William J. Grenney 3965 Village Rim Road Park City, UT 84098 Telephone: 435.214.7264

Single-Family Home Owner and Full Time Resident

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)

)

))))

In the Matter of Community Water Company, LLC

DOCKET NO. 16-098-01	
Community Water Company's Application for an Interim Rate Increase and Expedited Hearing on the Matter	1

I. INTRODUCTION

1. William J Grenney is a single-family home owner and full time resident at 3965 Village Rim Rd., Park City, UT 84098 being served by Community Water Company.

- 2. I have been granted Intervenor status for Docket No. 16-098-01 and I am representing myself.
- **3.** Definition of abbreviations used in this report:

One of the 498 customers either metered separately or contributing to a shared meter. This report assumes that shared consumption is allocated among customers prior to billing as requested in Exhibit B Amended. Calculations would need to be adjusted if this is not the case.
Community Water Company.
Bowen, Collins & Associates, Draper UT
Docket No. 16-098-16 DPU Exhibit No 2 Direct Testimony of Mark A Long on
June 13, 2016.
Gallons per minute of water.
Thousand gallons of water.
Water recorded by customer meters.
Water recorded by meters at the source (Pump, WTP, SWDC imports).
Summit Water Distribution Company.
TCFC Finance Co LLC.

WTP:

Water Treatment Plant.

II. PURPOSES

1. To enter into testimony data that was not available to DPU at the time when the DPU Exhibit No. 2 was prepared.

2. To document the significant variation in production-water costs depending on the source of the water (pumps, WTP, SWDC).

3. To demonstrate that the usage charges proposed in DPU Exhibit 2.0 are not adequate to cover the expense of water production.

III. BACKGROUND

1. Table 1a compares the current rate schedule with the one proposed in Docket 15-098-01 (withdrawn) and the one proposed in Docket 16-098-01.

Table 1a. Rate Proposals												
Usage Amounts	Current (\$/KGal)	PSC 15-098-01 (\$/KGal)	PSC 16-098-01 (\$/KGal)									
(1)	(2)	(3)	(4)									
0 – 5,000	0	1.30	0.30									
5,001 – 10,000	1.25	1.30	0.30									
10,001 – 12,000	5.12	1.30	0.30									
12,001 – 16,000	5.12	1.95	0.60									
16,001 – 24,000	5.12	1.95	0.60									
24,001 – 36,000	5.12	2.96	1.20									
36,001 – 48,000	5.12	4.45	2.40									
48,001 and over	5.12	4.45	4.80									
Monthly Base Culinary Users (\$/mo)	12.00	36.05	33.20									
Monthly Base Irrig Connection (\$/mo)	5.00	36.05	33.20									
Standby Charge (\$/mo)	5.00	16.85	17.25									

2. After reading DPU Exhibits and comparing them to the information that I have gathered from CWC and SWDC, I have decided to submit my testimony to point out two specific observations: missing data and significant differences in the cost of producing water depending on the source. I have also included Appendix A summarizing the data that have been provided to me.

IV. WATER PRODUCTION (PRODUCTION-WATER) AND CONSUMPTION (CUSTOMER-WATER)

1. Production-Water.

CWC supplies water from four sources: Gulch Well Pump, Wagon Trail Well Pump, Willow Creek Water Treatment Plant (WTP), and water imported from Summit Water Distribution Company (SWDC). The maximum production capacity for each as estimated by Bowen Collins and SWDC is shown in Table 1b.

Table 1b: Maximum Water Production Capacities.

Source	Bowen Collins (gpm)	SWDC (gpm)	SWDC (Kgal/day)	
Gulch Well Capacity	100	85	122	
Wagon Trail Well Capacity	30	25	36	
Willow Creek WTP Capacity	220	220	317	

Table 1c: Water Storage Capacities provided by three tanks (Bowen Collins).

Equalization/Emergency Storage Capacity (Kgal)	220
Fire Storage Capacity (Kgal)	240
Surplus Capacity (Kgal)	241
Total Capacity (Kgal)	701

Emergency and surplus storage combined provide less than one day's maximum production-water from pumps and WTP combined. Storage is used primarily for smoothing out peak day demands.

