CHAPTER 3

Boxplots and
Batch Comparison

John D. Emerson
Middlebury College

Judith Strenio
Westat Inc.

A graphical display of the five-number summary of a batch of numbers—the
boxplot—shows much of the structure of the batch. From a boxplot we can
pick out the following features of a batch:

Location

Spread

Skewness

Tail length

Outlying data points.

Thus the boxplot provides a visual impression of several important aspects
of the empirical distribution of a batch of data.

This compact visual display is especially useful for comparing several
batches of data. By drawing a boxplot for each batch and arranging them in
parallel, we can compare the batches with respect to location and spread,
and perhaps also skewness and tail heaviness. In this comparison, we may
find that the data from the different batches do not all fit well into the same
scale. In particular, batches located far from the origin may be much more
spread out than batches located near the origin. Thus if the batches are
plotted on a common scale, the details of batches close to the origin will be
harder to see.
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An appropriate transformation can often alleviate this difficulty by
making the variability of the batches more nearly comparable. In drawing
some guidance from the data as to what transformations may achieve these
objectives, a spread-versus—level plot may suggest a power transformation
that tends to equalize spread across different levels, or locations, of the

batches.
Throughout this chapter, we restrict our examples to batches of measured

or counted data. We assume that observations are nonnegative and possibly
quite large. The origin then provides a lower bound, but there is no upper
bound. Thus we do not consider the special features of such types of data as
fractions bounded above by 1, and percents bounded above by 100%. (Such
assumptions are not needed in Sections 3A and 3B.)

3A. THE BOXPLOT FOR A SINGLE BATCH

We introduce the boxplot for a single batch of data, using an example from
the 1960 Census.

EXAMPLE:

The World Almanac (1967) reported the populations of United States cities;
Table 3-1 gives the populations (to the nearest 10,000) of the 15 largest
cities. We form the boxplot in order to pick out major features of the batch.
In particular, we ask whether the batch of 15 cities is skewed and whether it
has outlying data points.

As a first step in analysis, we construct the 5-number summary (see
Section 2D), and we calculate the fourth-spread and the cutoffs for outliers
based on the fourth-spread. The 5.number summary displays the median,

fourths, and extremes of the batch:

# 15 U.S. Cities

M 8 88
F 45174 184
1 |63 778

The fourth-spread is the range of the data defined by the upper fourth and
lower fourth. It is closely related to the interquartile range, although
technical differences between quartiles and fourths distinguish the two
concepts.

Data values that are far enough beyond the fourths are considered as
potential outliers. We use the fourth-spread to make this vague concept
precise and give technical meaning to the term “outlier.” Specifically, we
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TABLE 3-1. Populations of the 15 largest
U.S. cities in 1960.

City Population (10,000s)
New York 778
Chicago 355
Los Angeles 248
Philadelphia 200
Detroit 167
Baltimore 94
Houston 94
Cleveland 88
Washington, DC 76
St. Louis 75
Milwaukee 74
San Francisco 74
Boston 70
Dallas 68
New Orleans 63

Source:  The World Almanac, 1967 edition. New
York: Newspaper Enterprise Association, Inc.
(Data from p. 323).

define F; — 3dand F;; + }d as the outlier cutoffs, where F, and F,, denote
the fourths and d is F, — F;, the fourth-spread. Data values that are
smaller than F; — 3d or larger than F, + 2d, are called outliers and will
receive special attention.

For the 15 cities,

dp= 184 — 74 = 110,

Fp—3d,=74~

N

X 110 = =91,

and
Fy+ 3dp= 184 + 2 X 110 = 349.

Thus the outlier cutoffs are —91 and 349, and so cities with populations
over 3,490,000 (namely, New York and Chicago) are classified as outliers.

To construct the boxplot, we first draw a box with ends at the lower
fourth and upper fourth and a crossbar at the median. Next, we draw a line
from each end of the box to the most remote point that is not an outlier.
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The resulting figure schematically represents the body of data minus the
outliers. The outliers are represented individually by xs situated beyond the
outlier cutoffs.

Figure 3-1 shows the boxplot for the U.S. cities. To conserve space, this
plot is drawn horizontally, but vertical plots may be more appropriate in
some settings.

The boxplot shows at a glance the location, spread, skewness, tail length,
and outlying data points. The location of the batch is summarized by the
median, the crossbar in the interior of the box. The length of the box shows
the spread, using the fourth-spread. From the relative positions of the
median, the upper fourth, and the lower fourth, we also see some of the
skewness; the median is much closer to the lower fourth than to the upper
fourth, indicating that the batch is positively skewed—a common situation
with unbounded positive data. The plot indicates tail length by the lines
extended to New Orleans and to Los Angeles, and by the outliers (Chicago
and New York).

