BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)) DOCKET NO. 14-035-114)
IN THE MATTER OF THE INVESTIGATION OF THE COSTS AND BENEFITS OF PACIFICORP'S NET METERING PROGRAM))) DPU Exhibit 2.0 DIR-COS
)))

COST OF SERVICE

(NET METERING PROGRAM)

DIRECT TESTIMONY OF STAN FARYNIARZ

ON BEHALF OF

THE UTAH DIVISION OF PUBLIC UTILITIES

June 8, 2017

2	Q.	What is your name and business address?
3	A.	My name is Stan Faryniarz. I work for Daymark Energy Advisors ("Daymark"),
4		headquartered at One Washington Mall, 9th Floor, Boston, MA 02108.
5		
6	Q.	On whose behalf are you testifying in this proceeding?
7	A.	I am testifying on behalf of the Utah Division of Public Utilities ("Division" or "DPU").
8		
9	Q.	Have you testified before the Utah Public Service Commission previously?
10	A.	Yes, in Docket 13-035-184, which addressed Rocky Mountain Power's general rate case
11		and rate design issues, RMP's net energy metering ("NEM") program, and its proposed
12		facilities charge for NEM customers.
13		
14	Q.	Please describe your background and experience.
15	A.	I am a Principal Consultant at Daymark. I am an energy economist and power supply
16		planning and management specialist with 31 years of experience in areas including
17		electric utility cost of service and rates, power supply procurement and management,
18		wholesale and retail power transactions, power project financial analysis and due
19		diligence, asset and utility valuations, and integrated resource planning and analysis.
20		
21		I have advised managers concerning the electric power supplies of public and investor-
22		owned electric utilities, and have advised large industrial customers, regulators, consumer

INTRODUCTION

1

I.

23	advocates, and power plant developers and owners regarding specific power projects and
24	transactions, portfolio risk management strategies, and power markets.
25	
26	I have prepared numerous valuation analyses of power projects and assets, combined
27	portfolios of assets, and electric utilities. This work has involved power production
28	assets in the northeastern U.S., North Carolina, Ohio, Arkansas, Wisconsin, and Canada.
29	I have evaluated the economics, contract structure, ratepayer security, development
30	prospects or going-forward value of dozens of renewable, non-renewable merchant, and
31	Qualifying Facility ("QF") power projects in the northeastern U.S. and Canada. I have
32	conducted this work for regulators and for providers of private capital and quasi-public
33	capital.
33 34	capital.
	capital. I have prepared, or have overseen the preparation of all or portions of integrated resource
34	
34 35	I have prepared, or have overseen the preparation of all or portions of integrated resource
34 35 36	I have prepared, or have overseen the preparation of all or portions of integrated resource plans for several Vermont utilities and for other public utilities, and I am a load
34 35 36 37	I have prepared, or have overseen the preparation of all or portions of integrated resource plans for several Vermont utilities and for other public utilities, and I am a load
34 35 36 37 38	I have prepared, or have overseen the preparation of all or portions of integrated resource plans for several Vermont utilities and for other public utilities, and I am a load forecasting specialist.
34 35 36 37 38 39	I have prepared, or have overseen the preparation of all or portions of integrated resource plans for several Vermont utilities and for other public utilities, and I am a load forecasting specialist. My experience includes the preparation of well over a dozen electric and water utility
34 35 36 37 38 39 40	I have prepared, or have overseen the preparation of all or portions of integrated resource plans for several Vermont utilities and for other public utilities, and I am a load forecasting specialist. My experience includes the preparation of well over a dozen electric and water utility allocated cost of service and rate design studies, rate unbundling studies, and rate path

44		My experience and qualifications are described in more detail in my resume and selected
45		testimony appendix, which are attached as DPU Exhibit 2.1 DIR-COS.
46		
47	Q.	Please describe your educational background.
48	A.	I have a bachelor's degree with honors in Economics, and a Master's degree in Public
49		Administration (finance and managerial economics concentration) from the University of
50		Vermont. I have completed additional post-graduate coursework in Regulatory
51		Economics, and I hold the Certified Energy Procurement (CEP) Professional credential
52		from the Association of Energy Engineers.
53		
54	Q.	What is the purpose of your testimony?
55	A.	I have been retained by the Division to review and analyze the cost of service studies,
56		load research study, distribution level costs and benefits of distributed generation ("DG"),
57		and other aspects of the net metering program that were presented by Rocky Mountain
58		Power ("RMP", "PacifiCorp", or "the Company") in its Compliance Filing.
59		
60	Q.	What material did you review before you prepared your testimony?
61	A.	I began with an analysis of the Company's NEM rate design proposal, as outlined in
62		testimony provided by RMP. I reviewed direct testimony, which included the
63		Company's NEM rate design proposal provided by the Company's five witnesses, and
64		various data requests and responses in this docket. I have also reviewed certain materials

65		associated with other Public Service Commission of Utah ("Commission") proceedings
66		that are relevant to this one.
67		
68	Q.	What areas will your testimony address?
69	A.	I will address the following:
70		• The reasonableness of the Company's Actual Cost of Service ("ACOS"),
71		Counterfactual Cost of Service ("CFCOS"), and Net Energy Metering
72		Breakout Cost of Service ("NEM Breakout COS") studies.
73		• The results of RMP's load research study.
74		• A review of the Company's proposed distribution level costs and benefits
75		associated with distributed generation on its system.
76		• The appropriateness of the Company's proposal to separate NEM customers
77		into their own class.
78		• The appropriateness of the Company's proposed Schedule 5 rate design,
79		which includes demand charges and an increased customer charge, and related
80		public policy issues.
81		• The current compensation for excess generation from residential customers.
82		• The Company's proposal to eliminate the option to receive excess generation
83		compensation at the average retail rate for non-residential customers.
84		• The Company's proposal to implement new application fees for all levels of
85		requests for interconnection.
86		• Other miscellaneous issues.

OW
own
costs
N
ts

109 •	I would recommend that the Commission consider opening a separate docket to
110	properly vet possible DG costs and benefits to RMP's distribution system, which
111	potentially could include parties to the current docket and all stakeholders with an
112	interest in DG, in order to determine the export compensation rate.
113 •	I agree with the Company that there is a cost of interconnection incurred for both
114	program administration and engineering review when a customer submits an
115	interconnection application for any DG system, regardless of size. These costs
116	should be borne only by the applicants since non-NEM customers are not
117	contributing to these costs. In addition, I recommend that interconnection costs
118	vary based on whether the interconnecting DG system is expected to export power
119	to the grid.
120 •	I recommend the Company clarify how the need to meter bidirectional flows
121	would impact average per meter costs to serve Schedule 23 NEM customers
122	compared to non-NEM customers.
123 •	I do not recommend that transformer costs be included in the customer charge for
124	residential customers. Although these costs may be fixed, that does not by itself
125	justify their inclusion in the customer charge. In addition, any transformer
126	upgrades needed are best recovered through an interconnection charge and not a
127	monthly customer charge.
128 •	I recommend the Company ensure that the transformer allocator does not double
129	count customers in its NCP calculation. This should reduce costs allocated to the
130	NEM residential class for the NEM breakout ACOS study.

131		• Regardless of the ultimate rate design and rates approved by the Commission, the
132		rate design and rates should be gradually implemented through steps that enable
133		proper transition to bi-directional meters and avoid or mitigate adverse average
134		rate and bill impacts for customers.
135		• Data collection through a rate pilot program(s) could enable the Commission to
136		make more informed decisions about different time-based rate structures going
137		forward.
138		• By decreasing the NEM program cap to a level near the current program size or a
139		near-term projection of size, the Commission can create a defensible class of
140		NEM customers that might be gradually transitioned while newcomers after the
141		Commission's order in this proceeding might have a new regime immediately
142		applied.
143		
144	II.	BACKGROUND
145		A. Net Metering History
146	Q.	Please briefly describe Utah's Net Metering Statute history.
147	A.	In 2002, the Net Metering Statute (Utah Code Ann. § 54-15-101 et seq.) was enacted. On
148		May 13, 2014, a revision to the Net Metering Statute, addressing the determination of
149		cost and benefits, became effective. Utah Code Ann. § 54-15-105.1 requires the
150		Commission to:
151 152 153 154		(1) determine, after appropriate notice and opportunity for public comment, whether costs that the electrical corporation or other customers will incur from a net metering program will exceed the benefits of the net metering program, or whether the benefits of the net metering program will exceed the costs; and

	(2) determine a just and reasonable charge, credit, or ratemaking structure, including new or existing tariffs, in light of the costs and benefits.
	For the remainder of my testimony, I will refer to Utah Code Ann. § 54-15-105.1(1) as
	Subsection One and Utah Code Ann. § 54-15-105.1(2) as Subsection Two.
Q.	What other legislation is impacting net metering in Utah?
A.	In addition to the Net Metering Statute, on March 25, 2014, the Legislature signed Senate
	Bill 208 into law, which required the Commission to "convene a process to evaluate the
	costs and benefits of net metering, and to determine a "just and reasonable" rate structure
	considering those costs and benefits" ¹ . The Commission initially opened this docket
	back on August 29, 2014 to review RMP's net metering program costs and benefits, as
	required by Subsection One.
Q.	What did the Commission order in the docket?
A.	On November 10, 2015, the Commission ordered RMP to make a Compliance Filing ²
	that consists of two COS studies (ACOS and CFCOS) covering the test period used in
	RMP's next general rate case. These COS studies would serve as a framework to assess
	the costs and benefits of net metering by comparing a COS study without net metering
	customers to a COS study with net metering customers. The Commission order
	specifically stated ³ :
	А. Q.

