# BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

| IN THE MATTER OF THE JOINT APPLICATION<br>OF QUESTAR GAS COMPANY, THE DIVISION<br>OF PUBLIC UTILITIES, AND UTAH CLEAN<br>ENERGY FOR THE APPROVAL OF THE<br>CONSERVATION ENABLING TARIFF | )<br>)<br>)<br>) | Docket No. 05-057-T01 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| ADJUSTMENT OPTION AND ACCOUNTING<br>ORDERS                                                                                                                                              | )                |                       |

Surrebuttal Testimony

Artie Powell, PhD

Utah Division of Public Utilities

September 26, 2007

| 1  | Q: | Would you state your name, employer, and for whom you are testifying?            |
|----|----|----------------------------------------------------------------------------------|
| 2  | A: | My name is Artie Powell; I am employed by and testifying for the Division of     |
| 3  |    | Public Utilities.                                                                |
| 4  | Q: | Have you submitted testimony before in this proceeding?                          |
| 5  | A: | Yes, in this phase of the proceeding I submitted rebuttal testimony on August 8, |
| 6  |    | 2007.                                                                            |
| 7  | Q: | What is the purpose of this testimony?                                           |
| 8  | A: | In lieu of striking portions of his testimony, the Commission allowed parties to |
| 9  |    | respond in writing to Dr. Dismukes' surrebuttal testimony within five working    |
| 10 |    | days. The purpose of my testimony is to provide limited response to the          |
| 11 |    | regression analysis presented in Dr. Dismukes' surrebuttal testimony and         |
| 12 |    | summarized in Exhibits attached to his testimony: Exhibit SR CCS 2.2 and         |
| 13 |    | Exhibit SR CCS 2.3 (corrected exhibit numbers). Specifically, I offer expert     |
| 14 |    | commentary on the regression methods and results presented by Dr. Dismukes in    |
| 15 |    | these two models.                                                                |
| 16 | Q: | Would you briefly summarize your qualifications?                                 |
| 17 | A: | I have a doctorate degree in economics from Texas A&M University with a major    |
| 18 |    | field in econometrics. Econometrics is a subfield of economics, which applies    |
| 19 |    | mathematical and statistical theory, tools, and techniques to the analysis,      |
| 20 |    | interpretation and presentation of economic data. As a graduate student, I       |

| 21       |    | completed approximately a dozen graduate courses in econometrics, statistics,        |
|----------|----|--------------------------------------------------------------------------------------|
| 22       |    | mathematics and mathematical economics. From 1985 to 2005, I taught                  |
| 23       |    | economics, econometrics and statistics at the university level. From 1989 to         |
| 24       |    | 1995, I taught full-time at the University of Mississippi and helped coordinate the  |
| 25       |    | undergraduate and MBA statistical classes for the School of Business. From 1996      |
| 26       |    | to 2005, I taught as an adjunct professor at Weber State University.                 |
| 27<br>28 | Q: | Would you briefly explain your concerns with Dr. Dismukes regression analysis?       |
| 29       | A: | I have several concerns with the regression models and results provided by Dr.       |
| 30       |    | Dismukes in surrebuttal testimony purporting to show that there is a significant     |
| 31       |    | price effect on usage at the state level or specifically for Questar's GS customers. |
| 32       |    | Specifically, Dr. Dismukes failed to account for the effects of autocorrelation in   |
| 33       |    | his regression models, which by itself renders the results of his models suspect.    |
| 34       |    | In addition, in the first of his regression models (Exhibit SR CCS 2.2; corrected    |
| 35       |    | exhibit numbering), the sample size is relatively small which makes drawing valid    |
| 36       |    | conclusions difficult. Thus, the regression analysis, results and conclusions        |
| 37       |    | drawn by Dr. Dismukes in his surrebuttal testimony are suspect.                      |
| 38       | Q: | Could you briefly describe Dr. Dismukes' first model?                                |
| 39       | A: | In his first model (CCS Exhibit SR CCS-2.2), Dr. Dismukes regresses the natural      |
| 40       |    | log (LN) of usage per customer against four variables, (1) LN of price, (2) LN of    |

