
# Supply Reliability Technical Conference Docket 19-057-13





#### RFP Overview

- Prior to filing Docket 18-057-03, DEU explored and evaluated numerous alternatives to meeting its supply reliability needs
- In 2018, DEU issued an RFP to identify any additional alternatives
  - RFP sent out to all known regional supply providers, interstate pipelines, and storage facility operators
  - RFP was advertised in Platts Gas Daily newsletter
  - RFP was posted on the Dominion Energy website along with FAQs and other relevant information
- Office of Consumer Services and Division of Public Utilities provided input into the development of the RFP



## RFP Requirements

- Responses were due March 1, 2018 (extended to March 4, 2018)
- DEU required specific delivery locations, deliveries not subject to the NAESB cycles, and 30 minute delivery in order to meet the defined supply reliability needs
  - Without these requirements, responses may have been submitted that would not meet the need identified by DEU
  - Specific requirements are necessary to accurately compare alternatives

(DPU Set 2 - Question 5)



3

#### RFP Responses

- DEU received responses from 3 respondents
  - Two of these were new respondents
    - Prometheus Energy (2 proposals)
    - United Energy Partners (1 proposal)
  - One of the respondents had submitted prior proposals
    - Magnum Energy (3 proposals)
- Respondents did not indicate how they became aware of the RFP



#### **RFP** Interest

- All interest, questions, and responses were managed through the formal RFP process
- 4 potential respondents filled out the "Response Letter" attached to the RFP to indicate they would be responding to the RFP; one did not submit a bid
- 18 individuals representing various entities (shown below) attended the bidder's conference held on January 14, 2019

#### In Person:

Thomas Quine – Northstar Industries
Randy Hull – Prometheus Energy
Ken Teague – Primoris Services
Brandon Martin – Dominion Energy
Judd Cook – Dominion Energy
Christine Wallat – Magnum Energy Midstream
David Cordon – Cosmodyne
Doug Wheelwright – Utah DPU
Jeff Einfeldt – Utah DPU
Jeff Einfeldt – Utah DPU

#### By Phone: (open line so others may have participated)

Shaun Wentz - OnQuest
Ed Rodriquez - OnQuest
Steve Cook - OnQuest
Sherri Zeller - Kiewit
Dean Girdis - Preload Cryogenics
William De Los Santos - Chart Energy & Chemicals
Esteban Lara - Kern River Gas Transmission
Bela Vastag – Utah OCS



#### **RFP Notice**

- DEU sent notice of the RFP to all known potential respondents
  - 81 Regional natural gas supplier contacts
  - 7 Storage service provider contacts
  - 6 Interstate pipeline contacts
  - 3 Industry business development contacts
- List of supply counterparties was developed through history of interactions from industry meetings, pipeline customer meetings, networking, etc.
  - This list is used for the annual supply RFP and daily supply purchasing
- DEU did not specifically follow up with any parties who did not express interest

(DPU Set 1 - Question 5)



#### **RFP** Criteria

- Price and non-price factors were weighted equally in the evaluation process
- DEU Exhibit 1.06 provides a summary of which options met each requirement and where there were identified risks
- With the reinforcements specified, all of the options can fulfill the operational requirements of the RFP.



#### **NAESB Cycles**

- NAESB nomination cycles are too restrictive for a supply reliability solution
- Re-nominating a higher amount in one of the intra-day cycles
  - Gas may not be available
  - Transportation may be constrained and not available
  - Delay from nomination/confirmation deadline and gas flow
- Analysis showed that deliveries must happen within 30 minutes to prevent loss of service to customers.