The message of the boxplot for the 15 largest U.S. cities is strong: the
batch is heavily skewed, and there are two outlying data points. But the
greatest value of the boxplot is its ability to convey visually some important
information about the shape of this batch of data.

Resistance of the Boxplot

We have seen that the construction of the rectangular box in the boxplot
needs the median and the fourths of a data set. Because the median and the
fourths are resistant to the impact of a few wild data values, the boxplot is
also resistant to gross influence by these values. More specifically, up to 25%
of the data values can be made arbitrarily large (“wild”) without greatly
disturbing the median, the fourths, or the rectangular box in the boxplot.
The “tails” of the boxplot are determined primarily by the most extreme
data values that are within the outlier cutoffs. Thus they are relatively
undisturbed by gross changes in the values of any outliers, and they can be
only modestly affected by gross changes of values originally within the
outlier cutoffs. Of course, the outlier cutoffs themselves are defined using

New Los

Orleans Angeles Chicago New York
X

X

i | J

0 400 800
Figure 3-1. Boxplot for the 15 largest U.S. cities in 1960.
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only the fourths of a batch. Thus they can resist gross disturbances in up to
25% of the data.

The resistance properties of the boxplot make it attractive for use in
exploratory data analysis. Although an analogous plot could be based on
the sample mean and sample standard deviation, such a plot would neces-
sarily lack resistance to the influence of even a single wild data value.

Our definition of outliers as data values that are smaller than F, — 3d,
or larger than Fj, + 3dj is somewhat arbitrary, but experience with many
data sets indicates that this definition serves well in identifying values that
may require special attention. Section 2C describes the relationship between
fourth-spread and standard deviation for a Gaussian distribution. We show
below that if the cutoffs are applied to a Gaussian distribution, then .7% of
the population is outside the outlier cutoffs; this figure provides a standard
of comparison for judging the placement of the outlier cutoffs (cp. p. 40).

Comparison with Classical Methods

The boxplot shows characteristics that derive from the actual data, not from
an assumed distributional form. It is helpful to contrast the boxplot with the
familiar visual display of the sample mean, X, plus and minus 1.96 times the
sample standard deviation, s. The latter sketch is often used when a batch
resembles a random sample from a population believed to be single-humped,
perhaps vaguely like a Gaussian distribution:

X+ 1.96s

%]

x - 1.96s

The interval mentioned would contain roughly 95% of the population if the
true mean and standard deviation of the population were X and s. When we
cannot or do not assume a distributional form for our data, we can use the
boxplot to show analogous features of location and width.

We know what a boxplot shows about the data in hand, regardless of
their origin. So in the distribution-free setting, we can more easily interpret
a boxplot. But we also may wonder what the boxplot represents for a
random sample from a Gaussian population. We next explore this question
for very large samples.
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EXAMPLE: APPLICATION TO A GAUSSIAN POPULATION

Consider the standard Gaussian distribution, with mean 0 and variance 1.
We look for population values of this distribution that are analogous to the
sample values used in the boxplot.

For a symmetric distribution, the median equals the mean, so the
population median of the standard Gaussian distribution is 0. The popula-
tion fourths are —0.6745 and 0.6745, so the population fourth-spread is
1.349, or about %. Thus 3 times the fourth-spread is 2.0235 (about 2). The
population outlier cutoffs are =2.698 (about 22), and they contain 99.3% of
the distribution.

We can gain some further understanding of the values chosen to define
the boxplot by considering the population values of the median, fourths,
and outlier cutoffs for several familiar distributions. Table 3-2 shows these
values, together with the probabilities beyond the outlier cutoffs.

In this table we see that for large samples from extremely short-tailed
symmetric distributions, exemplified here by the uniform distribution, all
the data values tend to fall within the outlier cutoffs. For the standard
Gaussian distribution just discussed for very large samples, we expect only
seven-tenths of one percent of the values to be outliers. We choose the
t-distributions with various numbers of degrees of freedom to represent
symmetric, heavy-tailed distributions. As the tails become heavier, we have
a greater probability of observing outliers. Thus we can judge whether our
data seem heavier-tailed than Gaussian by how many points fall beyond the
outlier cutoffs.

