

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

IN THE MATTER OF THE
REQUEST OF DOMINION
ENERGY UTAH FOR APPROVAL
OF A VOLUNTARY RESOURCE
DECISION TO CONSTRUCT AN
LNG FACILITY

Docket No. 18-057-03

DIRECT TESTIMONY OF
BRUCE L. PASKETT
FOR
DOMINION ENERGY UTAH

EXHIBIT 4.0

April 30, 2018

TABLE OF CONTENTS

	<u>PAGE</u>
I. INTRODUCTION AND SUMMARY.....	1
II. BACKGROUND OF THE PROCESS TO IDENTIFY RELIABILITY SOLUTIONS	5
III. THE COMPANY NEEDS A LONG-TERM RELIABILITY SOLUTION	8
IV. AN ON-SYSTEM LNG FACILITY IS THE BEST SOLUTION OF AVAILABLE OPTIONS TO ADDRESS RELIABILITY CONCERNS AND WOULD BE IN THE PUBLIC INTEREST	15

I. INTRODUCTION AND SUMMARY

2 Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.

3 A. My name is Bruce Paskett. My business address is 10731 E. Easter Avenue, Suite 100,
4 Centennial, Colorado 80112.

5 Q. PLEASE STATE YOUR OCCUPATION AND ON WHOSE BEHALF YOU ARE
6 TESTIFYING.

7 A. I am a Senior Associate and Chief Regulatory Engineer at Structural Integrity Associates,
8 Inc. I am testifying on behalf of Dominion Energy Utah (DEU).

9. Q. PLEASE SUMMARIZE YOUR EDUCATION AND WORK EXPERIENCE.

10 A. I received a Bachelor of Science Degree in Mechanical Engineering from Oregon State
11 University. I have been a Registered Professional Engineer in the State of Oregon since
12 1987. From 1983-2014, I was employed at NW Natural Gas (NW Natural or NWN), a
13 natural gas transmission and distribution pipeline operator and Local Distribution Company
14 (LDC) based in Portland, Oregon. NW Natural also had two on-system LNG storage plants
15 and on-system underground storage reservoirs. While at NW Natural, I held a number of
16 different management positions, including System Design Engineer, Supervising Engineer-
17 Design, Supervising Engineer-Field, Manager of Engineering, Chief Engineer, Manager of
18 Code Compliance and Principal Compliance Engineer. In these positions, I had the
19 responsibility at various times for the design, construction, operation and maintenance of the
20 Company's transmission and distribution piping systems. I was also involved with

21 supporting the LNG plants and underground storage facility on numerous occasions
22 regarding design, engineering, operations, maintenance and regulatory matters. During my
23 tenure at NW Natural, I was responsible for ensuring the Company's compliance with
24 applicable federal and state pipeline safety regulations and initiating programs to further
25 improve the safety of the Company's pipeline infrastructure. I was also responsible for the
26 development and distribution of procedures that defined the Company's policies and
27 practices to comply with the requirements of federal and state pipeline safety regulations.

28 In September 2014, I joined Structural Integrity Associates, Inc. In my current practice, I
29 provide consulting services for natural gas mid-stream, transmission, and distribution
30 pipeline operators across the country relative to compliance with applicable federal and state
31 pipeline safety regulations and the design, construction, operation, and maintenance of
32 pipeline facilities.

33 My resume is included as DEU Exhibit 4.01.

34 **Q. PLEASE DESCRIBE YOUR INVOLVEMENT WITH PROFESSIONAL
35 ASSOCIATIONS AND PIPELINE SAFETY REGULATORY INITIATIVES.**

36 A. During my nearly 35 years in the natural gas industry, I have been significantly involved in
37 natural gas professional associations and pipeline safety regulatory initiatives, including:

38 • Loaned Executive for the American Gas Association (AGA)¹ from 2009-2013.
39 Represented AGA member companies and the natural gas industry during the 2011

¹ The American Gas Association represents over 200 local distribution companies across the nation.

40 congressional pipeline safety reauthorization² and various pipeline safety rulemaking
41 initiatives.

42 • AGA Operations Section Committees for nearly 35 years, including the Distribution
43 Transmission Engineering Committee, Operations Safety Regulatory Action
44 Committee, Security Committee and Transmission Integrity Management Program
45 (TIMP) Committee. My tenure as a Loaned Executive with AGA and participation in
46 various AGA operating committees has allowed me to gain in-depth familiarity with
47 natural gas transmission and distribution companies across the nation.

48 • Participated with AGA in the development of the original natural gas Transmission
49 Integrity Management Program (TIMP)³ regulation in 2002-2003.

