the group concluded that interchangeability indices represent the
228		best starting point for developing gas quality guidelines. They found that the Wobbe
229		number is the most "efficient and robust" single index. However, they recognized
230		that additional parameters are required. They stated that appropriate processes for
231		establishing gas quality guidelines incorporate the following elements: historical gas-
232		supply characteristics, end-use equipment test data, interchangeability management
233		options and costs, and development of numerical specifications. They established
234		interim guidelines that include a Wobbe number range of "plus or minus 4% from
235		Local Historical Average Gas or, alternatively, Established Adjustment or Target Gas
236		for the service territory."

237		IV. APPLIANCE SAFETY
238		
239	Q.	Can natural gas appliances safely and efficiently use natural gas with widely
240		varying heating values and specific gravities?
241	А.	Natural gas appliances, when properly tuned and maintained, are typically tolerant of
242		moderate variations in natural gas composition. However, a subset of the appliance
243		population in a typical service area is less tolerant due primarily to improper
244		adjustment or lack of maintenance. Gas quality limits should be established with
245		consideration of these appliances.
246		
247	Q.	What would be the results of introducing a non-interchangeable gas supply into
248		a region?
249	А.	The introduction of a non-interchangeable gas could create significant performance
250		and safety issues. For example, certain appliances will emit significantly higher
251		levels of CO.
252		
253	Q.	Could the results of the problems you describe cause serious health concerns for
254		customers with natural gas appliances?
255	А.	Appliances with elevated CO emissions represent a significant safety risk. If an
256		appliance is unvented or if a vented appliance experiences a flue failure or cracked
257		heat exchanger, higher levels of CO can be introduced into the living space. This, in
258		turn, can lead to CO poisoning of the occupants.

259	Q.	In your experience, what Wobbe range is acceptable to ensure natural gas
260		appliances operate safely and efficiently?
261	A.	My experience has shown that an increase in Wobbe number of 3% or a decrease of
262		5% relative to the adjustment Wobbe number is acceptable. As discussed previously,
263		the NGC+ Interchangeability Work Group has provided a similar guideline of plus or
264		minus 4%. Operation outside this range can result in significant performance and
265		safety issues.
266		
267		V. EXPERIENCE WITH NEW GAS SUPPLY SOURCES
268		
269	Q.	Would you please describe your involvement in evaluating the impact of
270		introducing LNG into different regions of the United States?
271	A.	For the past 15 years, I have been involved in addressing imported LNG
272		interchangeability issues for residential, commercial, and industrial applications. I
273		have led many projects that characterized and resolved end use equipment
274		performance issues through interchangeability analyses, laboratory testing and field
275		testing. My recommendations have been implemented at the Cove Point, Maryland
276		and Everett, Massachusetts LNG terminals, and my recommendations are expected to
277		be implemented by the Elba Island, Georgia terminal, as well as other North
278		American locations.

Q. What similarities do you see with the interchangeability issues faced by areas of the country receiving LNG and the interchangeability issues faced by Questar Gas with CBM production?

- 282 The issues faced by Questar Gas are similar to those of other areas of the country that A. 283 receive LNG from foreign sources in three regards. First, the new gas supply under 284 consideration has a composition that is outside of the historical experience base of the service area. Second, the impact of this new supply on appliance performance 285 286 (including incomplete combustion, lifting, and yellow tipping) must be assessed to 287 determine an acceptable range of compositions to be accommodated. Third, an 288 analysis of the new gas supply must be performed to determine whether any 289 compositional modifications are required to render it suitable for distribution.
- 290

291 Q. Does LNG need to be processed for purposes of interchangeability?

292 A. Sometimes. LNGs received from foreign sources typically have higher concentrations of ethane and propane than domestic natural gas. Consequently, the 293 294 introduction of certain unmodified LNG may cause increased CO emissions and 295 vellow tipping in appliances. To render these LNGs interchangeable with the domestic supply, dilution with air or nitrogen is often employed. Alternatively, 296 hydrocarbon stripping may be implemented to remove butane, propane and some 297 298 ethane.

299

300 Q. Does CBM gas need to be processed for purposes of interchangeability?

301 A. Sometimes. CBM gas typically has elevated concentrations of CO₂, which lowers the

302		Wobbe number and increases the tendency for flame lifting. Appliances adjusted for
303		traditional domestic natural gas can experience flame lifting, delayed ignition, flames
304		flashing outside of enclosures, and increased CO emissions when operated on certain
305		CBM gases. To preclude these problems the CBM can be modified, for example, by
306		removing a portion of the CO ₂ .
307		
308		VI. MR. SCHROEDER'S ANALYSIS
309		
310	Q.	Have you reviewed the testimony of George Schroeder previously filed by
311		Questar Gas in Docket No. 98-057-12?
312	A.	Yes.
313		
314	Q.	Briefly describe Mr. Schroeder's analysis.
315	А.	Mr. Schroeder described the methodology and supporting evidence for establishing
316		interchangeability standards for Questar Gas' distribution area. He conducted
317		interchangeability analyses using industry-accepted methods, including the Wobbe
318		number, the AGA indices, and the Weaver indices.
319		
320	Q.	Contrast the similarities and differences between Mr. Schroeder's analysis and
321		the interchangeability analyses you conducted in regards to LNG.
322	A.	The methods are identical.
323		