¹ <u>http://programs.dsireusa.org/system/program/detail/743</u>.

² I use the term Compliance Filing here as a label for what the Commission required in its order, not in reference to the Company's filing, which it also termed a "Compliance Filing", and which differs from the Commission's order in certain respects. Despite the difference, I will refer to the Company's filing as its Compliance Filing for convenience.

³ Docket No. 14-035-114 Order, November 10, 2015, p. 16.

175 1. Two cost of service studies as described in this order. In one cost of service 176 study (the "CFCOS"), PacifiCorp will use its best efforts to estimate what its cost 177 of service would be if net metering customers produced no electricity, drawing 178 their entire load from PacifiCorp and providing no surplus energy to the system. 179 The second cost of service study (the "ACOS") should reflect PacifiCorp's actual 180 cost of service with net metering customers' participation, meaning PacifiCorp 181 provides net metering customers with energy only when their self-generation is 182 insufficient to meet their load and net metering customers push any surplus 183 energy they produce to the system. 184 185 2. Both the CFCOS and ACOS will reflect costs at the system, state and customer 186 class level. 187 188 3. The ACOS will illustrate cost of service in two respects at the customer class 189 level. First, the ACOS will reflect class cost of service with net metering 190 customers included in their existing class. Second, the ACOS will segregate net 191 metering customers from the class in which they presently participate and reflect 192 the resulting class cost of service to the net metering customers as a separate class 193 and show the impact their segregation has on the class in which they would 194 otherwise participate. 195 196 4. The period of time covered by each of the cost of service studies shall be 197 commensurate with the test period in PacifiCorp's next general rate case. 198 199 **RMP's Compliance Filing** B. 200 **O**. Please briefly explain the COS studies the Company provided as part of its 201 **Compliance Filing.** 202 After the Commission's order, the Company filed an ACOS study and a CFCOS study A. 203 that compared the costs of service at the system, state, and customer class levels. For both 204 COS studies, the Company used a one-year test period, which ended December 31, 2015, 205 and modeled the costs to serve customers in its jurisdictional allocation model ("JAM"). 206 The COS studies were supported by a load research study, which compiled a year's worth

207	of data for all customers, including data for residential NEM customers, but not NEM
208	customers on Schedules 6, 10, and 23. ⁴

210	In addition to the ACOS and CFCOS, the Com	nmission required the Company t	0
-----	--	---------------------------------	---

- 211 complete a NEM Breakout COS, which placed net energy metering ("NEM") customers
- 212 into a separate class to show how their removal affected the class they otherwise
- 213 belonged under. The NEM Breakout COS was created by taking the ACOS study and
- separating out NEM customers from each of the classes (residential, Schedule 23,
- 215 Schedule 6, Schedule 8, and Schedule 10) based on their cost of service characteristics.
- 216

217 Q. What are the differences between the ACOS and CFCOS studies?

218 A. The main difference between the two COS studies was that the CFCOS study relied on 219 the Company's estimation of the cost of serving the current NEM customers if they were 220 completely reliant on RMP for all their electricity needs, meaning they do not generate 221 any of their own requirements, nor do they export surplus energy to the system. By 222 assuming the NEM program no longer existed, the Company made the following 223 assumptions in its counterfactual JAM ("CFJAM"): higher net power costs ("NPC") to 224 supply energy⁵ and to account for line losses for remote energy delivery; removing bill 225 credits from private generation; lower costs for metering, customer service, billing, and 226 engineering and administrative interconnection costs; and allocating more system costs to

⁴ Direct Testimony of Robert M. Meredith, p. 25, lines 520-522.

⁵ To make up for energy not generated by NEM customers.

227		Utah because of increased energy demands in the state. ⁶ The CFJAM is used in the
228		CFCOS, which includes higher revenues, energy, and demands for classes that include
229		NEM customers. ⁷ In addition to these changes, the Company applied a \$2.0 million rate
230		decrease to the CFCOS results (difference between the CFJAM and ACOS JAM) to hold
231		the rate of return constant between the two COS studies. ⁸
232		
233	Q.	What assumptions did the Company make in the CFCOS regarding increased
234		energy consumption due to assumed lack of private distributed generation?
235	A.	The Company's ACOS uses the known amount of net energy usage and net revenue
236		associated with that usage that it bills to NEM customers. The Company's CFCOS
237		provides an estimate of the DG production to determine full requirements usage. DG
238		production is "estimated by multiplying a standardized production profile by the
239		nameplate capacity of each customer's generation system on a monthly basis". ⁹ Then full
240		requirements usage can be determined by adding the estimated DG production less the
241		energy exported from the NEM customer to the grid plus the energy delivered to the
242		NEM customer from the grid. ¹⁰ This is done for each class to get the total full
243		requirements energy for all NEM customers on the system.

⁶ Direct Testimony of Robert M. Meredith, pp. 4-5, lines 83-95.
⁷ *Id.*, p. 5, lines 99-100.
⁸ *Id.*, p. 5, lines 103-106.
⁹ *Id.*, p. 9, lines 176-178.
¹⁰ The energy flowing from the NEM customer to the grid and vice versa is measured using a bi-directional meter.

245		The standardized production profile used to estimate DG production was generated from
246		data gathered from 36 production profile meters capable of capturing 15-minute interval
247		data from willing residential customer participants in the Company's load research
248		study. ¹¹ Specifically, the Company created generic shapes for all DG systems using the
249		production profile data collected by assigning the value of 1.0 to the highest 15-minute
250		reading and then dividing all other values by that reading. The overall standardized
251		production profile is the average of all the generic production shapes for the state,
252		weighted by the generic profiles of each county by total nameplate capacity installed in
253		each county through the end of 2015. The Company benchmarked its standardized
254		production profile against hourly shapes from the National Renewable Energy Laboratory
255		("NREL") online PVWatts [®] calculator and found that they were similar.
256		
257	Q.	Based on the energy sales assumptions the Company made in the CFCOS, how do
258		the energy sales in the CFCOS compare to the ACOS?
259	A.	The energy sales in the CFCOS are estimated to be 239,706 MWh, which is 51,297 MWh
260		more than the actual 2015 energy sales of 188,410 MWh. ¹² This difference is 1,580
261		MWh less than the Company's estimated DG production of 52,877 MWh ¹³ and is
262		explained to be caused by NEM banking ¹⁴ , which is reflected in the ACOS, but not the
263		CFCOS.

¹¹ Direct Testimony of Robert M. Meredith, p. 10, lines 183-186.
¹² *Id.*, p. 12, lines 227-230.
¹³ *Id.*, p. 12, lines 234-235.
¹⁴ Crediting of kWh from a current bill to a future bill due to delivering more energy to the grid than consuming from the grid in the current billing period.

265	Q.	What assumptions did the Company make in the CFCOS regarding increased
266		demand due to assumed lack of private distributed generation?
267	A.	At the input level, the Company modified Utah state border loads and allocation factors,
268		accounting for line losses, to adjust for the change in DG production that previously
269		reduced Utah's jurisdictional allocation. ¹⁵ To be consistent with how loads were
270		developed in the CFJAM, customer class loads in the CFCOS were expanded by the total
271		DG production profile. In addition, the Company accounted for line losses by first
272		bringing DG production to the input level. This involved determining the monthly
273		installed capacity for customers served at both the primary and secondary voltage levels.
274		Then DG production was expanded by class by loss factor. ¹⁶ So, with line losses now
275		incorporated, DG production at the input level increased by 4,907 MWh from the
276		estimated 52,877 MWh, reflecting 8% line losses.
277		
278	Q.	What assumptions did the Company make in the CFCOS regarding bill credits?
279	A.	RMP removed bill credits ¹⁷ from the CFCOS by putting the energy differences between
280		the full requirements and actual billed energy into summer and winter blocks, and when
281		possible, peak and off-peak periods, and multiplying the energy blocks by the revenue
282		differences. ¹⁸ Because residential customers have tiered block usage levels, the Company
283		had to first estimate the full requirements energy for each monthly bill to determine levels

¹⁵ Direct Testimony of Robert M. Meredith, pp. 13-14, lines 255-262.
¹⁶ See 2015 cost of service study for loss factors used based on quantities of nameplate capacity.
¹⁷ See Exhibit RMP_(RMM-5) for bill credits by rate schedule.
¹⁸ Direct Testimony of Robert M. Meredith, p. 14, lines 277-281.