50 • Represented AGA member companies in development of the American Gas
51 Foundation (AGF) Study on Safety Performance and Integrity of the Natural Gas
52 Distribution Infrastructure.⁴

53 • Represented AGA member companies and the natural gas industry in the Federal
54 Department of Transportation (DOT), Pipeline and Hazardous Materials Safety
55 Administration (PHMSA) “Integrity Management for Gas Distribution, Report of
56 Phase 1 Investigations”.⁵

57 • Represented AGA member companies and the natural gas industry in development of
58 the Gas Piping Technology Committee (GPTC) Guidance for the Distribution
59 Integrity Management Program (DIMP) Regulation.⁶

60 • Participated with AGA in drafting comments to the docket regarding the Notice of
61 Proposed Rulemaking (NPRM) for PHMSA’s DIMP regulation.⁷

62 • Participated with AGA in drafting comments to the docket regarding the Advance
63 Notice of Proposed Rulemaking (ANPRM) for PHMSA’s Safety of Gas
64 Transmission Pipelines regulation.⁸

² Pipeline Safety, Regulatory Certainty and Job Creation Act of 2011.

³ 49 CFR, Part 192, Subpart O, Gas Transmission Pipeline Integrity Management, 68 FR, 69817, December 15, 2003.

⁴ AGF, “Safety Performance and Integrity of the Natural Gas Distribution Infrastructure” January 2005.

⁵ “Integrity Management for Gas Distribution, Report of Phase 1 Investigations,” December 2005.

⁶ Gas Piping Technology Committee Z380, “Guide for Gas Transmission and Distribution Piping Systems, Distribution Integrity Management Program,” Appendix G-192-8, 2009 Edition.

⁷ Notice of Proposed Rulemaking, Pipeline Safety: Integrity Management for Gas Distribution Pipelines, FR/Vol.73, No.123/Wednesday, June 25, 2008/ Proposed Rules.

65 • Participated with AGA in drafting comments to the docket regarding the NPRM for
66 PHMSA's Safety of Gas Transmission and Gathering Pipelines regulation.⁹

67 **Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?**

68 A. The purpose of my testimony is to provide expert opinion regarding the reliability needs for
69 DEU's system and DEU's evaluation of options to add resources to the Company's existing
70 gas supply portfolio to improve the safety and reliability of service to customers during cold
71 weather operating conditions.

72 **Q. WHAT WAS THE SCOPE OF YOUR REVIEW?**

73 A. In the formulation of my testimony, I reviewed the following documents and sources of
74 information:

75 • Testimony of Tina M. Faust, DEU Exhibit 2.0
76 • DEU Supply Reliability Evaluation, DEU Highly Confidential Exhibit 2.11
77 • DEU Supply Reliability Risk Analysis, DEU Exhibit 2.12
78 • Transcript of Arizona Corporation Commission open meeting March 2, 2011, DEU
79 Exhibit 2.5¹⁰
80 • DEU Supply Stack, Exhibit 3.02
81 • Telephonic and on-site meetings with DEU engineering, gas supply and regulatory
82 personnel to discuss the Company's system and supply resource portfolio, recent
83 supply issues and risks, and the supply reliability evaluation process that the
84 Company has conducted.

⁸ Advance Notice of Proposed Rulemaking, Pipeline Safety: Safety of Gas Transmission Pipelines, FR/Vol. 76, No. 165/ Thursday, August 25, 2011/ Proposed Rules.

⁹ Notice of Proposed Rulemaking, Pipeline Safety: Safety of Gas Transmission and Gathering Pipelines, FR/Vol.81, No.68/ Friday, April 8, 2016/ Proposed Rules.

¹⁰ Before the Arizona Corporation Commission "In the Matter of the Commission's Gathering of Information Concerning Natural Gas Outages in the Southwestern United States", open meeting 03/02/2011. Docket No. G-00000C-11-0081.

85 **II. BACKGROUND OF THE PROCESS TO IDENTIFY RELIABILITY SOLUTIONS**86 **Q. WHAT DO YOU UNDERSTAND IS THE REASON THE COMPANY HAS SOUGHT**
87 TO IDENTIFY A LONG-TERM SUPPLY RELIABILITY SOLUTION?

88 A. My understanding is that historically and recently, DEU has experienced supply disruptions
89 of contracted gas supplies during cold weather events when temperatures were well above
90 the Company's Design-Peak-Day. Further, these supply shortfalls occurred due to events
91 that are upstream of the DEU system and, therefore, outside of the Company's control.
92 Based on these supply disruptions, DEU is no longer confident that the Company will be
93 able to provide safe and reliable service to firm customers during a cold weather event, even
94 at temperatures that may be above a Design-Peak-Day. Further, based on system network
95 modelling, the Company has determined that the types of supply shortfalls experienced in
96 recent years have the potential to cause a severe loss of pressure in large portions of the
97 Company's piping infrastructure, resulting in the loss of service of up to 650,000 firm
98 industrial, commercial and residential customers. The Company has also recognized that
99 customers whose gas service has been interrupted have the potential to experience extreme
100 cold weather conditions without heat for an extended period of time until upstream supplies
101 are re-instated and individual customer gas service can be restored. Since DEU is committed
102 to fulfilling the Company's statutory mandate and obligation to provide safe and reliable
103 service to customers, the Company has voluntarily initiated a process to identify and
104 evaluate options for adding supply sources to maintain system supply, reliability and
105 pressure support during cold weather periods.