2. Production-Water Versus Customer-Water.

2015 was the year of highest production in the last decade. 2013 was a more or less typical year. The data in Table 2 for pumps, WTP, and SWDC were provided by SWDC (Mike Folkman 4/13/16).

CWC purchased 3,029,700 gallons of water from SWDC between the dates of 10/19/2015 and 4/19/2016. At the unit cost of \$5.30 per thousand gallons the total cost was \$16,057. SWDC billed CWC for the total amount on 4/19/2016. There are 183 days between the mornings of 10/19/2015 and 4/19/2016, and 74 (40.44%) of those days fall in 2015. SWDC representatives have told me that the delivery was more or less evenly distributed during the period. Consequently \$6,493 (\$16,057 x 0.4044) should be included in the variable expenses. The volume of water imported in 2015 was 1,225 Kgal (3,029,700 x 0.4044).

YEAR	TOTAL PRODUCTION (Kgal)	AL PRODUCTIONPUMPED PRODUCTIONWTP PRODUCTION(Kgal)(Kgal)(Kgal)		IMPORTED FROM SWDC (Kgal)										
2013	59,727	37,504	22,223	?										
2015	71,218	42,818	27,102	1,225										

Table 2: Annual Production-Water in 2013 and 2015.

Table 3 shows the 2015 total amount of customer-water (taken from DPU Exhibit 2.2) and the amount of production-water (SWDC records). The customer-water was only 57.27% of the production-water.

Total Customer-Water (Kgal)	Total Production-Water (Kgal)	Losses due to faulty metering and leaks (Kgal)	Percent of production-water lost to faulty metering and leaks (%)
40,748	71,145	30,397	42.73

 Table 3: Customer-Water vs. Production-Water in 2015.

The production-water from each of the sources shown in Table 2 were multiplied by 0.5727 to estimate the customer-water from each source as shown in Table 4.

Table 4: Customer-Water Consumption From Each Source Based on 57.27% of the Amount Produced.

Total Customer-Water	Pumped Customer-	WTP Customer-Water	Imported Customer-
(Kgal)	Water (Kgal)	(Kgal)	Water (Kgal)
40,748	24,521	15,521	

Table 5: Maximum Production-Water and Customer-Water Capacity from Each Source Based on 57.27% ofthe Values in Table 1b.

Maximum Water Supply	Pumps (Gulch + Wagon	Willow Creek WTP	TOTAL
Capacity	I rail Wells)		
Maximum Daily			
Production-Water	159	217	475
Capacity at the source	138	517	475
(Kgal/day)			
Maximum Daily			
Customer-Water	00	103	272
Capacity based on	30	102	272
57.27% efficiency			
Maximum Monthly			
Customer-Water			
Capacity based on	2,736	5,533	8,269
57.27% efficiency			
(Kgal/mo)			
Maximum Monthly			
Customer-Water		11	16 5
Capacity per Customer	5.5	11	10.5
(Kgal/mo/customer)			

Table 6 shows the annual distribution of production-water and customer-water during 2015. The productionwater quantities shown in columns (3), (4) and (5) were provided by SWDC. The values in columns (6), (7) and (8) were obtained by multiplying the amount of production-water by 57.27% to account for losses. The average daily customer-water quantities during each month shown in columns (9), (10) and (11) were obtained by dividing the values in columns (6), (7) and (8) by the number of days in the month.

Month	Days	Productio	on-Water (Kgal/mo)	Custome	r-Water (k	(gal/mo)	Average Daily Customer-Water During each Month (Kgal/Day)					
(1)	(2)	Pump (3)	WTP (4)	SWDC (5)	Pump (6)	WTP (7)	SWDC (8)	Pump (9)	WTP	SWDC	Total		
(-/	(-)			01120(0)			01120(0)		(10)	(11)	(12)		
1	31	3,298	0		1,889	0	0	61	0	0	61		
2	28	3,205	0		1,836	0	0	66	0	0	66		
3	31	3,659	0		2,096	0	0	68	0	0	68		
4	30	3,756	0		2,151	0	0	72	0	0	72		
5	31	4,008	0		2,296	0	0	74	0	0	74		
6	30	4,304	4,663		2,465	2,670	0	82	89	0	171		
7	31	3,931	5,780		2,251	3,310	0	73	107	0	179		
8	31	3,890	8,629		2,228	4,942	0	72	159	0	231		
9	30	2,507	7,306		1,436	4,184	0	48	139	0	187		
10	31	3,046	724	408	1,745	415	234	56	13	8	77		
11	30	3,319		408	1,901	0	234	63	0	8	71		
12	31	3,895		408	2,231	0	234	72	0	8	79		
	365	42,818	27,102	1,225	24,522	15,521	702						
Table 6.	Annual Di	stribution	of Produ	ction-Wat	er and Cus	stomer-W	ater.						