284		of energy consumption. Then the proportional changes in energy by tier were applied to
285		total estimated energy change to estimate the residential class' bill credits. ¹⁹
286		
287	Q.	What assumptions did the Company make in the CFCOS regarding customer
288		service and billing costs for NEM customers?
289	А.	Costs ²⁰ for customer service and billing attributable to NEM customers were developed
290		by multiplying call center agent fully-loaded hourly costs by time estimates from
291		Company personnel involved in phone calls related to the NEM program, initial setup of
292		customers on the NEM program (including exchange of meters and billing system setup),
293		and ongoing support for NEM customers once they enroll in the program (including
294		billing back office support). ²¹ To determine cost allocation by class for the period, each
295		activity's total costs were allocated based on cost drivers, i.e. phone calls were allocated
296		to application numbers, initial setup was allocated to interconnection requests, and
297		ongoing support was allocated to average bill numbers. ²²
298		
299	Q.	What assumptions did the Company make in the CFCOS regarding NEM program
300		administration?
301	A.	Since PacifiCorp has a NEM program administration department that processes
302		interconnection applications in six states, it allocated program administration costs ²³ to

¹⁹ *Id.*, p. 15, lines 282-287.
²⁰ See Exhibit RMP_(RMM-6) for customer service and billing costs by class.
²¹ Direct Testimony of Robert M. Meredith, pp. 15-16, lines 295-306.
²² *Id.*, p. 16, lines 307-315.
²³ See Exhibit RMP_(RMM-7) for administrative expenses by class, state and rate schedule.

303		Utah based on the state's proportional workload, which was further reduced by
304		application fees the Company collected from larger commercial interconnections. ²⁴
305		
306	Q.	What assumptions did the Company make in the CFCOS regarding engineering
307		costs related to the NEM program?
308	A.	Similar to the customer service and billing cost allocation, the Company estimated
309		application review time and then multiplied it by a field engineer's fully-loaded hourly
310		cost and then by the total number of 2015 applications. ²⁵ Engineering expenses for the
311		different rate schedules vary based on application complexity ²⁶ , which the Company
312		asserts leads to longer review time.
313		
314	Q.	What assumptions did the Company make in the CFCOS regarding metering costs
315		related to the NEM program?
316	A.	Under the current NEM program, billing requires measuring the bi-directional energy
317		flow. Therefore, metering costs were estimated by the Company based on replacement
318		and reprograming of current meters. ²⁷
319		
320	Q.	What were the results of the Company's ACOS and CFCOS analysis?

 ²⁴ Direct Testimony of Robert M. Meredith, p. 16, lines 318-324.
 ²⁵ *Id.*, p. 17, lines 330-335.

 ²⁶ See Exhibit RMP_(RMM-8) for engineering expenses by customer class.
 ²⁷ See Exhibit RMP_(RMM-9) for metering costs by customer class and calculations showing meter depreciation and deferred tax impacts.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

321	A.	Per the Company's analysis, the net metering program produced a net cost at the system,
322		state, and class levels. Specifically, the Company found that the net cost of the net
323		metering program was \$3.7 million (about \$70.40/MWh) ²⁸ to the system, \$2.0 million
324		(about \$38.76/MWh) to the state, and \$1.7 million (about \$58.60/MWh) for the
325		residential class. ²⁹ The Company provided the summary table shown below ³⁰ , which
326		shows the net cost of the net metering program at all levels, including a class level
327		impact.

328Table 1 – Net Cost/(Benefit) of the Net Metering Program at the System, State, and329Customer Class Levels.

	Cost (000)	Benefit (000)	I	let Cost/ Benefit) (000)
System Level	\$ 5,010	\$ (1,287)	\$	3,722
State Level	\$ 5,010	\$ (2,960)	\$	2,049
Residential	\$ 3,540	\$ (1,881)	\$	1,659
Schedule 23	\$ 504	\$ (405)	\$	100
Schedule 6	\$ 673	\$ (650)	\$	23
Schedule 8	\$ 240	\$ (395)	\$	(155)
Schedule 10	\$ 29	\$ (21)	\$	7
Other Classes	\$ 22	\$ 393	\$	415
Total Customer Class Level	\$ 5,009	\$ (2,960)	\$	2,049

330

331

332 Q. What other cost of service analysis did the Company perform in compliance with

333 the November 2015 Commission Order?

²⁸ MWh is defined as megawatt hour.

²⁹ Direct Testimony of Robert M. Meredith, p. 6, lines 116-118, 122-123, and 127-129.

³⁰ *Id.*, p. 7, line 135

334	A.	As I discussed earlier, the Company completed a NEM Breakout COS study to show the
335		cost to serve NEM customers from the ACOS if they were put into a separate class. The
336		costs to serve NEM customers are based on their characteristics, which include "different
337		customer counts, revenues, energy values, system coincident peak demand values,
338		distribution coincident peak demand values, non-coincident peak demand values, number
339		of customers per transformer, and metering costs." ³¹
340		
341	Q.	Based on the different characteristics of NEM customers, how did the Company
342		develop demand values for NEM customers?
343	A.	When the Company conducted its load research study, it gathered 15-minute interval data
344		measuring delivered and exported energy for 36 residential NEM customers for 2015. ³²
345		The Company developed loads for the NEM Breakout COS by using "delivered energy to
346		inform strata weightings and breakpoints, because delivered energy is an indication of the
347		customer's usage of the system, as opposed to net energy that is a billing-related
348		construct". ³³
349		
350		NEM customer profiles were scaled to monthly energy volumes, which allowed the
351		Company to develop monthly system and distribution coincident peaks based on energy
352		deliveries to the customer. Further, the Company averaged the non-coincident peaks for
353		each of the NEM sample customers and then scaled this value based on the total number

³¹ *Id.*, p. 19, lines 376-379. ³² However, the Company used data from 52 meters to develop loads for the NEM Breakout COS. Direct Testimony of Robert M. Meredith, p. 21, lines 418-420. ³³ Direct Testimony of Robert M. Meredith, p. 21, lines 427-430.

- of customers to create a non-coincident monthly peak, which was based on the maximum
 of energy delivered or exported.³⁴
- 356

357	The Company does not have separate data for NEM customers in Schedules 23, 6, and
358	10. So, full requirements profiles were created by adjusting the standard profile for each
359	class from the ACOS study "to the overall energy volume for estimated full requirements
360	usage of net metering customers on a monthly basis". ³⁵ Then the Company estimated
361	hourly delivered and exported energy by overlaying estimated DG production profiles for
362	each class. The Company noted that Schedule 8 customer demand values are determined
363	from profile meter readings for all customers.

365 Q. Did the Company include any other differences in its NEM Breakout COS study?

Yes. The Company assigned engineering, administration, customer service, and billing 366 A. 367 costs that it claimed were attributable to NEM customers due to the interconnection process and service needs of the NEM customers.³⁶ In addition, NEM customers can be 368 369 allocated energy costs the Company incurs to serve them, i.e. based on their usage of the 370 system, and can be credited for the excess generation they provide. This credit is assigned 371 to NEM customers "based upon differences in monthly net power costs associated with private generation that was calculated for the CFCOS analysis".³⁷ In addition, the 372 373 Company captures avoided line losses by increasing the credits that it applies to excess

³⁴ *Id.*, p. 19, lines 387-390.

³⁵ *Id.*, p. 20, lines 402-404.

³⁶ *Id.*, p. 21, lines 434-436.

³⁷ *Id.*, p. 23, lines 465-466.