106 **Q. WHAT IS YOUR UNDERSTANDING OF THE PROCESS ENGAGED IN BY THE**
107 **COMPANY TO IDENTIFY A LONG-TERM SUPPLY RELIABILITY SOLUTION?**

108 A. Based on my review of the Supply Reliability Evaluation and my discussions with Company
109 personnel, my understanding is that DEU has conducted an identification and evaluation of
110 numerous options to determine the most favorable alternative(s) to provide a reliable source
111 of an additional 150,000 Dth/day of gas supply to supplement the Company's existing gas
112 supply portfolio during a Design-Peak-Day or at temperatures above Design-Peak-Day
113 where there is a supply disruption. The supply options considered include a comprehensive
114 range of alternatives, including a greater utilization of existing storage resources, contracting
115 for additional off-system storage, both existing and proposed, demand response using large
116 volume customers and firm sales customers, and the construction of on-system liquefied
117 natural gas (LNG) storage. In the evaluation, the Company considered reasonable and
118 appropriate factors such as safety, reliability of the resource, cost, risk associated with the
119 delivery of the supply, physical location of the additional supply source (on-system vs. off-
120 system), location where the supplemental supply would enter the DEU piping system, and
121 other appropriate factors.

122 **Q. BASED ON YOUR EXPERIENCE, IS THE PROCESS ENGAGED IN BY THE**
123 **COMPANY TO ASSESS ITS RELIABILITY NEEDS AND THE AVAILABLE**
124 **OPTIONS CONSISTENT WITH PRUDENT UTILITY OPERATIONS?**

125 A. In my expert opinion, I believe that the process engaged in by DEU to assess reliability needs
126 and perform a critical evaluation of a broad range of supply options to supplement the
127 Company's existing gas supply portfolio has been conducted in a reasonable and prudent

128 manner. The process identified a broad range of potential options, including conventional
129 alternatives and also more creative options that have been attempted by other LDCs in
130 different locations and climates. In addition, the DEU analysis has done a competent and
131 objective job of considering and evaluating the appropriate risks and threats associated with
132 each option. The process and evaluation utilized by the Company is consistent with my
133 experience and expectations for a prudent LDC.

134 **Q. WHAT DO YOU UNDERSTAND THE COMPANY'S MANDATE AND**
135 **OBLIGATIONS TO BE WITH REGARD TO PROVIDING RELIABLE SERVICE**
136 **TO CUSTOMERS?**

137 A. My understanding is that DEU has a legislative mandate and obligation to provide safe and
138 reliable natural gas service to customers in the Company's franchised service territory. The
139 Utah Code¹¹ requires that:

140 Every public utility shall furnish, provide and maintain such service,
141 instrumentalities, equipment, and facilities as will promote the safety, health, comfort
142 and convenience of its patrons, employees, and the public, and as will be in all
143 respects adequate, efficient, just and reasonable.

144 Based on the Utah Code, it is clear that DEU has a statutory mandate to make every
145 reasonable effort to ensure that the Company's gas customers are provided with gas service
146 that promotes their safety, health, comfort and convenience. This legislative mandate is
147 especially applicable during periods of extreme cold weather when the interruption of
148 reliable gas service for an extended period of time could present a threat to life, safety, and
149 health.

150 **III. THE COMPANY NEEDS A LONG-TERM RELIABILITY SOLUTION**151 **Q. HAVE YOU REVIEWED THE COMPANY'S RISK ANALYSIS, DEU EXHIBIT**152 **2.12?**

153 A. Yes. I have reviewed the DEU Supply Reliability Risk Analysis. In addition, I have met
154 with Company personnel to discuss that analysis and to understand the system impacts that
155 have caused supply disruptions. In my opinion, the Risk Analysis does a reasonable and
156 competent job of identifying the types of threats and risks to the upstream delivery system
157 that could potentially affect the reliability of gas supplies to the DEU system during a
158 Design-Peak-Day or during an extended disruption at temperatures that are above Design-
159 Peak-Day temperatures. Threats such as well freeze-offs, plant shut-downs due to
160 mechanical issues and/ or power interruptions, equipment failures at processing plants or
161 compressor stations, landslides/ washouts/ flooding, earthquakes, human error, third-party
162 excavation damage and cyber-attacks on processing plants and Control Room facilities are
163 all threats to the upstream delivery system that have been experienced by the natural gas
164 industry. These risks present legitimate threats to the safe and reliable delivery of natural
165 gas to the DEU system.