 Table 6. 2015 Annual Distribution of Production-Water and Customer-Water with 42.73% Losses.

Figure 1 is a graphical display of the 2015 annual distribution of customer-water.

Figure 1. 2015 Annual Distribution of Customer-Water.

V. PRODUCTION COSTS

1. COSTS OF CUSTOMER-WATER DEPENDING ON SOURCE

Appendix A shows expenses reported in the CWC 2015 Income/Expense Report adjusted as follows:

a) Addition of Tax (\$10,388), Profit (\$7,932), Insurance (\$4,900) and Annual Capital Reserve (\$52,010) that are included in DPU Exhibit 2.4.

b) Water purchased from SWDC (\$6,943) is included in Appendix A but not in DPU Exhibit 2.4.

c) Taking these two considerations into account, Appendix A total expenses turns out to be within one percent of PDU Exhibit 2.4 total expenses.

Fixed and variable costs were sorted into five categories: administration, pumps, WTP, and purchased (SWDC) as shown in Table 7 columns (2), (3), and (4).

2. Costs of Customer-Water

Table 7 shows a summary of the costs in Appendix A divided by the customer-water consumption shown in Table 4.

Table 7. Cost of	Table 7. Cost of Delivering Customer-Water from the Three Sources.												
Expense Categories (1)	Total (2)	Fixed (3)	Var Cus	iable Cost stomer-W (4,5,6)	s for ater	Max Source Capacity (7)	Max Source Capacity (8)	Max Customer Delivery (9)					
	(\$)	(\$)	(\$)	(Kgal)	(\$/Kgal)	(Kgal / day)	(Kgal / Mo)	(Kgal/Mo/ Customer)					
Administration	177,110	177,110											
Pumps	6,855	1,100	5,753	24,521	0.24	90	2,736	5.5					
Distribution System Repairs	9,657	9,657											
WTP	14,129	7,108	7,021	15,521	0.46	182	5,533	11					
Purchased from SWDC	6,943		6,493	702	9.25								

Column (4) shows the variable cost associated with each source of production. Column (5) shows the total volume of customer-water from each source in 2015. Column (6) shows the unit cost:

unit cost (\$/Kgal) = cost of production (\$) / customer-water supplied (\$/Kgal).

Column (7) shows the maximum daily volume of customer-water possible from each source (from Table 5). Column (8) shows the maximum monthly volume of customer-water possible from each source: column (8) = column (7) * 30.4 days/mo. Column (9) shows the maximum monthly volume of customer-water possible from each source per customer: column (9) = column (8) / 498 customers.

Columns (6) and (9) are basically saying that if, during a particular month, each customer consumed 5.5 Kgal/mo, all of the water could be provided by pumps at a cost of \$0.24 / Kgal.

VI. NET INCOME FROM WATER USAGE

Table 8 shows the results from a net income analysis based on the following assumptions:

1. The 2015 customer-water consumption calculated for each source.

2. If the CWC Exhibit B Amendment is adopted, then separate considerations for shared meters are not necessary because the shared water is allocated in such a way that it takes advantage of the combined tier 1 allocations for all customers on the shared meter.