Table 3-2 also includes the chi-squared distributions as examples of
asymmetric distributions. These range from the extremely skewed x? to the
more nearly symmetric x2 and x3,. We find one trait that often occurs in
skewed situations (it happened in our example of U.S. cities): the lower
outlier cutoff is below the smallest possible data value. Thus the probability
of an outlier on this side is 0, and so we get an indication of skewness not
only from the relative position of median and fourths, but also from
whether all outliers are on one side of the box.

The preceding discussion describes what happens for boxplots of very
large samples from some familiar distributions. What happens for smaller
samples? The smallest sample size that allows comparison is five, for which
the fourths are given by the second smallest and second largest data points.
In a sample of size four, the largest data value cannot be outside the outlier
cutoffs. This follows from the fact that the upper fourth is the average of the
two largest data values and thus involves the extreme value in a direct way.

To examine the question of sampling behavior for small samples, we
carried out a simulation study for samples of size five from a standard
Gaussian distribution. The results of this experiment suggest that 67% of the
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TABLE 3-2. Population values of median, fourths, and outlier cutoffs, and
percent outliers for various distributions.

Upper®  OQutlier® Total? Value®of % Outside
Distribution =~ M?  Fourth  Cutoffs % Out 1.960 p = 1.960
Symmetric
Uu—1n 0 0.500 =2.000 none 1.132 none
N(@©O, 1) 0 0.674  *=2.698 0.70 1.960 5.00
ty 0 0.687 =2.748 1.24 2.066 5.20
o 0 0.700  =2.800 1.88 2.191 5.32
ts 0 0.727  *=2.908 335 2.530 5.25
1 0 1.000 =4.000 15.59 — —
Nonsymmetric
0.102  —1.730/ -1.772
x? 0.45 7.58 522
1.323 3.155 3.772
2675  —3.2527 —1.198
x? 435 2.80 478
6.626 12.552 11.198
15.452 2.888 7.604
x3 19.34 1.39 4.53
23.828 36.392 32.396

“M = median of distribution. Defined so that F(M) = .5, where F is the cumulative

distribution function.

®Upper fourth is the value above which .25 of the probability lies. (Lower fourth has
.25 of probability below it.) For the nonsymmetric distributions, the entries in this

column are the lower fourth and the upper fourth.

“Upper outlier cutoff = upper fourth + 3 X (upper fourth — lower fourth). (Lower
outlier cutoff = lower fourth — same quantity.)

9% Out = percent of probability below the lower outlier cutoff or above the upper
outlier cutoff.

*For U(—1,1),0 = /1/3 ~ 58 and p = 0. For t,,0 = \/v/ (v — 2) for » >2 and

p=0.Forx2,p=vand o =y2v.

/For skewed distributions, one of the pair of cutoffs often falls beyond the range of

possible values.
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samples had no values beyond the outlier cutoffs. For the remaining
samples with values beyond the cutoffs, 24% had one value outside the
outlier cutoffs and 9% had two values that were outliers, a total of 33%.
Thus we can expect

About a tenth of Gaussian samples of five to have both extremes outside
the outlier cutoffs,

About a quarter of them to have just one extreme outside the outlier
cutoffs, and

About two-thirds of them to have no outliers.

How should we compare these results with the large-sample results? We
must examine the details carefully because the two sets of results do not
have parallel structure. For samples of size five, 0% (none) of the data
values are outliers with probability about .67, 20% (one value in five) are
outliers with probability about .24, and 40% (two values in five) are outliers
with probability .09. For “infinitely large samples,” the analogous result
(Table 3-2) is that .7% of the data lie beyond the outlier cutoffs all of the
time. (The approximate formulas on p. 40 help to fill the gap.)

The directions and, probably, something of the amounts of difference in
Table 3-2 do apply in a qualitative way to small samples. Table 3-2 can
occasionally be helpful, but it is far from the whole story about such
samples.

With Table 3-2 and the sampling experiment, we conclude our introduc-
tion to the boxplot. We are now ready to consider its use in the comparison
of batches.

3B. COMPARING BATCHES USING BOXPLOTS

A display of parallel boxplots can facilitate the comparison of several
batches of data. From the display we can see similarities and differences
among the batches with respect to each of the five features already dis-
cussed.

EXAMPLE. LARGEST CITIES IN 16 COUNTRIES

The 1967 World Almanac lists 16 countries that have 10 or more large cities;
among these, we selected the 10 most populous cities. Table 3-3 gives the
populations of these cities, in 100,000s. Table 3-4 provides the 16 5-number
summaries, the outlier cutoffs, and the outliers for these batches.
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