166 **Q. ARE THERE ANY OTHER POTENTIAL THREATS TO THE RELIABILITY OF
167 DELIVERY OF UPSTREAM, OFF-SYSTEM GAS SUPPLIES?**

168 A. Yes. There are also additional risks that present significant threats to the reliable delivery of
169 off-system gas supplies to the DEU system. These additional risks involve threats to the
170 integrity of the upstream transmission pipelines that deliver off-system gas supplies to

¹¹ Utah Code, Title 54, Chapter 3, Section 1, Amended by Chapter 206, 1977 General session.

171 custody transfer points (gate stations) on the DEU system. Industry consensus standards
172 (ASME/ANSI B31.8S)¹² identify nine categories of potential threats to transmission pipeline
173 systems for operators to consider. These additional threats include internal corrosion,
174 external corrosion, stress corrosion cracking, and fabrication and construction defects. The
175 risks addressed in the DEU Supply Reliability Risk Analysis in conjunction with the
176 additional threats identified in ASME/ANSI B31.8S present realistic threats to the reliability
177 of delivery of contracted off-system natural gas supplies to the DEU system during cold
178 weather events.

179 **Q. DID YOU EXPERIENCE SIMILAR RISKS WHEN YOU WORKED FOR AN LDC?**

180 A. Yes. During my approximately 31-year tenure at NW Natural, I had extensive experience in
181 the operations of the Company's piping systems, including experience as a member of the
182 Emergency Operations Committee (EOC) that was convened during emergency operating
183 conditions. I also had responsibility for designing and modelling of the piping system as
184 System Design Engineer during my career at NWN. While at NWN, I experienced many of
185 the risks detailed in the DEU Supply Reliability Risk Analysis. For example, in February
186 1989, NWN experienced a significant upstream supply shortfall during a wintertime cold
187 weather event that approached a Design-Peak-Day. The interstate transmission pipeline
188 company that transported natural gas supplies to the NWN system was unable to maintain
189 adequate pressure in the pipeline system to meet contracted delivery pressures at gate
190 stations on the NWN system. The failure to deliver adequate pressures to NWN at gate

¹² American Society of Mechanical Engineers/ American National Standards Institute B31.8S-2004, "Managing System Integrity of Gas Pipelines".

191 stations resulted in cascading inadequate pressures on the Company's transmission pipeline
192 system and downstream distribution pipelines. This resulted in a significant loss of service
193 to the Company's firm customers. The 1989 cold weather event on NWN's system was
194 similar to the February 2011 cold weather event experienced in New Mexico and Arizona as
195 described by Tina Faust in DEU Exhibit 2.0. In addition to the 1989 failure of the interstate
196 pipeline system to maintain adequate pressures, the interstate pipeline system that
197 transported off-system gas supplies to the NWN system experienced catastrophic pipeline
198 ruptures due to pipeline integrity threats. These included catastrophic pipeline failures due
199 to land movement (landslides) at Castle Rock, Washington (March 1995), Everson,
200 Washington (February 1997), Kalama, Washington (February 1997) and North Bonneville,
201 Washington (February 1999). In addition to the failures due to natural force events, the
202 interstate pipeline system also suffered catastrophic failures related to stress corrosion
203 cracking (SCC) at Lake Tapps, Washington (May 2003) and at Toledo, Washington
204 (December 2003). These catastrophic failures of the upstream interstate pipeline system
205 resulted in flow entitlements that impacted the delivery of gas to NWN.

206 **Q. IN YOUR EXPERIENCE, SHOULD THESE RISKS BE ADDRESSED BY THE
207 COMPANY WHEN IT IS ASSESSING ITS GAS SUPPLY PORTFOLIO?**

208 A. Yes. Based on my experience in operations for a natural gas LDC, it is prudent for any
209 operator to identify and evaluate the potential risks to the delivery of contracted gas supplies
210 when the company is assessing its gas supply portfolio and contemplating resource
211 additions. DEU has a commitment and statutory obligation to provide safe and reliable
212 delivery of natural gas supplies to its firm customers, including under peak winter time cold

213 weather operating conditions. It is appropriate and prudent for the Company to consider
214 threats and risks to the upstream supply system that may prevent the Company from
215 fulfilling this obligation when selecting supply resources.

216 **Q. HOW DO OTHER LDCS ADDRESS THESE KINDS OF CONCERNS?**

217 A. In my experience, LDCs across the nation are firmly committed to providing safe and reliable
218 delivery of natural gas to their customers in accordance with their franchise agreements and
219 tariffs. That means they will not only acquire sufficient gas supplies to support the aggregate
220 of their firm customer loads, including on a peak cold weather design day, but they also
221 evaluate the reliability of delivery associated with each of the sources of their gas supply
222 portfolios. In this process, operators will typically diversify the gas supply portfolio as much
223 as practicable. For example, they will purchase gas from multiple locations/ producers, store
224 gas in multiple storage locations and transport gas to their systems through more than one
225 interstate pipeline system to diversify supply and minimize the potential for a single adverse
226 event from causing a significant outage during a peak cold weather event. While the DEU
227 gas supply portfolio includes a diversified range of supply resources, the Company still
228 experiences supply disruptions during cold weather events due to the reliance upon off-
229 system supply resources that are subject to a number of risks and threats that are outside of
230 the Company's control. As a specific example of an operator's actions to address these
231 kinds of concerns, in response to the February 2011 cold weather event that resulted in the
232 interruption of service to approximately 40,000 gas customers in New Mexico and Arizona,
233 Southwest Gas Corporation re-examined the Company's gas supply portfolio and exclusive
234 reliance on off-system supply sources. In response to this evaluation, Southwest Gas