#### **Gate Station Shortfalls**

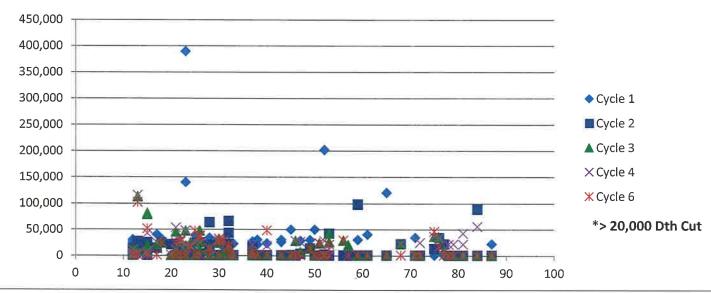
- Supply shortfalls have historically occurred at upstream locations not specific gate stations but could affect the volumes and pressures at any gate station(s) along the Wasatch front
- A supply reliability resource must be able to maintain system pressures and volumes in the face of a supply shortfall impacting any of the gate stations
- DEU has historically purchased gas supply delivered to the following stations:
  - Hunter Park gate station
  - Riverton gate station
  - Payson gate station
  - Wecco/Central gate stations
  - Foothill gate station
- The purchased quantity varies
- Gas supply is often available at these locations, however availability becomes limited as demand increases in Utah and locations south (NV and CA)

(DPU Set 1 - Question 6)

Availability on a "peak day" (design day) is unknown



## Clay Basin and Kern River No-Notice Transportation


- DEU evaluated a hypothetical proposal for utilizing additional Clay Basin capacity as part of its prior analysis of options associated with Docket 18-057-3
  - This option was not the lowest-cost or most reliable option to meet DEU's supply reliability needs
  - An updated analysis was not completed because DEQP did not submit a proposal as part of the RFP
- DEU did not evaluate a No-Notice Transportation option only on Kern River because this service does not currently exist and was not proposed as a response to the RFP



## 2011-2019 DEU Supply Cuts on DEQP

 DEU supply only, none of these are representative of supply reductions for Transportation customers





June 19, 2019

Dominion Energy

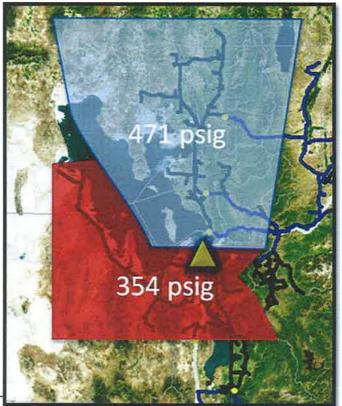
### **Supply Cuts**

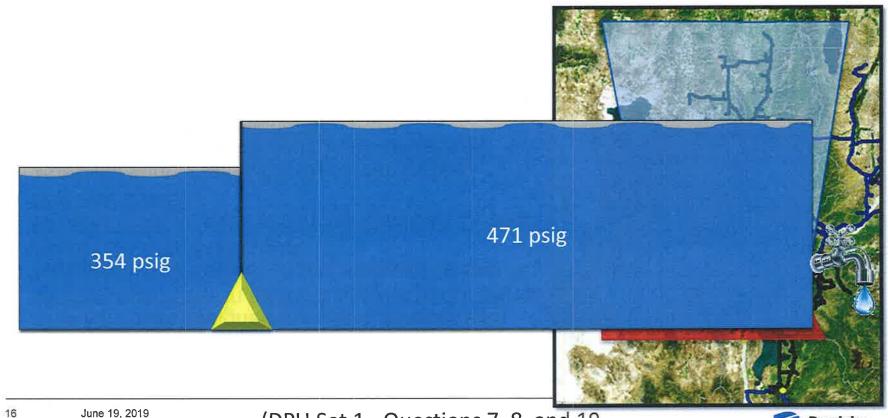
- The supply cut graph notes the cycle of the cut
- Any cuts that last for multiple cycles will show a data point for each cycle
- Cuts remaining in cycle 6 were cuts that lasted the full day
- The amount of the cuts is also shown in the graph