| 41 |    | price lagged one year, (3) LN of a weather variable, and (4) a time trend.             |     |
|----|----|----------------------------------------------------------------------------------------|-----|
| 42 |    | Algebraically, the model can be written as:                                            |     |
| 43 |    | $y = \alpha X_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon$ | (1) |
| 44 |    | where the dependent variable is                                                        |     |
| 45 |    | y = the natural log of usage per customer;                                             |     |
| 46 |    | and the independent or explanatory variables are:                                      |     |
| 47 |    | $X_0 = an intercept (column of ones);$                                                 |     |
| 48 |    | $X_1$ = the natural log of the annual price;                                           |     |
| 49 |    | $X_2$ = the natural log of the annual price lagged one year;                           |     |
| 50 |    | $X_3$ = the natural log of a weather variable; and                                     |     |
| 51 |    | $X_4$ = a time trend represented by the year (1998, 1999,, 2005).                      |     |
| 52 | Q: | What is your first concern with this model?                                            |     |
| 53 | A: | My first concern with this model is the sample size: there are only eight (8)          |     |
| 54 |    | observations. <sup>1</sup> (See Table 1; data provided by the Committee of Consumer    |     |
| 55 |    | Services in response to DPU data request 5.1).                                         |     |
| 56 |    |                                                                                        |     |

 $<sup>^{1}</sup>$  Dr. Dismukes lists nine (9) observations, but since the model contains a lag on the price variable only 8 observations are used in the model and analysis.

#### 57 Table 1: CCS Model 1 Annual Data

| <b>Y Var</b><br>InUsePerCustomer | <b>X1 Var</b><br>InPrice | X2 Var<br>InPriceLag | <b>X3 Var</b><br>InHdd | <b>X4 Var</b><br>Year |
|----------------------------------|--------------------------|----------------------|------------------------|-----------------------|
| 4.63178805                       | 1.85248010               |                      | 8.73520359             | 1997                  |
| 4.57468590                       | 1.91285694               | 1.85248010           | 8.72176536             | 1998                  |
| 4.51436681                       | 1.84989693               | 1.91285694           | 8.66836802             | 1999                  |
| 4.46606133                       | 1.95815831               | 1.84989693           | 8.66888370             | 2000                  |
| 4.42675714                       | 2.19260553               | 1.95815831           | 8.70334075             | 2001                  |
| 4.49891659                       | 1.93963770               | 2.19260553           | 8.78063380             | 2002                  |
| 4.38807447                       | 2.05339214               | 1.93963770           | 8.64611397             | 2003                  |
| 4.45794802                       | 2.12777764               | 2.05339214           | 8.78109474             | 2004                  |
| 4.35715740                       | 2.27282668               | 2.12777764           | 8.73004395             | 2005                  |

58

With eight observations and five explanatory variables (including the intercept), there are only three (3) degrees of freedom. In statistics, the term *degrees of freedom* (DF) is a measure of the number of independent pieces of information on which the precision of a parameter estimate is based. Generally speaking, the greater the DF, the more reliable or precise estimates are. Generally speaking, a larger sample size would increase the DF and improve the reliability of the model and its results.

66 An acceptable sample size will depend on a number of factors including 67 the number of regressors in the model, the desired level of accuracy of each

68 parameter being estimated and the desired level of model power ( $\mathbb{R}^2$ ). One "rule 69 of thumb" suggests that for every parameter to be estimated you should have 30 70 data points or observations.<sup>2</sup> A more precise formula for computing the minimum 71 sample size is given by:

72 
$$n = \left(\frac{Z}{E}\right)^2 \left(\frac{1-R^2}{1-R_{xx_j}^2}\right) + k$$
(2)

| 73 | Where Z is the critical value corresponding to the standard normal distribution for          |
|----|----------------------------------------------------------------------------------------------|
| 74 | a given test size ( $\alpha$ ); E is the desired margin of error or half of the width of the |
| 75 | desired confidence interval for $\beta_j$ ; $R^2$ is the desired explanatory power of the    |
| 76 | model or coefficient of determination; $R_{xx_j}^2$ is the desired coefficient of            |
| 77 | determination for a model regressing $X_{\rm j}$ on the other regressors or explanatory      |
| 78 | variables of the model; and k is the total number of regressors including the                |
| 79 | intercept. <sup>3</sup>                                                                      |

<sup>&</sup>lt;sup>2</sup> See for example, William Mendenhall, James E. Reinmuth, and Robert J. Beaver, "Statistics for Management and Economics," 7<sup>th</sup> ed., [Belmont, California: Duxbury Press, 1993], pp.251-261.

