Dominion Energy® IRP Technical Conference

February 20, 2019

IRP 2019 Schedule

February 20, 2019 – Technical Conference

IRP Standards and Guidelines

Review of 2018 Order

Proposed 2019 IRP Outline

Renewable Natural Gas Update

Wexpro Well Freeze-offs

March 20, 2019 – Technical Conference

Heating Season Review

Rural Expansion

Long Term Planning

Rate Case Preview

Heating Degrees Update

IRP 2019 Schedule

April 25, 2019 – Technical Conference

RFP Recommendations (Confidential) Supply Reliability Results (Confidential)

May 23, 2019 – Technical Conference

Wexpro Matters (Confidential) Integrity Management Update

June 20, 2019 – Technical Conference

Presentation of Integrated Resource Plan

Agenda

- IRP Standards and Guidelines
- Review of 2018 Order
- Proposed 2019 IRP Outline
- Renewable Natural Gas Update
- Wexpro Well Freeze-offs

IRP Standards and Guidelines (2009)

Guideline	Update
Review latest quarterly variance report	IRP Report, March 20, 2019 Tech Conference
Changes to customer growth models	IRP Report – Customer & Gas Demand Forecast Section
Changes to linear programming optimization (LPO) model (SENDOUT)	IRP Report – Final Model Results Section
Changes to DSM models	IRP Report – Energy Efficiency Section
Supply/demand forecasts, SENDOUT and DSM results	IRP Report – Customer & Gas Demand Section
Gas quality and gas storage issues	IRP Report – Gathering, Transportation, & Storage Section
Changes to Gas Network Analysis (GNA) models	IRP Report – System Capabilities and Constraints
GNA model results	IRP Report – System Capabilities and Constraints
Integrity management issues	IRP Report – Integrity Management Section
Other issues	Scheduled as needed

Review of the 2018 Commission IRP Order

- Commission concluded the 2018 IRP as filed generally complies with the requirements of the 2009 Standards and Guidelines.
- Adopted DEU's commitments set forth in its reply comments.
 - We find DEU's commitment to provide complete information in future IRP documents, rather than incorporating information by reference, addresses the OCS's concern regarding the IRP as a standalone document.
 - We also find DEU's commitment to provide confidential information through the discovery process or by using the provisions of Utah Admin. Code R746-1-601 *et seq.* addresses the OCS's concerns regarding confidential IRP-related information.
- DEU shall convene a stakeholder meeting prior to the initiation of the 2019 IRP docket to discuss how it can address the OCS's concerns regarding the insufficiency of certain information in the IRP.

A summary of these discussions should be provided during a 2019 IRP pre-filing technical conference.

Stakeholder Meeting Summary

Meeting held on December 17, 2018

Distribution System Action Plan

- References will be made to connect projects in the action plan with the justification as provided in the system capabilities and constraints section.
- Any changes to budget amounts will be highlighted.
- Projects carrying over from previous years will not refer back to previous IRPs for summary purposes.
- References to historical IRPs may be made for reference to previous analysis (i.e. alternative evaluations).

Long-Term Planning

 A subsection will be added to the system capabilities and constraints section provide a high-level summary of long-term planning concerns, issues etc.

Proposed 2018 IRP Outline

- Executive Summary
- Introduction
- Customer and Gas Demand Forecast
- System Capabilities and Constraints
- Distribution System Action Plan (DNG Action Plan)
- Integrity Management
- Environmental Review
- Purchased Gas
- Cost-of-Service Gas
- Gathering, Transportation, and Storage
- Supply Reliability
- Sustainability
- Energy Efficiency
- Model Results
- Guidelines
- Appendix

Renewable Natural Gas (RNG) Initiatives

What do the following images have in common?