#### **Peak Hour Services**

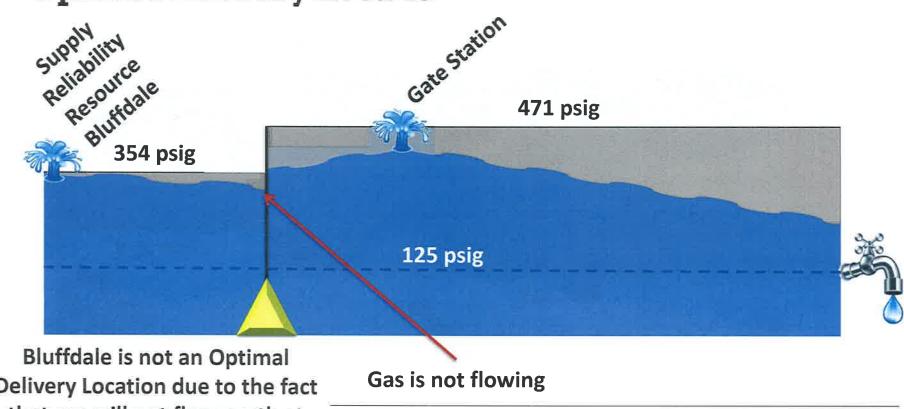
- The proposed LNG Facility could provide peak hour services by providing supply during the peak hours of days where hourly demand exceeds the RDC on the upstream pipelines
  - DEU would utilize standard pipeline capacity when available
  - Usage would be limited to minimal days, small volumes, and available LNG
  - On a design day, if the LNG facility were needed for supply reliability, the facility would flow at max liquefaction (withdrawal) for all hours of the day including the peak hours





## **Supply Reliability Risk Report**

- Initially prepared February 2018/updated in April 2019
- Purpose to summarize the risks
- Authors Mike Platt, Will Schwarzenbach, Mike Gill, and Tina Faust
- Distribution Docket 18-057-03 and 19-057-13

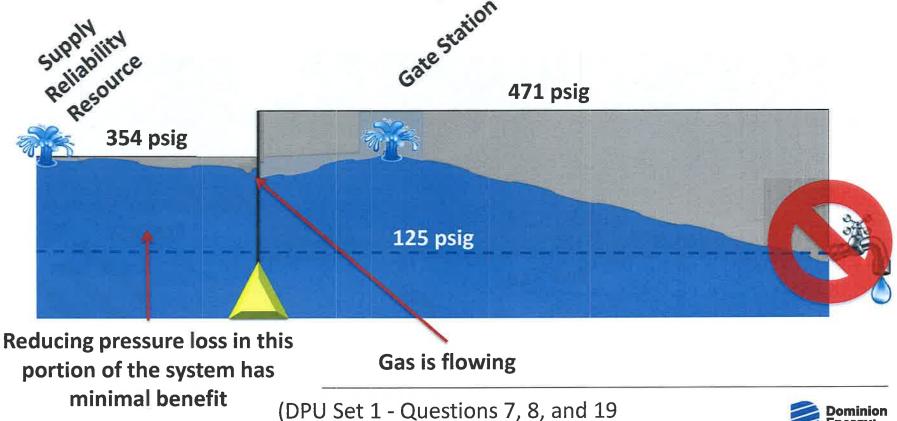



- This RFP was designed to collect services with similar capabilities in terms of system performance
- No parameters have changed between Docket No. 18-057-03 and this Docket
- No gate stations exist within the identified Optimal Delivery Location
- Potential supply reliability resources located outside the Optimal Delivery Location cannot mitigate all shortfall scenarios
- This triangle signifies the location where pressures are separated and regulated from a 471 psig MAOP area to a 354 psig area