374		generation delivered to the system. For the NEM Breakout COS, the Company also
375		considered the impact of banking because the cost of service study used billed energy
376		revenues from NEM customers that were impacted by banking outside of the test year.
377		The Company explains that "[s]ubtracting the excess energy, which includes both the
378		energy exported as well as the impact of banking, from the delivered energy, produces
379		the billed energy upon which revenues are determined and upon which the total energy in
380		the ACOS is based." ³⁸ By including impacts of banking, the Company claims it is
381		ensuring there is not a mismatch created between revenues and cost of service.
382		
383	Q.	How does the Company allocate excess energy credits in the NEM Breakout COS?
	X .	now abes the company another checks energy creates in the relative 2000
384	A.	Excess generation credits are assigned to each NEM class, as well as an offsetting cost
	-	
384	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost
384 385	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost for the excess generation credits that is based on Factor 30 - Energy, and are
384 385 386	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost for the excess generation credits that is based on Factor 30 - Energy, and are functionalized in the Company's Production function. ³⁹ Offsetting costs were included in
384 385 386 387	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost for the excess generation credits that is based on Factor 30 - Energy, and are functionalized in the Company's Production function. ³⁹ Offsetting costs were included in the cost of service model to balance out direct assignment of excess credits to NEM
384 385 386 387 388	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost for the excess generation credits that is based on Factor 30 - Energy, and are functionalized in the Company's Production function. ³⁹ Offsetting costs were included in the cost of service model to balance out direct assignment of excess credits to NEM customers. The Company claims that "a fair value" ⁴⁰ was given to the excess generation
384 385 386 387 388 388	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost for the excess generation credits that is based on Factor 30 - Energy, and are functionalized in the Company's Production function. ³⁹ Offsetting costs were included in the cost of service model to balance out direct assignment of excess credits to NEM customers. The Company claims that "a fair value" ⁴⁰ was given to the excess generation credits in the NEM Breakout COS, which recognizes the benefits these credits provide to
384 385 386 387 388 389 390	-	Excess generation credits are assigned to each NEM class, as well as an offsetting cost for the excess generation credits that is based on Factor 30 - Energy, and are functionalized in the Company's Production function. ³⁹ Offsetting costs were included in the cost of service model to balance out direct assignment of excess credits to NEM customers. The Company claims that "a fair value" ⁴⁰ was given to the excess generation credits in the NEM Breakout COS, which recognizes the benefits these credits provide to the system, i.e. reduced net power costs. So, in the NEM Breakout COS, the Company

³⁹³

³⁸ *Id.*, p. 24, lines 486-489.
³⁹ *Id.*, p. 24, lines 492-495.
⁴⁰ *Id.*, p. 24, lines 498-500.

394	Q.	What other differences did the Company's NEM Breakout COS have to address?
395	A.	Like the other COS studies, the NEM Breakout COS study had to estimate the cost to
396		serve Schedule 6, 10, and 23 customers in separate classes because the load research
397		study did not have information for these customers as it did with the residential NEM
398		customers.
399		
400	Q.	What were the results of the Company's NEM Breakout COS analysis?
401	А.	Per the Company's analysis, if NEM residential customers were separated into their own
402		class, non-NEM residential customers would incur \$1.1 million less in costs. However,
403		costs for non-NEM customers served under Schedules 6, 8, and 10 would increase by
404		\$0.3 million, \$0.2 million, and \$0.04 million, respectively. ⁴¹ The Company claimed that
405		these increased costs are likely more due to the lower DG production from the Schedule
406		6, 8, and 10 customers compared to their full requirements energy usage. The Company's
407		main conclusion from this analysis was that residential NEM customers do not pay
408		enough to cover the Company's cost to serve them, which is significantly different than
409		serving other non-NEM residential customers. ⁴² To further emphasize its point, the
410		Company provided a table showing revenue to cost of service parity ratios, which is
411		provided below. ⁴³ The ratio identifies the percentage of the total allocated cost of service
412		of each class, actually paid by the relevant customer class. The highlight of the table is

 ⁴¹ Id., p. 26, lines 545-546.
 ⁴² Id., p. 27, lines 561-564.
 ⁴³ Id., p. 28, line 575.

- the 60.6% for residential NEM customers, which shows the revenues the Company 413
- 414
- collects from them is not close to the cost the Company incurs to serve them.
- 415

Table 2 – Revenue to Cost of Service Parity Ratios.

	Parity to Cost of Service				
		ACOS	ACOS W/O	ACOS NEM	
	Residential	96.0%	96.1%	60.6%	
	Schedule 23	107.2%	107.3%	92.2%	
	Schedule 10	95.3%	95.1%	89.8%	
	Schedule 6	107.7%	107.7%	109.2%	
416	Schedule 8	104.1%	104%	b 109%	
417					
418	The Company	further compares the NEM	Breakout COS to the A	COS and CFCOS and	
419	finds that the N	EM Breakout COS results	shows that the residentia	al NEM class revenues	
420	collected woul	d need to increase by \$1.8 n	nillion for the Company	to earn the	
421	jurisdictional a	verage rate of return. ⁴⁴ In ac	ddition, the Company a	djusts the results of the	
422	NEM Breakou	t COS to the same level of c	osts from its last genera	al rate case ("2014	
423	GRC") to ensu	re the residential NEM class	s rates are set on the sar	ne basis as the rates for	
424	all other custor	ners. ⁴⁵			
425					
426	<u>C. Load F</u>	Research Study			
427	Q. Please describ	e the Company's load reso	earch study that it use	d for the cost of	
428	service studies	5.			

⁴⁴ *Id.*, pp. 28-29, lines 582-583.
⁴⁵ *Id.*, p. 29, lines 591-595 and 599-601.

429	A.	As I noted earlier, the Company conducted a load research study that collected customer
430		data for all residential NEM and non-NEM customers, as well as non-NEM data for all
431		other customer classes. The Company was only able to get NEM data for 36 residential
432		customers because it was only given permission to install production profile meters to
433		measure 15-minute interval data on the NEM customers' DG facilities (though 52 load
434		research profile meters were installed in total). The load research study spanned 12-
435		months and ended December 31, 2015, which was the test year for the cost of service
436		studies discussed above.
437		
438		D. Distribution Level Costs and Benefits of DG
439	Q.	Does the Company believe that DG provides any distribution level benefits?
440	A.	No. The Company explains that not only does DG, and more specifically solar DG, not
441		reduce the system peak demand to a level that would help reduce the need for new
442		infrastructure, but it also may lead to increased infrastructure requirements. ⁴⁶ In addition
443		
		to not reducing the peak demand, the Company states that NEM customers use the grid at
444		to not reducing the peak demand, the Company states that NEM customers use the grid at a higher level because they not only consume energy from the grid, but also export
444 445		
		a higher level because they not only consume energy from the grid, but also export
445		a higher level because they not only consume energy from the grid, but also export energy to the grid which may in some cases overwhelm consumption. Further, the

⁴⁶ Direct Testimony of Douglas L. Marx, p. 2, lines 27-30.

449	A.	Yes. The Company presented results from a rooftop solar study it conducted as part of the
450		2014 GRC (Docket No. 13-035-184). The purpose of the study was to evaluate rooftop
451		solar's impact on offsetting infrastructure upgrades made by the utility on the Company's
452		Northeast #16 circuit. Results of the study showed that DG was only able to offset seven
453		percent of the peak demand. ⁴⁷ In addition, the Company conducted a similar study on its
454		Bingham #11 circuit and found a similar result (a 6.8 percent offset ⁴⁸). The Company
455		used these results to reinforce its claim that increased DG penetration can lead to
456		increases in distribution system investments to control reverse power flows caused by the
457		DG systems.
458		
459	Q.	What other system analysis did the Company perform?
460	A.	The Company analyzed solar peak output and system peak demand. According to the
460 461	A.	The Company analyzed solar peak output and system peak demand. According to the Company, peak output of solar DG occurs during April or May and output decreases in
	A.	
461	A.	Company, peak output of solar DG occurs during April or May and output decreases in
461 462	A.	Company, peak output of solar DG occurs during April or May and output decreases in the summer months (June and July) when system peak demand typically occurs. Further,
461 462 463	A.	Company, peak output of solar DG occurs during April or May and output decreases in the summer months (June and July) when system peak demand typically occurs. Further, the Company claims that peak demand occurs in the evening, when solar DG production
461 462 463 464	Α.	Company, peak output of solar DG occurs during April or May and output decreases in the summer months (June and July) when system peak demand typically occurs. Further, the Company claims that peak demand occurs in the evening, when solar DG production is at its lowest. Since peak solar DG production is occurring in April and May, the

⁴⁷ *Id.*, pp. 2-3, lines 42-43.
⁴⁸ RMP response to DPU 8.1.
⁴⁹ Direct Testimony of Douglas L. Marx, p. 4, lines 75-77.