235 obtained pre-approval to construct an on-system LNG storage facility and is presently in the
236 process of constructing that facility in Southern Arizona.

237 **Q. WHAT IS THE COMPANY'S CURRENT GAS SUPPLY RESOURCE PORTFOLIO?**

238 A. Based on the DEU Supply Resource Stack (Exhibit 3.02), the Company's current gas supply
239 resource portfolio sources include the following; Aquifer Storage, Ryckman Creek Storage,
240 Clay Basin Storage, Cost-of-service gas, Baseload purchases, Peaking Purchases, and Spot
241 Gas Purchases. All of the Company's gas supply resource portfolio is located off the DEU
242 system and therefore, the Company must rely on others to operate the respective upstream
243 facilities and transport the gas resources to the DEU system.

244 **Q. WHY IS THE COMPANY'S PORTFOLIO INSUFFICIENT TO ADDRESS THE
245 RELIABILITY CONCERNS YOU DISCUSS ABOVE?**

246 A. DEU has adequate natural gas in its gas supply portfolio to meet customer needs on a
247 Design-Peak-Day, assuming 100% of the contracted gas reaches DEU's system as planned.
248 If less than 100% of the gas is delivered as planned, the Company would not be able to meet
249 its firm customer needs on a Design-Peak-Day. While the Company's gas supply portfolio
250 includes a number of different resources, they are all located off-system and therefore subject
251 to threats and risks to their reliable delivery. Conversely, on-system supply resources are not
252 subject to the same threats and risks and therefore, are a highly reliable supply resource.
253 There is always the risk that a portion of the off-system portfolio will not reach the DEU
254 system on a Design-Peak-Day. Indeed, over the past five years, there have been multiple
255 instances where disruptions have occurred on the upstream supply system and contracted gas

256 supplies have failed to reach the DEU system, even though Design-Peak-Day temperatures
257 were not present. As noted in the Supply Reliability Evaluation and Supply Reliability Risk
258 Analysis, these disruptions may be caused by numerous threats and risks to the overall
259 supply delivery chain that ranges from the production or storage wells to gate stations on the
260 DEU system. Recent cold weather operating experience strongly suggests there is a high
261 likelihood the Company will experience additional supply disruptions during cold weather
262 events in the future that result in the loss of service to a significant number of firm sales
263 customers.

264 **Q. GIVEN THESE RELIABILITY CONCERNS, IS THE COMPANY'S SUPPLY
265 PORTFOLIO SUFFICIENT TO ADDRESS THESE CONCERNS ON A DESIGN-
266 PEAK-DAY?**

267 A. No. Although DEU technically has adequate gas supplies under contract to meet firm
268 customer's gas needs on a Design-Peak-Day, its portfolio presumes that all contracted off-
269 system gas supplies will reach the Company's piping system without disruption. Cold
270 weather operating experience in recent years strongly suggests it is unreasonable to assume
271 that all gas supplies will be delivered on a Design-Peak-Day or that the Company will have
272 enough supply if a disruption occurs when temperatures are very cold for an extended
273 period. Therefore, the existing gas supply portfolio is not sufficient to address DEU's
274 reliability risks and concerns.

275 **Q. HAVE YOU HAD AN OPPORTUNITY TO DISCUSS THESE CONCERNS WITH**
276 **THE COMPANY?**

277 A. Yes. I have had the opportunity to meet with DEU engineering, gas supply and regulatory
278 personnel to discuss the Company's reliability risks and concerns. Based on my discussions
279 with Company personnel and my experience in operations for an LDC, I have concluded that
280 DEU's concerns regarding the reliability of upstream supply sources during extreme cold
281 weather events are reasonable and well founded.

282 **Q. BASED ON YOUR REVIEW AND YOUR EXPERIENCE AS AN OPERATOR AT**
283 **AN LDC, DO YOU BELIEVE IT IS REASONABLE FOR THE COMPANY TO**
284 **PROCURE ADDITIONAL RESOURCES TO ADDRESS ITS RELIABILITY**
285 **CONCERNS?**

286 A. Yes. Based on my review of the information provided by the Company and my experience
287 working with an LDC, I believe it is reasonable and prudent for DEU to acquire additional,
288 diversified resources in the gas supply portfolio to address reliability concerns and minimize
289 the potential for major interruptions of service to firm sales customers during cold weather
290 events.