3. The rate schedule in DPU Exhibit 2.0 is applied.

4. All calculations are based on monthly and customer averages.

Table 8. Net Income Analysis for Water Usage

Cost of Production (\$/Kgal)				Pumps	WTP	SWDC		Numb	er of Custo	omers	498		% Losses	42.73				
					0.24	0.46	9.5		Nun	nber of Me	ters							
					Price (Ş/Kgal)	0.3	0.6	1.2	2.4	4.8							
	Custo	mer Price	DIOCKS		Upper	Border	1Z	11.052	17 020	22.004	over							
					Upper B	order All	5,976	11,952	17,928	23,904	over							
	la de catale a	Matana Da	des plasta		Upper	Border												
	inigation	wieters Pr	ICE BIOCKS		Price (\$/Kgal)												
Month	Pro	duction-W	ater (Kgal/ı	mo)	Cu	stomer-Wa	ater (Kgal/n	no)	Ave /		Income	(\$/mo)			Costs (\$/mo)		Net
			1	-		1		-	Custome	Tine 4	T: 2	Tion 0	Tetel	Durana	14/70	CIMIDIC	Tatal	Income
(1)	Pump (2)	WTP (3)	SWDC (4)	Total (5)	Pump (6)	WTP (7)	SWDC (8)	Total (9)	(10)	(11)	(12)	(13)	1 otal (14)	Pumps (15)	(16)	(17)	10tal (18)	(19)
1	3,298.0	0		3,298.0	1,888.8	0.0	0.0	1,888.8	3.8	566.6	0.0	0.0	566.6	453.3	0.0	0.0	453.3	113.3
2	3,205.0	0)	3,205.0	1,835.5	0.0	0.0	1,835.5	3.7	550.7	0.0	0.0	550.7	440.5	0.0	0.0	440.5	110.1
3	3,659.0	0		3,659.0	2,095.5	0.0	0.0	2,095.5	4.2	628.7	0.0	0.0	628.7	502.9	0.0	0.0	502.9	125.7
4	3,756.0	0)	3,756.0	2,151.1	0.0	0.0	2,151.1	4.3	645.3	0.0	0.0	645.3	516.3	0.0	0.0	516.3	129.1
5	4,008.4	0		4,008.4	2,295.6	0.0	0.0	2,295.6	4.6	688.7	0.0	0.0	688.7	550.9	0.0	0.0	550.9	137.7
e	4,303.6	4662.7		8,966.3	2,464.7	2,670.3	0.0	5,135.0	10.3	1,540.5	0.0	0.0	1,540.5	591.5	1,228.4	0.0	1,819.9	-279.4
7	3,930.9	5780.2		9,711.1	2,251.2	3,310.3	0.0	5,561.5	11.2	1,668.5	0.0	0.0	1,668.5	540.3	1,522.7	0.0	2,063.0	-394.6
8	3,890.0	8629.1		12,519.1	2,227.8	4,941.9	0.0	7,169.7	14.4	1,792.8	716.2	0.0	2,509.0	534.7	2,273.3	0.0	2,807.9	-298.9
9	2,506.9	7305.6	i	9,812.5	1,435.7	4,183.9	0.0	5,619.6	11.3	1,685.9	0.0	0.0	1,685.9	344.6	1,924.6	0.0	2,269.2	-583.3
10	3,046.3	724	408.3	4,178.6	1,744.6	414.6	233.8	2,393.1	4.8	717.9	0.0	0.0	717.9	418.7	190.7	2,221.4	2,830.9	-2,112.9
11	3,319.0		408.3	3,727.3	1,900.8	0.0	233.8	2,134.6	4.3	640.4	0.0	0.0	640.4	456.2	0.0	2,221.4	2,677.6	-2,037.2
12	3,895.0		408.3	4,303.3	2,230.7	0.0	233.8	2,464.5	4.9	739.3	0.0	0.0	739.3	535.4	0.0	2,221.4	2,756.8	-2,017.4
Total	12 010 1	27 101 6	1 224 0	71 1 4 4 6	24 521 0	15 5 21 1	701 5	40 744 E		11 965 3	716.2	0.0	12 591 5	E 00E 0	7 1 2 0 7	6 664 2	10 690 2	7 107 9
rotai	42,010.1	27,101.6	1,224.9	/1,144.0	24,521.9	13,321.1	/01.5	40,744.5		11,005.2	/10.2	0.0	12,301.5	5,665.5	7,139.7	0,004.3	19,009.2	-7,107.8
Table	8. Hyp	otheti	cal Net	Incom	e for 2	015 Ba	ased or	n the P	ropose	d Usag	ge Rate	s and v	with th	e CW	C Exhi	bit B		
Amer	dmen	t Adoj	pted.															