468	provided a power flow figure showing a 24-hour day in the summer for a typical 5 kW
469	DG customer. ⁵⁰

471Because of this increased grid usage by DG customers, the Company claims it will need472to make the following changes to its distribution system: "[a]dvanced metering to473monitor the system, updates in regulator, relay, and recloser controls to account for two-474way power flows [to] protect the system, [and] increased levels of voltage management

- 475 equipment and dead-line checking systems will be required."⁵¹
- 476

477 Q. What other costs does the Company discuss in relation to DG's impact on the 478 distribution system?

479 Additional costs of DG to the distribution system include application processing and 480 interconnection, which involves the Company's customer call center, customer 481 generation, and engineering and operations departments. All applications are processed 482 under one of three levels of review. According to the Company, Level 1 applications are 483 about 80% of the total reviewed and apply to DG systems less than or equal to 25 kW that operate with an inverter.⁵² Level 2 applications are those that do not qualify for Level 484 485 1 and are less than or equal to 2 MW. Level 3 applications are those that do not qualify 486 for Level 1 or Level 2 and are less than or equal to 20 MW. The Company claims that as 487 the level of review increases, the complexity of the review process increases, and so does

⁵⁰ *Id.*, p. 6, line 100.

⁵¹ *Id.*, pp. 4-5, lines 85-88.

⁵² *Id.*, p. 9, lines 169-170.

488		the cost, especially for the engineering department. Applications have been continuing to
489		increase each year and the Company is seeking cost increases to application fees to cover
490		the processing of applications.
491		
492		E. Rate Design
493	Q.	Please explain the Company's proposed rate design.
494	A.	RMP is proposing to implement a three-part rate design for new residential NEM
495		customers based on its cost of service studies. The proposed rates include a fixed
496		monthly charge (customer charge), a time-based demand charge during peak hours, and
497		an energy charge. Additionally, the Company is seeking to place these NEM customers in
498		their own class because they have a different load shape and cost characteristics than
499		other residential customers. The new rates calculated from the proposed rate structure
500		would become effective June 1, 2017. Current residential NEM customers would not be
501		impacted by the proposed rate structure and would remain on their current rate schedule
502		because of the cost to "operationally and administratively" ⁵³ transition these customers to
503		the proposed new rate schedule, including the need to change the current meters to meters
504		capable of capturing and billing the proposed on-peak demand charge. The Company also
505		proposes allowing the current residential NEM customers to opt into the new Schedule 5
506		rate tariff.

⁵⁰⁷

⁵³ Direct Testimony of Gary W. Hoogeveen, p. 11, line 233.

508		In addition, the Company seeks to eliminate the average retail rate compensation option
509		currently available for non-residential customers for their excess generation.
510		
511	III.	ISSUES AND ANALYSIS
512		A. Need for Separate Residential NEM Class
513		
514		<u>1.</u> Introduction
515	Q.	What reason does the Company cite for putting residential NEM customers into a
516		separate rate class from residential non-NEM customers?
517	А.	The Company suggests placing NEM customers in a separate class because of differences
518		in load shape and cost characteristics. Specifically, the Company claims that NEM
519		customers have lower load factors than non-NEM customers and higher per unit customer
520		costs. ⁵⁴
521	Q.	Have you evaluated the Company's claims regarding this issue?
522	A.	Yes, I analyzed the differences in load shapes and costs to serve NEM and non-NEM
523		customers using data from the Company's Load Research Study and the unit costs in the
524		NEM Breakout ACOS study.
525	Q.	Do you agree with the Company's conclusions about the need for a separate rate
526		class for residential NEM customers?

⁵⁴ Direct Testimony of Joelle R. Steward, p. 18, lines 341-343.

527	A.	As discussed in further detail in this section of my testimony, I agree there are differences
528		in the cost to serve NEM and non-NEM customers, but I have found the differences are
529		not as great as the Company claims.
530	Q.	Does your analysis consider the impact of excess generation exported to the grid?
531	A.	No, I only evaluated the costs to serve load provided by the grid for both NEM and non-
532		NEM customers.
533		
534		2. Load Research Study
535	Q.	Why did you analyze the Company's load research study to evaluate whether NEM
536		customers should be in a separate rate class?
537	A.	The Company's load research study evaluates load shapes of NEM and non-NEM
538		residential customers and is used to estimate class load factors. A lower load factor for
539		NEM customers would indicate higher peak loads relative to average loads and vice-
540		versa. If demand-related costs are recovered through energy charges, as is typical for the
541		residential class, then a lower load factor indicates the need for a higher \$/kWh rate for
542		the class. The load research results also provide information as to whether NEM
543		customers are similar enough to each other that one rate for all NEM customers would be
544		reasonable.
545		
546	Q.	How are residential NEM and non-NEM customers treated in the Load Research
547		Study?

- A. The Company divides all residential customers into four different strata based on
 kWh/month usage. I provide a table below that summarizes the different strata and
 provides a NEM vs non-NEM weight to the customers in each stratum. These weights
 show that NEM residential customers appear to be more heavily concentrated in the
 lower two usage strata. However, they may be more concentrated in the lower usage
 strata due to consumption decreases associated with DG production.
- 554

 Table 3 – Residential Customer Strata Weighted for NEM and non-NEM.

NON-NEM WEIGHT	NEM WEIGHT
0.29	0.35
0.46	0.46
0.22	0.15
0.02	0.03
	0.29 0.46 0.22

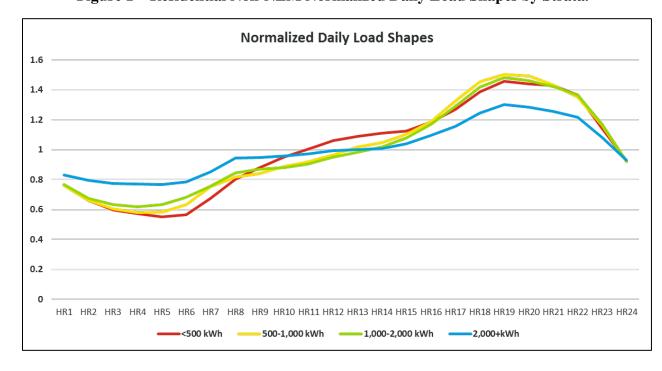
556 Q. Did you analyze the load shapes of the data collected for the load research study?

557 A. Yes. I created two figures from the load research data the Company provided in

response⁵⁵ to UCE 7.8 (residential non-NEM customers) and in response⁵⁶ to EFCA 1.3

- 559 (residential NEM customers), which are provided below. They show the normalized
- 560 daily load shapes⁵⁷ for residential NEM and non-NEM customers. The residential non-
- 561 NEM customers, as shown in Figure 1, have very similar load shapes for strata 1, 2, and

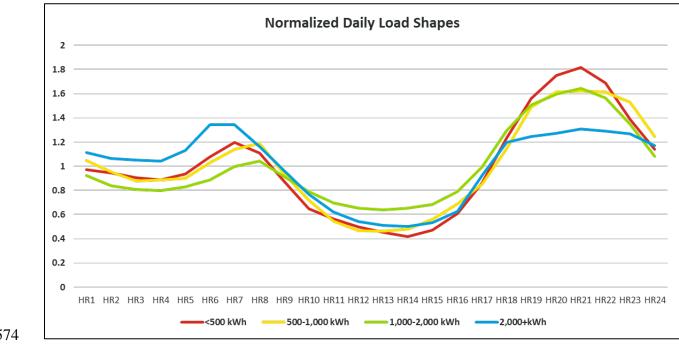
⁵⁵ See RMP response to UCE 7.8 Attachment [CONFIDENTIAL].


⁵⁶ See RMP response to EFCA 1.3 Attachment [CONFIDENTIAL].

⁵⁷ Normalized daily load shapes are constructed using the highest consumption value to set the base at 1.0, and then consumption was unitized relative to that 1.0 value to scale load shapes so they can be compared directly to one another regardless of consumption level.

5623. Strata 4, which includes the higher-usage customers, has a flatter, but similar load

shape and thus a higher load factor.



565

566

567 The consumption pattern for the residential NEM customers depicted in Figure 2 is what 568 is known as a "duck curve." This means that all four strata showed a morning peak 569 followed by low midday net consumption (after netting out DG production) that leads up 570 to a more prominent evening peak. As with non-NEM customers, the residential NEM 571 customers had very similar load shapes for strata 1, 2, and 3. Strata 4 had a similar shape 572 to the others, but was flatter.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

Figure 2 – Residential NEM Normalized Daily Load Shapes by Strata.