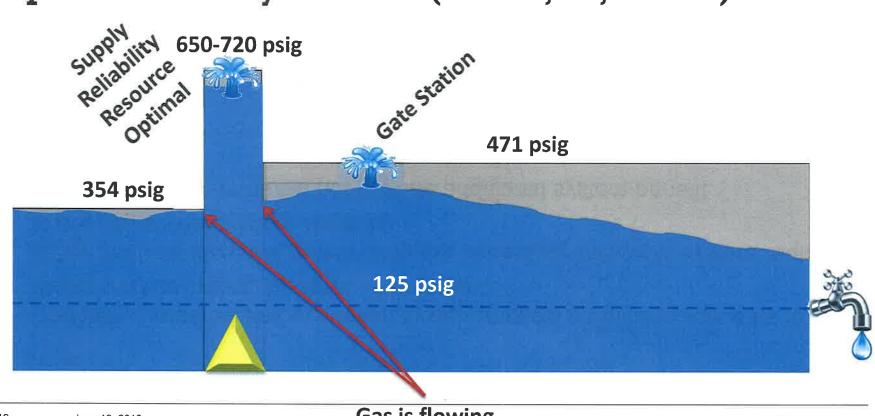
(DPU Set 1 - Questions 7, 8, and 19 DPU Set 2 – Questions 1 and 2)






Delivery Location due to the fact that gas will not flow north at sufficient pressure

(DPU Set 1 - Questions 7, 8, and 19 DPU Set 2 – Questions 1 and 2)





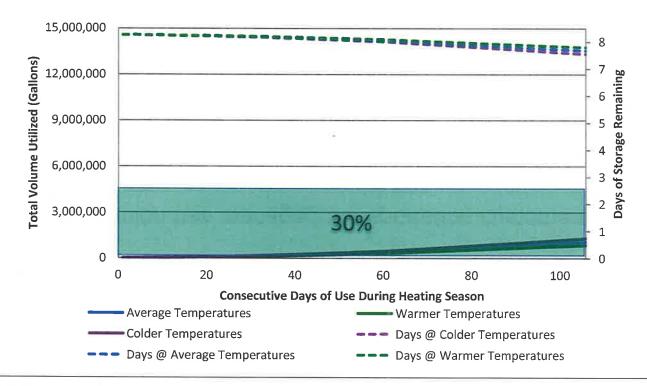

(DPU Set 1 - Questions 7, 8, and 19 DPU Set 2 – Questions 1 and 2)



# Optimal Delivery Location (FLs 12, 13, and 33)



Gas is flowing




#### **Tangible System Benefits**

- Company prepared and evaluated system models on all the proposals to determine the system benefits as proposed
- Other analysis included determining the necessary minimum system required to provide similar system benefits
- The minimum systems did not provide additional system benefit



## **Satellite Demand and Impact**





### **DPU** Set #1 Question #9

- 9.a. The reference "Transportation Customers" refers to Firm and Interruptible customers.
- 9.b. DEU's tariff does not provide standby or backup service to transportation customers.
- 9.c. Historically, Dominion has managed transportation customers usage through penalties and fees.
- 9.d. Daily vaporization can be compared to known daily supply cuts.
- 9.e,g,h. All transportation customers are required to have telemetry installed on their meter.
- 9.f. DEU has limited means of controlling customer's receipt of system supply.

(DPU Set 1 - Question 9)



22

# Transportation Customer Imbalance Management

Monthly Supply Imbalances - +/- 5% monthly tolerance, resolved at month end

Daily Imbalance Charge - \$0.08/Dth charge for volumes outside of a 5% range

Restrictions on Daily Imbalance (Operational Flow Order) – Greater of \$1 or difference in monthly and daily market index prices

Hold Burn to Scheduled Quantity \$5 plus daily cost of gas/Dth up to 10% imbalance, \$25 plus daily cost of gas/Dth thereafter

DEU reserves the right to take any action reasonably necessary to restrict deliveries or usage in order to maintain a balanced distribution system when required for system integrity