291 **IV. AN ON-SYSTEM LNG FACILITY IS THE BEST SOLUTION OF AVAILABLE**
292 **OPTIONS TO ADDRESS RELIABILITY CONCERNS AND WOULD BE IN THE**
293 **PUBLIC INTEREST**

294 **Q. DID YOU REVIEW THE COMPANY'S SUPPLY RELIABILITY OPTION**
295 **EVALUATION IDENTIFIED AS DEU HIGHLY CONFIDENTIAL EXHIBIT 2.11?**

296 A. Yes. I have reviewed the Company's Supply Reliability Evaluation, including each of the
297 options to determine the optimum alternative to provide a reliable source of 150,000 Dth/day
298 of gas supply to supplement the Company's existing gas supply portfolio.

299 **Q. DO YOU BELIEVE THE COMPANY HAS DONE A COMPREHENSIVE**
300 **EVALUATION OF OPTIONS AVAILABLE FOR RESOLVING ITS SUPPLY**
301 **RELIABILITY CONCERNS?**

302 A. Yes. The supply options identified and evaluated by the Company include a comprehensive
303 inventory of all reasonable alternatives. The range of alternatives include utilization of
304 existing storage resources, contracting for additional off-system storage, both existing and
305 proposed, demand response using large use customers and residential firm sales customers,
306 and the construction of an on-system LNG storage facility. In my opinion, the Company has
307 conducted a comprehensive, prudent and objective evaluation of the merits associated with
308 each of the identified alternatives to resolve reliability concerns. The evaluation considered
309 reasonable and appropriate factors such as safety, reliability of the resource, cost, risks
310 associated with the delivery of the supply, location of the supplemental gas supply (off-
311 system vs. on-system), location (gate station) where the supplemental supply would be
312 delivered to the DEU piping system, DEU system implications and other appropriate factors.

313 The Company also considered on-system underground storage as an additional supply
314 resource, but this alternative was rejected as there are no known geological formations near
315 the DEU load center that are conducive to storage of natural gas.

316 **Q. ARE THERE ANY OF THE OPTIONS OUTLINED IN DEU HIGHLY
317 CONFIDENTIAL EXHIBIT 2.11 THAT FAIL TO ADEQUATELY ADDRESS THE
318 IDENTIFIED CONCERNS?**

319 A. Yes. While all the resource options considered in DEU Highly Confidential Exhibit 2.11
320 would potentially add additional supply resources to the Company's gas supply portfolio, all
321 the options considered except construction of an on-system LNG facility fail to adequately
322 address the identified concerns and risks that precipitated the Supply Reliability Evaluation.
323 Most of the other options considered are located off-system and are therefore subject to the
324 multitude of the same risks and threats that have prevented gas supplies from reliably
325 reaching the DEU system during cold weather operating conditions in the past. Selection of
326 any of the alternatives other than the on-system LNG facility would essentially perpetuate
327 the same issues, concerns and supply shortfalls that the Company is attempting to resolve.

328 **Q. WHAT IS THE DIFFERENCE BETWEEN AN ON-SYSTEM SUPPLY OPTION AND
329 AN OFF-SYSTEM SUPPLY OPTION?**

330 A. As the name suggests, an on-system supply option means that the gas supply resource is
331 physically located on the operator's system and therefore under the direct control of the
332 company. When that company elects to utilize an on-system supply resource, the on-system
333 supply is immediately available to provide additional natural gas supplies, reinforce system

334 pressures, and, in general, meet the needs of the company's customers. Conversely, an off-
335 system supply option is physically located off the company's system, and, in the case of
336 DEU, they are hundreds of miles away, and therefore not under the direct control of the
337 LDC. For its off-system options, DEU must rely on third parties throughout the supply chain
338 to perform. In addition, gas from the off-system resources must be physically transported to
339 the Company's system, which exposes the supply to a multitude of risks and threats to its
340 deliverability.

341 **Q. IN YOUR EXPERIENCE, ARE THERE DISADVANTAGES TO AN OFF-SYSTEM
342 RESOURCE?**

343 A. Yes. Based on my experience working for an LDC, there are numerous disadvantages to off-
344 system gas supply resources. Since the resources are physically located off-system, they are
345 not under the direct control of the operator and are subject to North American Energy
346 Standards Board (NAESB) scheduling which restricts the ability to transport the gas to the
347 operator's system quickly. The fact that the resource is located off the operator's system
348 requires that the gas be physically transported from the resource location to the custody
349 transfer points (gate stations) on the operator's system through one or more interstate
350 transmission pipelines. Off system resources are subject to a multitude of threats and
351 failures on one or more plants, facilities or pipeline systems upstream of the LDC's system
352 (e.g. wellheads, gathering lines, processing plants, compressor stations, pipelines). The
353 reliance on a series of off-system facilities greatly increases the potential for supply
354 disruptions.