Columns (2) through (5) show the production-water from each source. Columns (6) through (9) show the customer-water from each source based on 57.27% delivery efficiency. Column (10) shows the average

customer monthly consumption obtained by dividing total consumption in column (9) by 498 customers. Column (10) is the indicator of which rate tier the average customer would fall into.

Columns (11) through (14) show the CWC income based on the consumption in column (9) multiplied by the proposed usage rates shown in Table 1a.

Columns (15) through (18) show the cost of production calculated by multiplying the Kgal/mo in columns (6), (7), and (8) by the respective costs shown in column (6) of Table 7.

5. Column (19) shows the net income calculated by subtracting costs in column (18) from income in column (14). In 2015, the company would have had a net loss of \$7,107.7 for water usage with the proposed usage rates in Table 1a.

6. Even though 2015 was the year of highest demand, August is the only month when average customer consumption exceeds tier 1. The tier 2 portion of the charge is (7,169.7 - 5,976) * (50.60) =

VII. RISK CONSIDERATIONS

System Operating Variations and Breakdowns.

1. CWC is a very small company. Consequently, it is very sensitive to operating variations and breakdowns. This situation is exacerbated by the fact that process equipment and delivery systems are in disrepair. This imposes a significant risk that would not be present in a newer plant with reliable equipment.

2. CWC has no redundant source of water except importing \$9.25 / Kgal water from SWDC. Only minimal storage is available which is used for smoothing out daily fluctuations.

3. The following written statement was received from Mike Folkman (operator of the system) on Sept 14, 2016: "If CWC were to lose a source, develop a large leak that couldn't be fixed quickly, or any of the equipment at the water treatment plant were to fail (which there are many close) we would need to get emergency water from Summit." "because the sources and the main lines are located on the ski resort it would be impossible to repair many of the possible problems during the winter which would force CWC to purchase water. Also because Summit Water is now purchasing water that is very expensive there is a real possibility that the cost for emergency water will go up."

4. When designing a physical structure or process, it is standard engineering practice to apply a Safety Factor (SF) to compensate for risks that cannot otherwise be quantified; for example, random flaws in materials, poor installation, etc. The SF is a factor that is multiplied times the calculated theoretical value in order to come up with a safe practical design value. For example, ductile Iron class 1 and class 3 pipe have a design safety factor of 2.0 for internal pressure. In addition to internal pressure the integrity of a pipe line is subject to:

External pressure (earth covering, vehicles passing over it),

Condition of the trench bed (rocks or outcrops in the trench bed),

Conditions of installation (including fittings and structural bending), Age (some CWC pipe has been subjected to 110 psi for many years), Earthquake hazard.

5. In general, depending on local circumstances, SFs in the range of 2 to 4 are not unusual in engineering practice. Applying a SF of 3.0 to calculations for CWC would not be unreasonable.

VIII. DISCUSSION AND CONCLUSIONS

1. Variations in Sources of Supply. The most cost efficient operation for production would be to run the pumps (\$0.24/Kgal) until demand exceeded their capacity (2,736 Kgal/mo), then add water from the WTP (\$0.46/Kgal) until demand exceeded the combined capacity (8,269 Kgal/mo), and finally import SWDC water (\$9.25/Kgal). Due to maintenance, repair, and operating problems the supply equipment cannot continuously operate at full capacity. For example, referring to Table 6 and Figure 1, the demand for November was 2,135 Kgal which is within the capacity of the pumps. However, problems occurred, the WTP had been shut down in October, and very expensive water had to be imported from SWDC. The demand fell well within the tier 1 pricing for the customers at \$0.30/Kgal while CWC was purchasing significant amounts of the water at a cost of \$9.25/Kgal.

The need for supplemental water from SWDC in 2015 was not a one-time occurrence. During 2016, CWC had to import 1,804 Kgal at a cost of \$9,564. SWDC personnel have told me that there is a serious likelihood of requiring supplemental imported water in the future (see statement by Mike Folkman in Section VII.3 above).