574

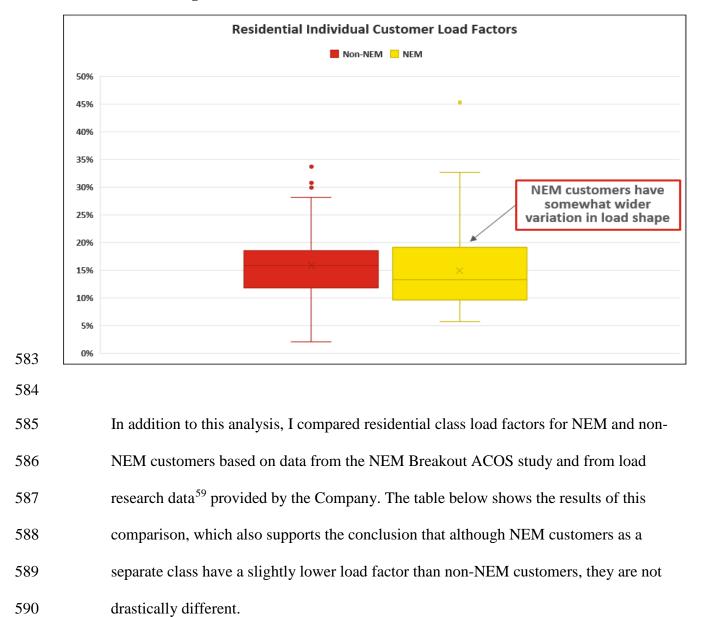
573

575

What other data analysis did you conduct? 576 **Q**.

577 I reviewed the individual residential customer load factors for NEM and non-NEM A.

customers based on the data provided by the Company in its responses to EFCA 1.3 and 578


579 UCE 7.8. Below I have provided a Box and Whisker plot that demonstrates that NEM

580 customers have a modestly lower average load factor and somewhat wider variation in

581 their load shape.58

⁵⁸ The Box and Whisker plot shows an "x" and a line in each box that represents the mean of the data and the median of the data, respectively. The whiskers are the lines extending from the top and bottom of each box and indicates the relative distribution of the data. Notice some of the data points are outliers that fall outside of this distribution.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

Figure 3 – Residential Individual Customer Load Factors.

⁵⁹ From RMP responses to EFCA 1.3 and UCE 7.8

		Non-NEM	NEM
15-minute Interval	12 NCP (kW)	56,098,384	387,862
	Average Load (kW)	744,664	4,466
15-minute Interval	12 NCP Load Factor	16%	14%
Hourly Interval	1 NCP (kW/customer)	2.94741	3.386
	Average Load (kW/customer)	0.973359	1.053
Hourly Interval	1 NCP Load Factor	33%	31%

Table 4 – Residential Class Load Factors.

592

593 Q. What do you conclude from your analysis of the Load Research results?

594 NEM customers do have a different load shape than non-NEM customers. More A. 595 specifically, NEM customers exhibit the "duck curve" shape that has lower midday net 596 consumption followed by a rapid rise in demand at sunset. However, this difference in 597 load shape does not translate into large differences in annual load factors. There is also 598 more variation in the load factors of the NEM customers, but not drastically so. Below I 599 analyze unit costs to see if the load factor differences translate into the need for different 600 rates. 601

- 6023.Total Unit Costs
- 603 Q. What is the purpose of your unit cost analysis?

33

604	A.	Total unit costs show the allocated COS for each rate class divided by the number of kW,
605		kWh, and customers within the class. A considerably different unit cost would indicate a
606		higher or lower cost to serve each unit of demand or to serve each customer and could
607		indicate the need for a separate rate class.
608		
609	Q.	What are the results of your unit cost analysis?
610	A.	Based on data in the ACOS NEM Breakout study, I determined that the NEM and non-
611		NEM residential customers have similar unit costs, which are shown in the table below.
612		The similarity in energy unit costs are particularly striking. These numbers indicate that if
613		NEM and non-NEM residential customers were in different classes and the Company
614		used a fixed dollar per kWh charge to collect all revenue from residential customers, the
615		rate for each class would only vary by 0.2 cents/kWh. Such a difference, on its own,
616		would not typically warrant the added costs and complexity of creating another rate class.

 Table 5 – Residential Class Unit Costs.

	Non-NEM	NEM	Difference
Total COS/NCP kW	\$13.36	\$11.82	-11%
Total COS/kWh	\$0.115	\$0.117	2%
Total COS/Customer	\$999.45	\$1,044.45	5%

618

619

4. Customer Unit Costs

620 Q. Please explain the difference between total unit costs and customer unit costs.

A. Customer unit costs relate only to costs classified as customer-related in a COS study.

622 Here, I define customer related costs as the costs of the meters, services, and retail

623		subfunctions in the ACOS model. These costs vary most directly with the number of
624		customers. For residential customers, these costs are often collected through fixed
625		monthly customer charges and not energy charges.
626		
627	Q.	What are the customer unit costs for residential NEM and non-NEM customers
628		based on the Company's NEM Breakout ACOS study?
629	A.	The table below shows the customer unit cost for each class. I divided the \$/customer
630		annual number by twelve to estimate what the rate would be if the customer costs were
631		collected as a fixed monthly charge. As the table shows, based on the Company's results,
632		NEM customers have close to twice the customer unit costs as non-NEM customers.

Table 6 – Customer unit costs for residential NEM and non-NEM classes showing higher customer unit costs for NEM customers. Per numbers from RMP's NEM Breakout ACOS study.

	RES NON-NEM	RES NEM
Customer Cost (\$/customer/month)	\$6.64	\$12.58

636

637 Q What is driving the differences between these customer unit costs?

638 A. The table below shows the difference in unit costs for each category of customer-related

639 costs. Notice that unit costs for NEM customers are higher for metering, services, and

640 retail subfunctions.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

Table 7 – Customer unit costs by subfunction in \$/customer/month. Per numbers from RMP's NEM Breakout ACOS study.

643

RES NON-NEM	RES NEM
\$2.69	\$3.30
\$0.65	\$1.16
\$3.30	\$8.12
\$6.64	\$12.58
	\$2.69 \$0.65 \$3.30

644

645 Q. How did residential metering costs differ between NEM and non-NEM customers?

646 A. NEM customers require a bidirectional meter, meaning a meter capable of measuring

both energy flows from and to the grid. These meters are costlier than standard residential

648 meters as shown in the table below.

Table 8 – Residential metering costs for NEM and non-NEM customers. Based on data from the Company's NEM Breakout ACOS study.

Load Class	Standard	Installed Cost	Percent Use	Total Installed Cost /
				<u>Service</u>
Residential (Non- <u>NEM)</u>				
Small Load	DM221F	\$104	92.1%	\$95.83
Large Load	DM221G	\$139	7.9%	<u>\$10.93</u>
				\$106.75
Residential (NEM)				
Bi-Directional,				

	kV	W = 0, 1 Phase (sec)	DM221B	\$162	100.00%	\$162.00
651						
652	Q.	How did resident	ial service dr	op costs differ	between NEM ar	id non-NEM
653		customers?				
654	A.	The assumed cost	of each type o	f service drop v	was the same for re	esidential NEM and
655		non-NEM custome	ers. However,	the table ⁶⁰ belo	w shows that a hig	gher proportion of
656		residential NEM c	ustomers were	e underground s	service customers.	This results in the NEM
657		customer service d	lrop cost being	g higher per cus	tomer because of	the higher cost of
658		underground servi	ce.			
659	Та	able 9 – Percentages	of NEM and	non-NEM cust	tomers by overhe	ad and underground

service type.Residential Non-NEMResidential NEMOH – small load31.18%22.04%

OH – small load	31.18%	22.04%		
OH – all electric	2.66%	2.34%		
UG – small load	60.96%	71.01%		
UG – all electric	5.20%	4.61%		

661

662 Q. Please explain the retail function costs for NEM customers.

A. The higher unit cost of NEM customers is driven largely by the direct assignment of
administration and customer service costs to these customers. The table below provides
the total dollars the Company assigned directly to the residential NEM class. The total
incremental cost is net of Application fee revenue. The revenue for residential customers

 $^{^{60}}$ In the table, overhead = OH and underground = UG.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

in the 2015 test year was only \$138, but RMP proposes to increase this fee as is discussed
in a later section of my testimony. With an increased application fee, it would not be
necessary to recover these costs through the customer charge.

670

Table 10 – Retail function costs for NEM customers.

	Residential NEM	Schedule 23 NEM
Estimated Incremental Cost of Administration	\$198,752	\$16,110
Application Fee Revenue	(\$138)	(\$7,404)
Estimated Incremental Cost of Customer Service Cost	\$75,247	\$4,415
Total Incremental Cost of Administration & Customer Service	\$273,861	\$13,120
Total Cost/Customer/Month	\$5.20	\$3.35

671

672 Q. Please explain the Company's Residential Customer Charge proposal.

A. The Company proposes to increase the customer charge to more than double the current

amount. The new proposed customer charge includes all service, meter, and retail

675 function costs plus a transformer cost.⁶¹ The charge is estimated net of expected revenue

676 from the Company's proposed application fee. The table below highlights the cost

677 differences in the customer charge and minimum bill by phase type under the current and

678 proposed customer charge regime.