355 **Q. THE COMPANY HAS INDICATED THAT THE GEOGRAPHICALLY DISTANT**
356 **RESOURCES THAT IT HAS ASSESSED ARE VULNERABLE TO A VARIETY OF**
357 **RISKS. DO YOU AGREE?**

358 A. Yes. Based on my experience working for an LDC and my review of the risks and concerns
359 identified by the Company in the Supply Reliability Evaluation, the Supply Reliability Risk
360 Analysis, and during my meetings with Company operations personnel, I agree that the
361 geographically distant, off-system supply resources identified and evaluated by the Company
362 are vulnerable to a wide variety of risks that threaten the safe, reliable and timely delivery of
363 natural gas supplies and pressure reinforcement to the DEU system, particularly during a
364 cold weather event. The more off-system facilities that are involved in the supply resource
365 chain of the Company's portfolio, and the greater the physical distance, the greater the
366 exposure to an increased number of supply reliability risks.

367 **Q. IN YOUR EXPERIENCE, HOW SERIOUS ARE THESE RISKS?**

368 A. The potential risks associated with off-system, geographically distant supply options are very
369 serious, and a prudent operator should consider them carefully in evaluating and selecting a
370 gas supply resource. During my tenure with an LDC, I had the occasion to experience many
371 of these risks personally. My Company experienced numerous supply disruptions due to the
372 failures of upstream pipelines and other facilities due to the types of risks identified by DEU.
373 In addition, the February 2011 supply disruption in New Mexico and Arizona that affected
374 more than 40,000 customers underscores and confirms the serious potential of these
375 upstream risks to disrupt supplies to a significant number of end- use customers during a
376 cold weather event.

377 **Q. IN YOUR EXPERIENCE, ARE THERE PARTICULAR BENEFITS TO AN ON-
378 SYSTEM RESOURCE?**

379 A. Yes. Based on my experience with an LDC, there are significant benefits to on-system gas
380 resources. On-system storage resources provide an unparalleled benefit to system reliability.
381 The on-system resource owner operates the resource and has complete flexibility in
382 operation and deliverability of the resource. In the event of upstream supply disruptions, the
383 owner/operator of an on-system supply resource can quickly provide additional gas and
384 pressure support to the system to replace disrupted upstream resources. One of the most
385 significant benefits of on-system resources is the ability to provide immediate gas supplies
386 and system pressure support as compared to the process of nominating or purchasing gas
387 supplies in accordance with the NAESB schedule which may substantially delay the delivery
388 of urgently needed supplemental gas supplies. The major benefits associated with on-system
389 resources is that they are immediately dispatchable by the Company and avoid the significant
390 risks and concerns associated with off-system resources as identified by DEU in the
391 Company's Supply Reliability Risk Analysis. In my experience with NWN, there were
392 numerous occasions where the Company utilized one or both of the LNG plants and
393 underground storage to provide gas supplies and pressure support to the NWN system when
394 off-system gas supplies failed to reach the Company's system due to upstream interstate
395 pipeline failures. These pipeline failures resulted in flow entitlements (restrictions) to the
396 amount of gas that could be taken from the interstate pipeline system. NWN frequently
397 mitigated these supply shortfalls by the use of on-system storage.

398 **Q. THE COMPANY HAS DETERMINED THAT AN ON-SYSTEM LNG FACILITY IS**
399 **THE BEST SOLUTION FOR ADDRESSING THE SUPPLY RELIABILITY RISKS**
400 **OUTLINED IN DEU EXHIBIT 2.12. DO YOU AGREE?**

401 A. Yes. Based on my experience working with an LDC and my experience with the benefits
402 and reliability of on-system supplies, I agree with DEU's determination that an on-system
403 LNG facility is the best solution available for addressing its supply reliability risks. On-
404 system storage provides compelling advantages to system reliability compared to the other
405 alternatives. Of the options evaluated by the Company, the on-system LNG storage facility
406 is the only alternative that effectively mitigates the upstream risks to the reliable delivery of
407 gas to the DEU system under peak cold weather operating conditions. In addition, it would
408 add to the diversity of the Company's gas supply portfolio in that DEU does not currently
409 have any other on-system supply options. I believe having an on-system resource would be a
410 significant benefit for the Company and its customers.