<sup>&</sup>lt;sup>3</sup> Ken Kelly and Scott E. Maxwell, "Sample Size for Multiple Regression: Obtaining Regression Coefficients That Are Accurate, Not Simply Significant," Psychological Methods, (Vol. 8, No. 3), 2003, pp. 305-321. As the authors explain, the formula given here will result in a confidence interval no larger than the desired width (E) about 50% of the time. Thus, the formula can be considered a conservative estimate of the sample size. That is, the actual sample size necessary to ensure a confidence interval no greater than E may be considerably larger than that calculated from Equation (2).

| a test size of five percent ( $\alpha = 0.05$ , Z =                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------|
| , then to achieve a sample size of only 30,                                                                                    |
| ately $E = 0.3$ . If we assume that the "true"                                                                                 |
| del ( $\beta_1$ ) is between -0.5 to -0.01, then a                                                                             |
| vely large. <sup>4</sup> If we use a margin of error $E =$                                                                     |
| build be $n = 119$ . Of course, the necessary                                                                                  |
| values chosen for Z, E, $R^2$ , and $R^2_{xx_j}$ but, I                                                                        |
| e expected a sample size of more than 30                                                                                       |
| ensure the accuracy or reliability of the                                                                                      |
| ,                                                                                                                              |
| mple size is important. When<br>the analyst cannot compute<br>e regression results, and there<br>lel assumptions. <sup>5</sup> |
| g valid conclusions from Dr. Dismukes'                                                                                         |
|                                                                                                                                |
| the problem is the likelihood that                                                                                             |
|                                                                                                                                |

<sup>&</sup>lt;sup>4</sup> Given a margin of error E = 0.3, any estimate of  $\beta_1$  greater than -0.3 would be insignificant. For example, given and estimate of -0.1, the 95 percent confidence interval would be -0.1 ± 0.3, or -0.4 to 0.2.

<sup>&</sup>lt;sup>5</sup> Raymond H. Myers, "Classical and Modern Regression with Applications," 2<sup>nd</sup> Ed., [Boston, Massachusetts: PWS-Kent Publishing Company, 1990], p. 6.

| 97                | Q: | You indicated that autocorrelation might be problem. Could you explain                                                                                                              |
|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98                |    | your concern about autocorrelation?                                                                                                                                                 |
| 99                | A: | Autocorrelation is a violation of one of the basic assumptions in regression                                                                                                        |
| 100               |    | models and refers to the dependent relationship among the regression errors ( $\epsilon$ ).                                                                                         |
| 101               |    | When using economic data, it is not unusual for the regression errors to follow a                                                                                                   |
| 102               |    | first order autoregressive process:                                                                                                                                                 |
| 103               |    | $\varepsilon_t = \rho \varepsilon_{t-1} + u_t \qquad t = 2, 3,, T $ (3)                                                                                                             |
| 104               |    | where $\epsilon_t$ is the error term for observation "t"; $\epsilon_{t\text{-}1}$ is the error term for observation                                                                 |
| 105               |    | "t-1"; $\rho$ is the correlation coefficient between $\epsilon_t$ and $\epsilon_{t\text{-}1}$ ; and $u_t$ is an error term                                                          |
| 106               |    | that satisfies the fundamental regression assumptions <sup><math>6</math></sup> . As one author explains,                                                                           |
| 107<br>108<br>109 |    | The presence of the autocorrelation causes difficulty in the estimation of error variance and, as a result, in tests of hypotheses and confidence interval estimation. <sup>7</sup> |
| 110               |    | The presence of autocorrelation, in other words, would make it difficult to                                                                                                         |
| 111               |    | draw valid conclusions from Dr. Dismukes' regression results. I would note, that                                                                                                    |
| 112               |    | the presence of positive autocorrelation ( $\rho > 0$ ), which is typical of economic data,                                                                                         |
| 113               |    | makes it doubly difficult:                                                                                                                                                          |

<sup>&</sup>lt;sup>6</sup> The error terms  $u_t$  (t = 2, 3, ..., T) are identically, independently, normally distributed random variables:  $\mathbf{u} \sim IIN(\mathbf{0}, \sigma^2 \mathbf{I})$ , where  $\mathbf{u}$  is the T-1x1 vector of errors and  $\mathbf{I}$  is an identity matrix of dimension T-1.

<sup>&</sup>lt;sup>7</sup> Myers, p. 288.