679

Table 11- Comparison of Current and Proposed customer charge.

		Current	Proposed
Customer Charge	1-Phase	\$6.00	\$15.00

⁶¹ See Direct Testimony of Joelle R. Stewart, Table 3, p.15 and pp. 22, 25-27; Approved Tariff.

Customer Charge	3-Phase	\$12.00	\$30.00	
Minimum Bill	1-Phase	\$8.00	\$15.00	
Minimum Bill	3-Phase	\$16.00	\$30.00	

681 Q. Please explain the issues with costs the Company is including in its proposed 682 customer charge.

683 A. The Company is proposing to include a customer charge for new NEM customers that "is designed to recover costs related to customer services and certain components of the 684 685 distribution system, specifically service lines, meters, and line transformers".⁶² While a 686 customer charge is typically designed to recover customer-related costs, it does not 687 typically include transformer costs. In fact, the Commission has been consistent since its 1982 Order⁶³ detailing costs a customer charge should recover, and they do not include 688 689 transformer costs. 690 691 Q. How much would residential customer charges increase if designed to recover

- 692 transformer costs?
- 693 A. Featured below is a table outlining the transformer costs by NEM and non-NEM
- 694 customer class per the Company's NEM Breakout ACOS model. Based on these
- numbers, recovering transformer costs through the customer charge would increase that
- 696 charge significantly, but even more so for NEM customers than non-NEM customers.

⁶² Direct Testimony of Joelle R. Steward, p. 22, lines 403-405.

⁶³ Docket 82-057-15, Aug 12 1983, Questar Gas Company case. There was a later docket with PacifiCorp, 84-035-01 Jul 1, 1985.

Table 12 – Transformer unit costs per customer. Based on data from the Company's NEM Breakout ACOS Study.

	Res Non-NEM	Res NEM
Per Customer per Month	4.21	7.53

699

700 Q. Why does the Company recommend that transformer costs be recovered through

701 the customer charge for NEM residential customers?

A. Ms. Stewart argues that "a large proportion of the costs of these transformers do not vary

- with capacity and are fixed infrastructure costs necessary to serve customers"⁶⁴ The
- 704 Company has argued that the additional distribution system costs associated with NEM
- systems—such as transformer upgrades to accommodate bidirectional flows—justifies
- 706 different treatments of transformer costs for rate design.

707

708 **Q.** Do you agree that transformer costs should be included in the customer charge for

any customer class because a large portion of the costs are fixed costs?

710 A. No. In my previous testimony⁶⁵, I did not recommend that transformer costs be included

- 711 in the customer charge for residential customers, and I stand by that recommendation.
- Although these costs may be considered fixed, this does not by itself justify their
- 713 inclusion in the customer charge. The customer charge should generally consist of costs
- that truly vary with the number of customers, which would not include the costs of all

715 fixed utility plant.

⁶⁴ Direct Testimony, pp. 26-27.

⁶⁵ Docket 13-035-184, Faryniarz Direct Cost of Service Testimony for DPU - 05-22-2014 - Exhibit 11.0 DIR-COS. Docket 13-035-184, Faryniarz Rebuttal Cost of Service Testimony for DPU - 06-26-2014 - Exhibit 11.9 REB-COS.

717	Q.	Do you agree that increased distribution transformer costs for NEM customers
718		justifies the recovery of transformer costs in the customer charge?
719	A.	No. Just because the cost is higher for a given class does not mean it should be recovered
720		in the customer charge. Customer charges should recover customer-related costs, and
721		transformer costs do not vary directly with the number of customers. If there is a need for
722		transformer upgrades to interconnect a DG system, then the cost of the upgrade is best
723		recovered from the connecting customer through an interconnection charge. I discuss
724		these charges in more detail later in my testimony.
725		
726	Q.	Did you find any other issues with the discussion of transformer cost allocation in
727		Ms. Stewart's testimony?
728	A.	Yes. There are inconsistencies in terms of how transformer costs are classified by the
729		Company. In Table 5 (p.20) of Ms. Stewart's testimony, which purports to show the
730		significance of demand-related costs in a utility's COS, transformers are featured as
731		demand-related costs. Then later in her testimony when attempting to justify the inclusion
732		of transformer costs in the customer charge, she argues the costs are mostly customer-
733		related. This seems to indicate some cherry-picking in how the Company presents these
734		costs in its analysis.
735		
736	Q.	The numbers in Table 12 above also indicate that transformer costs for NEM
737		customers are significantly higher per customer than non-NEM customers. Do you
738		agree with this finding?

739	A.	No. Transformer costs are allocated using a 1NCP allocator. The NCP for NEM
740		residential customers increases uniformly throughout the test year as previously non-
741		NEM customers switch to NEM service. Therefore, the NCP for the NEM residential
742		class is in December, at the end of the year. The NCP for the non-NEM residential class
743		is in July. This double counts some customers that switch to NEM service between July
744		and December and, therefore, over-allocates costs to residential customers. If we use the
745		July NCP for both residential NEM and non-NEM customers, the transformer unit costs
746		for NEM customers decreases to \$5.32/customer.
747		
748	Q.	What do you recommend regarding transformer cost allocation?
749	A.	I recommend the Company ensure that the transformer allocator does not double count
750		customers in its NCP calculation. This should reduce costs allocated to the NEM
751		residential class for the NEM breakout ACOS study.
752		
753		5. Conclusions
754	Q.	Should NEM customers be segregated into their own class from non-NEM
755		customers?
756	A.	Based on my analysis and findings described above, it is not necessary, for now and at
757		the current level of penetration, to separate NEM customers into their own class. As I
758		explained earlier, the NEM load profiles are somewhat different than the non-NEM load
759		profiles, especially during the middle of the day, but on average fall within a reasonably
760		similar range (see Figure 3 presented previously).

762 In addition, I do not conclude that a separate class for NEM customers is warranted in 763 order to increase customer charges for these customers. NEM customers do require 764 modestly higher metering costs, but that difference alone does not justify a higher 765 customer charge. Changes in service drop costs are driven more by other characteristics 766 of the customers, such as placement on the underground or overhead system. Additional 767 administrative costs for the NEM program-if assigned only to NEM customers-or 768 increased transformer costs necessary to accommodate bidirectional flows, are best 769 recovered through an alternative charge such as an application fee or interconnection fee 770 as discussed later in this testimony. 771 772 Despite this, I do not object to the separation of NEM customers into a separate class if 773 deemed appropriate for other policy reasons, or to address compensation rates for excess 774 generation exported to the grid, which I turn to next. 775 776 **Importance of Net Energy Metering Excess Generation Credits for** В. 777 **Residential Customers** 778 Q. As described in the previous section of your testimony, you did not find a significant 779 difference in the costs to serve NEM versus non-NEM residential customer load. If 780 so, what is driving the difference in revenue parity to COS shown in Table 2 above? 781 A. As I previously indicated, my analysis of the need for a separate class for NEM 782 residential customers did not account for credits for excess generation exported to the 783 grid. As I explain in more detail below, compensation for these exports at retail rates is

784		the primary driver of the low revenue parity ratio shown in Table 2 for NEM residential
785		customers.
786		
787	Q.	How does the Company credit distributed generation (DG) exports in its NEM
788		Breakout ACOS model?
789	А.	Excess NEM generation is credited at average net power costs (NPC) grossed up for
790		transmission and distribution losses. These are shown in the table below.

Table 13 – Credit rates for excess NEM generation credits in Company NEM Breakout ACOS study.

NPC + Losses
2.8304
1.9539

793

794 Q. Do residential customers currently receive compensation for grid exports based on

795 NPC rates?

A. No. NEM customers are in effect reimbursed at retail energy rates because they are billed

for the net of total consumption minus total exports. Current retail rates for residential

customers are summarized in the table below. They are much higher than average NPC.

Table 14 – Current residential energy charges for RMP customers. Tiers apply based on kWh consumed each month with higher tiers applicable to higher levels of consumption.

	Tier 1	Tier 2	Tier 3
Summer (cents/kWh)	8.8498	11.5429	14.4508

			Winter (cents/kWh)	8.8498	10.7072	N/A	
801							
802	Q.	If excess NI	EM generation is credit	ed at retail	rates inste	ad of aver	age NPC, how
803		does that cl	nange the COS results?				
804	A.	To answer the	his, I increased excess N	EM credits	to the highe	est tier retai	l rates in the
805		Company's	NEM Breakout ACOS m	nodel. The r	esult is sum	nmarized in	the table below.

806 Parity to COS for residential NEM customers increases drastically: from 60.6% to over

807 90%, bringing it much closer to the parity ratio for non-NEM customers.