411 **Q. PLEASE EXPLAIN WHY YOU AGREE THAT AN ON-SYSTEM LNG FACILITY IS**
412 **THE BEST SOLUTION.**

413 A. In the DEU Supply Reliability Evaluation and Supply Reliability Risk Analysis, the
414 Company identified the upstream risks that have the potential to disrupt the reliable delivery
415 of off-system gas supplies to the Company's system. Examples of these types of risks
416 include wellhead freeze-offs, processing plant and compressor station failures, power
417 outages, plant shutdowns, mechanical failures and force majeure events. Additional threats
418 exist to the pipelines that transport the off-system gas supplies to the DEU system, including
419 natural forces events (landslides, flooding, earthquakes), human error, third-party excavation

420 damage, cyber-attacks, and pipeline integrity threats such as external corrosion, internal
421 corrosion and stress corrosion cracking. The on-system LNG facility is the only alternative
422 that gives the Company complete control over the mitigation of these upstream risks, and is
423 therefore the most appropriate, secure, and dependable alternative to improve the reliability
424 of supply to the Company's system. Conversely, the selection of any of the other options
425 does not address or mitigate the identified risks and threats, but rather, perpetuates the
426 legitimate risks and concerns relative to the reliability of supply deliveries during cold
427 weather events.

428 **Q. DO YOU HAVE EXPERIENCE WITH ON-SYSTEM LNG FACILITIES? IF SO,
429 PLEASE DESCRIBE THAT EXPERIENCE.**

430 A. Yes. In my previous employment with NW Natural I had significant experience with on-
431 system storage facilities. NWN had the benefit of having two on-system LNG storage plants
432 and underground storage. The on-system LNG plants were owned, operated and dispatched
433 by NWN. The LNG plants, in conjunction with other on-system storage, provided NWN
434 with significant benefits related to supply diversification and system reliability throughout
435 the year, including during cold weather operating conditions. For example, the on-system
436 LNG plants were part of the on-system supply portfolio used to maintain safe and reliable
437 service to customers during numerous catastrophic failures of the upstream interstate
438 pipeline system. As described earlier in my testimony, there were numerous occasions
439 where the Company utilized one or both of the LNG plants (in conjunction with
440 underground storage) to provide gas supplies and pressure support to the NWN system when
441 off-system gas supplies transported by interstate pipelines failed to reach the Company's

442 system. These LNG facilities were invaluable in maintaining safe and reliable service to
443 NWN firm customers.

444 The existence of on-system storage provided NWN with significant flexibility in responding
445 to upstream supply interruptions that threatened the safety and reliability of service to
446 customers. In addition, the Company also used LNG to respond to emergency situations and
447 to reinforce the system during isolated events.

448 **Q. PLEASE SUMMARIZE YOUR PRIMARY CONCLUSIONS AND
449 RECOMMENDATIONS**

450 A. DEU has an obligation to provide safe and reliable service to the Company's residential,
451 commercial and industrial customers. Based on recent upstream supply disruptions
452 experienced during winter cold weather events, DEU has identified legitimate concerns
453 regarding the reliability of upstream, off-system supply resources to perform without
454 interruption during winter cold weather events or on a Design-Peak-Day. The Company has
455 prudently determined the need to obtain additional source(s) of gas to add to the gas supply
456 portfolio to maintain system safety, reliability and adequate system operating pressures
457 during a cold weather event. DEU has conducted a comprehensive Supply Reliability Risk
458 Analysis to identify risks and threats to the reliable delivery of off-system gas to the
459 Company's system. In addition, the Company has conducted a comprehensive Supply
460 Reliability Evaluation to identify and objectively evaluate all reasonable alternatives to
461 provide an additional source of supply to minimize the potential for service interruptions to
462 sales customers. Based on these analyses, the Company has concluded that the most

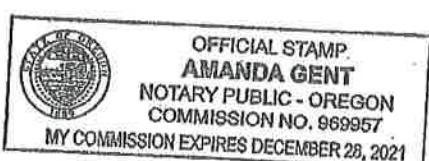
463 beneficial option is to construct, own, and operate an on-system LNG facility. During my
464 tenure at NWN, I had significant experience with on-system LNG facilities and concluded
465 that on-system LNG storage was an invaluable resource to maintain the safe and reliable
466 delivery of natural gas service to firm customers. There were numerous instances where the
467 Company utilized one or both of the LNG plants to provide gas supplies and pressure
468 support to the NWN system when off-system gas supplies failed to reach the Company's
469 system. I have reviewed the DEU analyses and believe that the analyses are comprehensive,
470 reasonable, objective and competently performed. I concur with the Company's conclusion
471 that an on-system LNG facility would be the most prudent option for addressing system
472 reliability issues, enhancing diversification of the Company's gas supply portfolio and
473 improving the safety and reliability of service to firm customers during a cold weather event.

474 **Q. DOES THIS CONCLUDE YOUR TESTIMONY?**

475 A. Yes.

State of Oregon)

: ss.


County of Washington)

I, Bruce L. Paskett, being first duly sworn on oath, state that the answers in the foregoing written testimony are true and correct to the best of my knowledge, information and belief. Except as stated in the testimony, the exhibits attached to the testimony were prepared by me or under my direction and supervision, and they are true and correct to the best of my knowledge, information and belief. Any exhibits not prepared by me or under my direction and supervision are true and correct copies of the documents they purport to be.

Bruce L. Paskett

SUBSCRIBED AND SWORN TO this 29th day of April 2018.

Amanda Gent
Notary Public