114 The existence of positively correlated errors can result in 115 an estimate of  $\sigma^2$  [error variance] that is a **substantial** 116 **underestimate**. This, of course, tends to inflate t-statistics on 117 coefficients and deflate the width of confidence intervals on 118 coefficients.<sup>8</sup>

119A simple test for first-order autoregression based on the fitted residuals120(et) is known as the Durbin-Watson test.9 The test statistic "d" is given by the121formula:

122 
$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{T} e_t^2}$$
(4)

т

123Lower (dL) and upper (dU) bounds (or critical values) for the Durbin-124Watson statistic are specified with respect to the sample size (T) and the desired125testing or confidence level ( $\alpha$ ). The traditional Durbin-Watson test<sup>10</sup> for positive126autocorrelation, where  $\rho$  is the correlation coefficient for the models error terms,127is:

| 128 | Reject H <sub>0</sub> : $\rho = 0$ , if d < d <sub>L</sub> ;             |
|-----|--------------------------------------------------------------------------|
| 129 | Fail to reject H <sub>0</sub> : $\rho = 0$ , if d > d <sub>U</sub> ; and |
| 130 | Declare the test inconclusive if $d_L < d < d_U$ .                       |

<sup>&</sup>lt;sup>8</sup> Myers, p. 288, (emphasis added).

<sup>&</sup>lt;sup>9</sup> Myers, pp. 289-290.

 $<sup>^{10}</sup>$  The null and alternative hypotheses for positive autocorrelation are respectively  $H_0$ :  $\rho < 0$  and  $H_a$ :  $\rho \ge 0.$ 

| 131 | However, there are two important qualifications or conditions to the use of                  |
|-----|----------------------------------------------------------------------------------------------|
| 132 | the Durbin-Watson test. First, the regression must contain an intercept term.                |
| 133 | Second, the independent variables cannot contain a lagged dependent variable. <sup>11</sup>  |
| 134 | Dr. Dismukes' first regression meets both conditions. However, the inconclusive              |
| 135 | range presents an especially particularly "awkward problem" in small samples. <sup>12</sup>  |
| 136 | This is illustrated in tables of critical values for the Durbin-Watson test by               |
| 137 | the absence of computed values for small samples and relatively large numbers of             |
| 138 | regression variables. For example, Johnston reports critical values starting with            |
| 139 | samples as small as six observations but lacks values when there is more than one            |
| 140 | independent variable. Indeed, for a given set of regressors, as the sample size              |
| 141 | declines it appears that the inconclusive range widens to the point where the test is        |
| 142 | incapable of detecting autocorrelation even if it exist. Given five regressors               |
| 143 | (including the intercept) and 100 observations, the inconclusive range is from               |
| 144 | 1.592 to 1.758 (a difference of 0.166); with 50 observations the range is 1.378 to           |
| 145 | 1.721 (a difference of 0.343); with 10 observations the range is 0.376 to 2.414 (a           |
| 146 | difference of 2.038); and with 8 observations no critical values are reported. <sup>13</sup> |

<sup>&</sup>lt;sup>11</sup> J. Johnston, "Econometric Methods," 3<sup>rd</sup> ed., [New York, New York: McGraw-Hill Book Company, 1984], p.316.

<sup>&</sup>lt;sup>12</sup> Johnston, p. 316.

<sup>&</sup>lt;sup>13</sup> For large samples, the Durbin-Watson statistic will approximately equal  $d = 2(1 - \rho)$ . Since  $\rho$ , the correlation coefficient, is a number between -1 and 1, d will range between 0 and 4. Values close to 2 ( $\rho = 0$ ) indicate the absence of autocorrelation. Since the statistical distribution of d is unknown, critical values,

| 147 | Given that Dr. Dismukes' model contains only 8 observations, the                  |
|-----|-----------------------------------------------------------------------------------|
| 148 | application of the Durbin-Watson test is impractical. However, a visual           |
| 149 | inspection of the error terms from his model indicates the presence of positive   |
| 150 | autocorrelation. The typical pattern for positive autocorrelation is for some     |
| 151 | sequential errors (or residuals) to be positive change to negative for a group of |
| 152 | sequential errors and then switch to negative again. This pattern is repeated for |
| 153 | the entire sample similar to a sine wave. A plot of the errors from Dr. Dismukes' |
| 154 | model is provide in Figure 1.                                                     |

155

 $d_L$  and  $d_U$ , are estimated using Monte Carlo simulations. In essence, when the sample size is too small, the critical values become 0 and 4, and the test is unable to detect the presence of autocorrelation when it exists.