324	Q.	Did Mr. Schroeder follow what you consider to be industry-accepted methods
325		and standards in his analysis?
326	A.	Yes.
327		
328	Q.	Are the interchangeability limits Mr. Schroeder derived in QGC Exhibit 2.2 of
329		Docket No. 98-057-12 consistent with limits you have recommended for other
330		companies?
331	A.	Yes. The Wobbe number range specified by Mr. Schroeder is identical to the range
332		that I recommend. The key Weaver and AGA index limits utilized by Mr. Schroeder
333		are consistent with my recommendations.
334		
335		VII. APPLIANCE TESTS
336		
337	Q.	Are you familiar with the appliance testing conducted for Questar Gas on March
338		12, 2005?
339	A.	Yes. Questar Gas commissioned the testing of a residential furnace (Armstrong
340		model G65-80D-1). This work was conducted by Gas Consultants, Inc., a well-
341		qualified, independent testing firm.
342		
343	Q.	What was the purpose of this test?
344	A.	The test was structured to determine the impact of CBM (having a Wobbe number of
345		1289) on the performance of an appliance that had been tuned for the Questar Gas
346		adjustment gas (having a Wobbe number of 1380).
347		

- 348 Q. Did you witness this test?
- 349 A. Yes. I was present for the entire test and was able to monitor the procedures and350 observe the results.
- 351

352 Q. Please describe the test process and key results.

- 353 The furnace was initially inspected to confirm that it was configured with the correct A. gas orifice size for operation on the Questar Gas adjustment gas. Then it was tested 354 355 using procedures consistent with American National Standards Institute (ANSI) 356 Z21.47 Standards for Gas Fired Central Furnaces. When tested on the 1380 Wobbe 357 number adjustment gas, the unit performed satisfactorily. When tested on the 1289 Wobbe number CBM, significant performance problems occurred. Specifically, the 358 359 appliance experienced delayed ignition, flames flashing outside of the appliance, and 360 flame lifting. A copy of the test report that was submitted by Gas Consultants, Inc. is 361 attached to my testimony as QGC Exhibit 6.2.
- 362
- 363 Q. Did you witness the supplemental tests conducted on this appliance on April 11,
 364 2005.
- 200
- 365 A. Yes.
- 366

367 **Q.** Please describe the test process and key results.

A. The furnace was initially tuned by Questar Gas service staff, using procedures
identical to those applied in customers' homes, for proper operation on the 1380
Wobbe number adjustment gas. It was then alternately operated on the adjustment

371		gas and the 1289 Wobbe number CBM gas. When the furnace was operated on the
372		adjustment gas, flame appearance was acceptable and CO emissions were relatively
373		low at 85-90 parts per million (ppm), air-free. However, when the furnace was
374		operated on the CBM gas, significant flame lifting was observed and CO
375		concentration increased to levels above 400 ppm, air-free.
376		
377	Q.	Do the furnace performance problems exhibited when operating on CBM gas
378		during these two test periods present safety risks to Questar Gas' customers?
379	А.	Yes. Flame flashing outside of the appliance can ignite flammable material adjacent
380		to the appliance. Elevated CO emissions, when coupled with a flue failure, can cause
381		CO poisoning.
382		
383		VIII. CONCLUSION
384		
385	Q.	In your opinion, was Questar Gas prudent in its analysis and actions in
386		recognizing and addressing the interchangeability issues it faced regarding the
387		CBM gas?
388	А.	Yes. The actions taken by Questar Gas are consistent with my experience and with
389		the recommendations of the NGC+ Interchangeability Work Group. Furthermore,
390		sound experimental evidence exists to state unequivocally that, had Questar Gas not
391		taken these actions, their customers would be exposed to unacceptable safety risks.

State of _____)) ss. County of _____)

I, Charles Benson, being first duly sworn on oath, state that the answers in the foregoing written testimony are true and correct to the best of my knowledge, information and belief. Except as stated in the testimony, the exhibits attached to the testimony were prepared by me or under my direction and supervision, and they are true and correct to the best of my knowledge, information and belief. Any exhibits not prepared by me or under my direction and supervision of the documents they purport to be.

Charles Benson

SUBSCRIBED AND SWORN TO this _____ day of April 2005.

Notary Public