Utah Projects Underway

Wasatch Resource Recovery: North Salt Lake Food Waste

Bayview Landfill: Elberta, Utah **Municipal Solid Waste**

Production of approximately 2 million Dth per year beginning in 2019
15.5 million gas gallon equivalents (GGE) of fuel
In 2017 total Utah CNG sales were 7 million GGE

Dominion Energy - RNG Initiatives

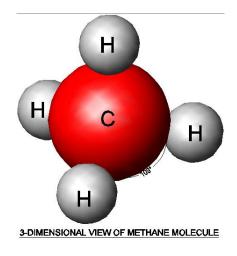
RNG Transportation Tariff

- Tariff Section 5.07 approved by the Utah Public Service Commission, effective January 1, 2019
 - Allows RNG suppliers to transport RNG to their own refueling customers through DEU's pipes and NGV stations.
 - Removes barriers for RNG to be used in over-the-road applications qualifying the RNG supplier for lucrative incentives under the federal Renewable Fuel Standard (RFS) program
 - Enables Utah fleets to use their own RNG supplier while maintaining access to DEU stations

Dominion Energy - RNG Initiatives

Voluntary RNG Purchase Program

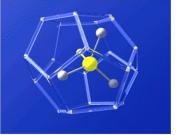
- Voluntary RNG purchase program
 - Similar to Rocky Mountain Power's Blue Sky Program, but for Renewable Natural Gas (RNG)
 - Customers able to pay a surcharge for RNG
 - November 2018 presented voluntary RNG concept to Stakeholders
 - Plan to seek Commission approval Q1, 2019



Wexpro Production

Potential Production Freeze-offs

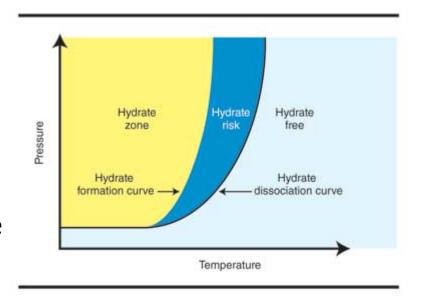
- Natural gas wells produce not only natural gas (methane), but also produce liquids
- Almost every well produces some liquids
 - Condensate
 - Produced Water
- With the mixture of natural gas, condensate, and water, hydrates can form



Potential Production Freeze-offs

What is a hydrate?

- A hydrate is an ice like crystalline structure in which the water molecules form a cage-like structure around the gas molecules
- Hydrates can form at temperatures well above 32°F
- 1 SCF of hydrate contains approximately 1500 SCF of gas



Potential Production Freeze-offs

- How to eliminate hydrate formation?
 - Methanol injection to reduce hydrate formation temperature
 - Heat increase and carry over into the process stream
 - Pressure controls to reduce hydrate formation
 - Remove free water in the gas stream

Hydrate Mitigation

- How to eliminate a hydrate?
 - The safest and most effective mitigation effort is to reduce pressure on both sides of the hydrate and allow it to dissolve over time
 - Methanol can be injected to help dissolve the hydrate

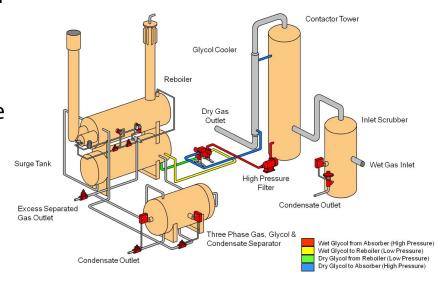
Common Hydrate Locations

- Where are the common hydrate formation locations?
 - Well bore/tubing
 - Production lines (from wellhead to separator)
 - Separator dump lines (from separator to storage tanks)
 - Gathering system (from well(s) to central facility)

Wellhead Hydrate Formation & Prevention

- When gas wells are producing, the gas and liquid mixture will cool in the tubing from the bottom of the wellbore to surface
- The temperature drop can lead to hydrate formation conditions in the wellbore
- To mitigate hydrate formation in known wellbores, methanol is injected downhole to reduce the formation temperature to keep the wellbore on production.

Production Line and Dump Line Hydrate Formation & Prevention


- When gas wells are producing, the liquid flows to the surface in steady streams or slugs of liquid
- The slugs lead to intermittent liquid dumping and stagnant liquid in production or dump lines
- Stagnant liquid can cool leading to hydrate formation conditions
- To mitigate hydrate formation in production and dump lines, heat trace systems are installed to circulate warm glycol along the buried or surface lines to increase temperature to keep production flowing

Gathering System Hydrate Formation & Prevention

- Gathering systems gather the gas to central facilities and have temperature drops and pressure drops in the systems that can lead to hydrate formation conditions
- There are a couple ways to mitigate hydrate formation in gathering systems:
 - Dehydration will remove the free water from the gas stream and will reduce the hydrate formation potential
 - Methanol injection points are installed on various points in the gathering systems to prevent hydrate formation by reducing the formation temperature

Questions?