23



#### Five Year Summary – Winter Restrictions November - March

|           | 5% Draft<br>Limit | No Draft      | +/- 5% Limit   | Other         | Total |
|-----------|-------------------|---------------|----------------|---------------|-------|
| 2013/2014 | 58                | 1 to log aug  | marcar poé bui | 1 1 0 00 10 0 | 60    |
| 2014/2015 | 12                |               | 7              | 1             | 20    |
| 2015/2016 |                   |               | 10             |               | 10    |
| 2016/2017 |                   | 1 con lo pi a | 9 11 01 01     |               | 10    |
| 2017/2018 |                   |               | 11             |               | 11    |
| 2018/2019 |                   | 10            | 15             | 2             | 27    |

4

June 19, 2019

(DPU Set 1 - Question 17)



# Five Year Summary - Interruptions (Hold to Burn)

December 5, 2013
3 Hour Interruption
150 of 272 customers penalized \$133,770

December 31, 2014
21 Hour Interruption
72 of 446 customers penalized \$500,884

January 6, 2017
23 Hour Interruption
275 of 733 customers penalized \$1.3 million



## **TS Customer Meetings**

- DEU holds a customer meeting prior to the winter season
- Discuss nominations, interruptions, penalties
- Provide updates on issues relevant to the TS class



## **Supply from TS Customers**

- Historically, customers sold gas to DEU when interrupted
  - Nickel waiver program
  - Later, just obligated to sell by tariff
- Current tariff
  - No obligation for TS Customers to sell gas to DEU
    - Not reliable source of supply



### **Supply from TS Customers**

- 48 interruptible customers
- 957 total transportation customers
- Total TS annual usage is 98,191,233 MDTH
- Top 5 interruptible usage is 1,746,837 MDTH = 1.7% of total
- TS Customers are not required by DEU to have alternate fuel resources
  - Some are required by other agencies



## **LNG Facility Locations**

- 49 CFR Part 193 requires a setback distance of 1 mile
- Location of proposed LNG Facility near Magna is more than 5 miles away from an airport runway
- No FAA approval required
- The potential satellite facilities will be designed in accordance with applicable code requirements



### **LNG Plant Staffing**

#### Day Shift Only

- One Facility Manager
- One Mechanical Engineer
- One Electrical Engineer
- One Mechanical Maintenance
- One E&I Maintenance

#### 24/7 Coverage – 3 Shifts

- Two Operators per shift total of 8 people
- Four people per operator position: 3 shifts plus one person off/cover vacation



## LNG Usage Without Disruptions

 It is anticipated that the proposed facility would be held in reserve until mid-February and then be used as needed for price-optimization until the facility is 70% full.



#### **Boil-Off Gas Discussion**

- Boil-off occurs inside the LNG storage tank and is independent of the vaporization rate of the facility
- The LNG Facility boil off gas will be delivered into the system during vaporization cycles and recycled as LNG during liquefaction cycles
- The insulation system identified in the FEED allows a maximum of 0.07% per day



# LNG Satellite Facilities - Trucking

|                            | Kanab | Green River | Wendover |
|----------------------------|-------|-------------|----------|
| Average Annual Deliveries  | 160   | 32.5        | 50       |
| Average Monthly Deliveries | 13.4  | 2.7         | 4.2      |
| Coldest Month Deliveries   | 34.3  | 6.9         | 10.7     |
| Warmest Month Deliveries   | 3.8   | 0.8         | 1.2      |
| Average Daily Deliveries   | 0.44  | 0.1         | 0.14     |



## LNG Satellite Facility Cost Estimates

- LNG satellite design is still very preliminary
- +/- 50% estimate is due to the level of detail in preliminary analysis
- 20% contingency applies to line items within the estimate



#### **REDACTED**



# **Magnum Option 2 Costs**

**REDACTED** 



36

#### **REDACTED**



## Costs to liquefy, store and vaporize natural gas

#### Assumptions:

- \$ in Fixed operating expenses
- \$ in Variable operating expenses

Tank is filled from empty to full (1,272,453 Dth)

Eight days of vaporization at 150,000 Dth/Day

9.33% Annual Carrying Cost