2. Inadequate Pricing. Referring to Table 8, during 2015 the proposed usage pricing would not adequately cover the cost of producing the water. Only five months of the year generated enough income to cover costs.

3. Demand Averaging. The analysis presented in Table 8 is based on demand averages. This is not a bad assumption because about 80% of the customers are on HOA shared meters which essentially averages their demand. The demand only exceeds tier 1 once (August) and that barely reaches tier 2. Table 8 indicates that high demand irrigation water during the summer would all be priced at tier 1 rates, a situation that will not encourage conservation which is a state mandate.

4. Shared vs. Individual Meters. For the single-family home owner, the individual demand may vary significantly. On the other hand, if CWC Exhibit B Amendment is adopted, then HOA condo owners will share in their neighbor's tier 1 pricing; a practice not available to single-family home owners. In addition, most single-family home owners in Park West Village have taken steps to reduce exterior consumption.

A fair resolution to this inequity between HOAs and single-family homes would be to include the first 5,000 gallons in the base price (\$33.20) for single-family homes.

5. Risk Mitigation. The distribution system and the production equipment are in need of substantial repairs and upgrades. A combination of sources is used at irregular intervals and there is a 30-fold variation in the cost of water depending on the source. For example, had pumps failed during November, CWC would have had to import 2,248 Kgal of emergency water and paid SWDC \$20,789 for the month – a cost for the lowest

consumption month of the year that would have been almost as much as the cost of the pumped water for the entire 2015 year. Considering these risks and uncertainties, applying a Safety Factor of 3.0 to the calculations would not be unreasonable.

6. Potential for Over-Earning. Although this report is based on the best available data, it contains assumptions and obviously cannot be expected to precisely predict the future. During any one year expenses may exceed income and vice-versa. DPU Exhibit 2 line 196 states: "To overcome this potential 'over-earning' scenario, the company is required to deposit any excess earnings from usage in excess of 12,000 gallons per month into its restricted capital reserve account."

This statement should be amended to omit "excess of 12,000 gallons per month", and read instead "To overcome this potential 'over-earning' scenario, the company is required to deposit any excess earnings from usage into its restricted capital reserve account."

This requirement is crucial. It would provide reserve funding for catastrophic system failures as well as provide much needed funds for repairs and upgrades that would go a long way in preventing catastrophic failures.

7. Water Conservation. The proposed usage rates and shared metering not only lose money, but they do not encourage water conservation which is a state mandate.

8. Calculated Usage Rates. The following usage rates are based on the calculations in this report and are proposed for adoption. In order to provide equity for single-family home owners, the first 5,000 gallons are not charged, a savings of about \$3.60 per month.

Table 9. Calculated Usage Rates				
Usage Amounts (gallons)	Rates (\$/Kgal)			
0-5,000*	0.72			
5001 – 16,000	1.38			
16,001 and above	27.75			
* The first 5,000 gal are included in the Monthly Base (\$33.20) for				
single-family homes.				

IX. SIGNATURES AND DISTRIBUTION

Respectfully Submitted this 21th day of September, 2016.

William J. Grenney

<u>/s/ William J Grenney</u> Resident, Park West Village

CERTIFICATE OF SERVICE

I hereby certify that a copy of the foregoing COMMUNITY WATER COMPANY'S REQUEST FOR AN INTERIM RATE INCREASE AND EXPEDITED HEARING ON THE MATTER was emailed on the 21st day of September, 2016 to the following:

COMMUNITY WATER COMPANY, LLC:

Justin Atwater	jatwater@tc-fc.com				
Spencer White	swhite@replayresorts.com				
Steven E. Clyde	SEC@clydesnow.com				

DIVISION OF PUBLIC UTILITIES:

Patricia Schmid	pschmid@utah.gov
Chris Parker	<u>chrisparker@utah.gov</u>
William Duncan	wduncan@utah.gov
Ron Slusher	<u>rslusher@utah.gov</u>
Dennis Miller	dennismiller@utah.gov
Mark Long	mlong@utah.gov

RED PINE HOMEOWNERS ASSOCIATION HIDDEN CREEK HOMEOWNERS ASSOCIATION:

Brian Burnett	brianburnett@cnmlaw.com
Fran Amendola	dolas@comcast.net
Scott Murri	<u>smurri@nelsonmurri.com</u>
Terry Lange	TLange55@comcast.net
Guy Rawson	808rawson@gmail.com

ADDITIONAL RECIPIENTS

Johnathan R. Schutz	jschutz@mwjlaw.com
Scott Savage	ssavage@sywlaw.com
Van J. Martin	van.deepshade@gmail.com
Art Brothers	artbros@xmission.com

APPENDIX A: COSTS OF OPERATION

			1	1		
CWC Fixed and Variable						
Expenses 2015						
			Fixed	Variable	Total	
Computer Equipment						
Software	CONT002	Admin	895			Annual Computer Maintenance & Tech. CW
Contract Labor	SUMM001	Admin	32,300			Annual operations contract with SWDC
Consultants	BOWE001	Admin	28,203			Bowen Collins Master Plan and Rate Study
Administrative Expense	NRAI001	Admin	378			Community Water Company Utah
Computer Equipment						
Software	CONT002	Admin	500			Computer Setup fee -CWC stmt size
Service Fees	RURA001	Admin	50			Consumer Confidence Report (State Survey every 2 or 3 years)
Administrative Expense		Admin	300			Franchise Tay
Administrative Expense		Admin	100			
Marketing, General Admin	CVV0870	Admin	108			Harland Clarke
Dues & Subscriptions	UTAH005	Admin	382			Office)
Legal Fees	CLYD001	Admin	7,271			Retainer and water rights
Dues & Subscriptions	TCFC1001	Admin	355			Rural Water
Administrative Expense	TCFC0671	Admin	390			Various TCFC expenses
						Weber Basin Water Conservancy District Water
Water Operations	WEBE001	Admin	28,837			Rights payment
Office Supplies	TCFC	Admin	502			
Postage & Shipping	AMER001/TCFC0671	Admin	728			
Utilities: Phones	CENT001/MICR001	Admin	682			
DPU Adjustment		Admin	10,388			Taxes adjustment by DPU
DPU Adjustment		Admin	7,932			Profit adjustment by DPU
DPU Adjustment		Admin	4,900			Insurance adjustment by DPU
DPU Adjustment		Admin	52,010			Annual Capital Reserve funding by DPU
TOTAL ADMIN			177,110	0	177,110	
Repair & Maintenance	NICK001	Pump	951			Ambush 1 Well

Appendix A. CWC Expenses Updated For Data Revisions Including Taxes, Profit, Imported Water Categorized by Fixed and Variable Expenses.

Utilities: Power	ROCK004	Pump		5,755		Pumps (75%) of total bill
Repair & Maintenance	IDEL001	Pump	149			Wagon Trail Pump motor tested
TOTAL PUMPS			1,100	5,755	6 <i>,</i> 855	
Repair & Maintenance	ADVA002	System	9,657			Reservoir diving/repairs
TOTAL SYSTEM			9,657	0	9,657	
Operating Supplies	CHEM001	WTP		1,463		Chemicals for CWC
Operating Supplies	WATE001	WTP		993		CWC Chemicals
Repair & Maintenance	IDEL001	WTP	4,143			Install power/contr circ-valve
Repair & Maintenance	BATT001	WTP	1,400			Lighting for treatment plant
						Samples & Testing (ChemCheck Ford: 85 constituents
Operating Supplies	SUMM003/CHEM001	WTP		1,347		annually)
Operating Supplies	DELT001	WTP		845		Sodium Hypochlorite
Utilities: Power	ROCK004	WTP		1,918		WTP (25%) of total power bill
						WTP Reimbursement of Expense Supplies and
Repair & Maintenance	SUMM001	WTP		455		Maintenance
Repair & Maintenance	COMWATERTR	WTP	1,564			WTP Remove existing pumps
TOTAL WTP			7,108	7,021	14,129	
						Water purchased from SWDC October through
Adjustment SWDC		Purchase		6,493		December 2015
TOTAL PURCHASED WATER				6,493	6,493	
GRAND TOTAL CASH						
EXPENSES			194,975	19,269	214,244	