#### 156 Figure 1: Error Plot from Dr. Dismukes' Model 1

161

- 162 sample size is too small to carry out the hypothesis test for the presence of
- 163 autocorrelation: it appears that upper and lower bounds are not tabulated for

| 164 |    | sample sizes this small with five regressors. <sup>14</sup> A graphical plot of the error terms |
|-----|----|-------------------------------------------------------------------------------------------------|
| 165 |    | against the time trend variable does suggest that autocorrelation is present. Given             |
| 166 |    | the small sample size and the apparent presence of autocorrlation in the data,                  |
| 167 |    | drawing valid conclusions from this model is difficult.                                         |
| 168 | Q: | Could you explain how these concerns relate to Dr. Dismukes' second                             |
| 169 |    | regression model?                                                                               |
| 170 | A: | The Division submitted a data request to the Committee asking for information on                |
| 171 |    | the diagnostic test performed by Dr. Dismukes for his second regression model                   |
| 172 |    | (Exhibit SR CCS 2.3; corrected exhibit numbering). This is the data request that                |
| 173 |    | the Commission instructed the Committee to clarify. For convenience, the                        |
| 174 |    | request and response are reproduced in Table 2.                                                 |
| 175 |    | From Dr. Dismukes' response to the data request, it appears that positive                       |
| 176 |    | autocorrelation is present in the data for model 2 (Exhibit SR CCS 2.3; corrected               |
| 177 |    | exhibit number). That is, the P-value for the Durbin-Watson statistic is less than              |
| 178 |    | 0.0001, which indicates that we would reject the null hypothesis that $\rho = 0$ (no            |
| 179 |    | autocorrelation).                                                                               |
|     |    |                                                                                                 |

180

<sup>&</sup>lt;sup>14</sup> See for example Johnston, Table B-5, pp. 554-557; or Meyers, Table C-7, p. 485. Johnston provides an upper bound of 2.588 for a sample size of nine (9) with five (5) regressors. Using the conservative approach as described herein, d = 1.75 < 2.588 and we would reject the null hypothesis: it appears that autocorrelation is present in Dr. Dismukes' first regression model.

181

### 182 Table 2: DPU Data Request 5.1

#### **DPU Data Request:**

5.1 For purposes of this request, please refer to Exhibits SR CCS-1.2 and SR CCS-1.3 of Dr. Dismukes's surrebuttal testimony.

•••

d. Please provide all statistical diagnostic tests used to examine the statistical results.

## Dr. Dismukes' Response:

| Questar Monthly - with r | noving average                                                    |
|--------------------------|-------------------------------------------------------------------|
| Durbin D-test            |                                                                   |
|                          | Positive Autocorrelation: Pr <dw 0.0001<="" :="" <="" td=""></dw> |
|                          | Negative Autocorrelation: Pr>DW: 1.000                            |
| White'                   | s Test                                                            |
|                          | Pr>ChiSq: <.0001                                                  |
|                          |                                                                   |

183

| 184 | There are several simple corrections or transformations that can be                 |
|-----|-------------------------------------------------------------------------------------|
| 185 | performed on the data to remove the effect of autocorrelation on the error          |
| 186 | variance estimates. However, it appears from the testimony and data response        |
| 187 | that Dr. Dismukes did not perform any of these corrections. Thus, I would           |
| 188 | conclude that drawing a valid conclusion from this model is not possible. Again,    |
| 189 | the presence of positive autocorrelation could substantially over-inflate the t-    |
| 190 | statistics of the model making the finding of statistical significance in the model |
| 191 | suspect.                                                                            |
|     |                                                                                     |

# 192 Q: Would you summarize your testimony?

| 193 | A: | Dr. Dismukes offered two models in his surrebuttal testimony that purportedly          |
|-----|----|----------------------------------------------------------------------------------------|
| 194 |    | show that there is a statistically significant relationship between usage per          |
| 195 |    | customer and the price of natural gas. While this relationship may be consistent       |
| 196 |    | with economic theory, conclusions to this effect cannot be validly drawn from the      |
| 197 |    | models and results presented by Dr. Dismukes. First, both models appear to             |
| 198 |    | exhibit the presence of autocorrelation, which can cause over-estimation of the t-     |
| 199 |    | statistics. In the absence of correcting for this problem, the model can lead to       |
| 200 |    | false conclusions that its coefficients are statistically significant. In addition, in |
| 201 |    | Dr. Dismukes' first model, the sample size is too small to allow valid conclusions     |
| 202 |    | to be drawn. Thus, I would recommend that the Commission place little or no            |
| 203 |    | weight on this portion of Dr. Dismukes' surrebuttal testimony.                         |
|     |    |                                                                                        |

- 204 **Q:** Does that conclude your testimony?
- 205 A: Yes it does.