808 Table 15 – Parity to COS for NEM and non-NEM customers assuming different rates NEM 809 export credit rates.

	Credit at Net Power Cost	Credit at Retail Rate*
Non-NEM	96.1%	96.0%
NEM	60.6%	90.5%

810

* Assumed Highest Tier Rate: 10.7072 cents/kWh (Winter) 14.4508 cents/kWh (Summer)

811

812 **Q**. Please elaborate on the significance of the excess NEM credit rate to the NEM

813 breakout ACOS results.

814 A. The results in the table above demonstrate the importance of valuing excess NEM

815 generation consistently in an ACOS study. The results indicate that if one accepts the

- 816 Company's COS methodology and then compensates excess NEM generation at a rate
- 817 based on NPC plus losses, and if residential NEM customers were in a separate class but
- 818 paying the Company the same rate as other residential customers for the load served from

819		the grid, revenues from NEM customers would cover on the order of 90% of cost of
820		service, not the 61% covered today when excess generation is compensated at full retail
821		rates. The remaining difference in parity to COS between non-NEM and NEM customers,
822		that is the difference between the 96% and the 90%, is due to other differences in the
823		COS for these customers, such as from different load shapes or unit costs discussed in the
824		previous section. Those differences are, notably, much smaller.
825		
826	Q.	Is the value of excess NEM generation also a key driver to the CFCOS results?
	X .	
827	A.	Yes. The CFCOS study attempts to estimate costs to the utility if the customer generation
827		Yes. The CFCOS study attempts to estimate costs to the utility if the customer generation
827 828		Yes. The CFCOS study attempts to estimate costs to the utility if the customer generation from NEM facilities did not exist. The added costs are largely from increased NPC at the
827 828 829		Yes. The CFCOS study attempts to estimate costs to the utility if the customer generation from NEM facilities did not exist. The added costs are largely from increased NPC at the rates shown in the table below. These rates are similar to the NPC rates used in the NEM
827 828 829 830		Yes. The CFCOS study attempts to estimate costs to the utility if the customer generation from NEM facilities did not exist. The added costs are largely from increased NPC at the rates shown in the table below. These rates are similar to the NPC rates used in the NEM Breakout ACOS, but of course much lower than residential retail energy rates. Therefore,
827 828 829 830 831		Yes. The CFCOS study attempts to estimate costs to the utility if the customer generation from NEM facilities did not exist. The added costs are largely from increased NPC at the rates shown in the table below. These rates are similar to the NPC rates used in the NEM Breakout ACOS, but of course much lower than residential retail energy rates. Therefore, under the Company's assumptions, if one adds the NEM generation back to the CFCOS,

834Table 16 – Average cost of additional NPC assumed to be required to generate power to835replace generation from NEM customers in CFCOS study.66

	Added NPC in CFCOS
Summer (cents/kWh)	2.9334
Winter (cents/kWh)	2.1692

⁶⁶ See Exhibit RMP_(MGW-1) and see RMP response to DPU 6.12-1, Exhibit RMP_(MGW-1) CORRECTED.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

837	Q.	Is there a strong logical basis for valuing excess NEM generation at retail rates?
838	A.	No. Retail rates are based on the total costs to serve customers from a grid-based system,
839		which has nothing to do with the costs of supplying power from DG systems. Thus, they
840		are not equivalent to the benefits of DG systems. Moreover, the ability to export and
841		receive compensation at retail rates allows customers to effectively zero out their energy
842		bills as long as total generation is equal to total load consumed, regardless of the time the
843		energy is consumed or generated.
844		
845		Consider an extreme case, where a utility served only such customers. The utility would
846		receive no revenue even though it would incur significant costs to store the excess energy
847		and supply it back to customers. Thus, traditional NEM excess energy compensation, at
848		full retail rates, is not sustainable in the long-run with very high rates of DG penetration.
849		
850	Q.	What possible options exist for valuing exports?
851	A.	Besides the de facto retail rate reimbursement paradigm, exports could be valued
852		numerous ways. These include using the avoided costs of fuel and purchased power
853		(short-term), generation capacity (long-term), or the avoided costs of utility-scale
854		renewable resources. Additional costs and benefits to the transmission and distribution
855		systems could also be considered, as well as environmental benefits and local economic
856		benefits. I turn to these factors next.
857		

858 <u>C. NEM Costs and Benefits</u>

859	Q.	The Company's response to OCS 6.7 discusses several costs and benefits that were
860		either included or excluded from the cost of service studies. These costs and benefits
861		include the following: NEM added Program Administration Costs, NEM added
862		Integration costs, NEM added Distribution Costs, NEM added Lost Revenues,
863		Avoided Energy Costs, Avoided Capacity Costs, Avoided Transmission Costs,
864		Avoided Distribution Costs, Avoided T&D Line Losses, and Avoided Environmental
865		Compliance. Do you agree with the Company's inclusion/exclusion of each of these
866		costs?
867	A.	In general, the foregoing categories of costs and benefits of NEM appear reasonable for
868		the Company to consider including in its cost of service studies. For each of the NEM
869		cost categories, the Company included these costs in its cost of service studies. Regarding
870		program administration costs, the Company explained that it has one department across
871		the six states it serves that is responsible for administering the NEM programs. Costs are
872		assigned to each state proportionally based on overall department expenses allocated to
873		each state's NEM program. Application fee revenues from large non-residential
874		interconnections collected in 2015 reduced the total expense. After review of the total
875		expenses allocated to each state, calculated in Exhibit RMP_(RMM-7), the allocation of
876		the Company's NEM department's expenses to Utah appear to be reasonable.
877		
878		The Company included NEM integration costs in its net power costs because these costs
879		are incurred when integrating new private distributed generation into the system, which
880		includes added reserves needed to handle the private DG's intermittency (i.e. inability to

881	continuously supply a customer's full power needs). Integration costs can increase or
882	decrease the net power costs depending on if private DG is added or taken off the system.
883	The Company explained that it used solar integration costs in its net power cost analysis
884	of \$2.83/MWh. ⁶⁷
885	
886	The Company states that the NEM program adds incremental metering and engineering
887	costs to the distribution system. ⁶⁸ The engineering expenses are solely related to the time
888	engineers spend reviewing NEM applications, which can vary in complexity. ⁶⁹
889	Incremental metering costs are related to replacing and reprogramming ⁷⁰ customers'
890	current meters with bi-directional meters that can measure the flow of energy to and from
891	the installed DG facilities. When estimating the percentage of meters that can be
892	reprogrammed versus replaced, the Company bases the percentages of either option on
893	the current proportion of meters that have been reprogrammed or replaced. ⁷¹ Both costs
894	seem reasonable, as detailed in exhibits ⁷² provided by Company witness Mr. Meredith.
895	
896	The Company considered lost revenues associated with the NEM program as a cost due
897	to bill credits. Bill credits are calculated based on the difference between the Company
898	providing customers full energy requirements and the actual energy customers are billed

⁶⁷ This is consistent with the Commission's Order in the QF Docket. Docket No. 12-035-100, Order on Phase II Issues, at 34 (Utah P.S.C. August 16, 2013). Direct Testimony of Michael G. Wilding, p. 8, lines 138-140.
⁶⁸ RMP response to OCS 6.7(c). Direct Testimony of Robert M. Meredith, p. 17, lines 328-347.

⁶⁹ See Exhibit RMP_(RMM-8) for a breakout of the engineering expenses by customer class.

⁷⁰ Residential customers need to have their current meters replaced, while some non-residential customers have meters capable of measuring the bi-directional energy flows, but need to have the meters reprogrammed to do so. ⁷¹ See Exhibit RMP_(RMM-9), Page 1&2, Notes.

⁷² Exhibits RMP_(RMM-8) and RMP_(RMM-9).

899		for each month. ⁷³ A revenue difference is calculated based on multiplying the
900		corresponding energy charges by the difference between providing full energy
901		requirements and billed energy. In calculating the bill credits related to the NEM
902		program, the Company relied on the results of the CFCOS (without DG) versus the
903		ACOS (with DG). ⁷⁴
904		
905		All the costs the Company considered for the NEM program appear reasonable as costs to
906		consider. However, as discussed earlier, reliance on the CFCOS results may lead to
907		inaccurate NEM program costs. Since the CFCOS is based on going back in time and
908		assuming the Company needed to provide full requirements service to all customers, the
909		Company is assuming the private generation plus the actual billed energy for each
910		customer would be equal to each customer's total energy needs.
911		
912	Q.	Do you agree with the Company's inclusion/exclusion of each of the benefits listed
913		above?
914	A.	First, the list of benefits that the Company was asked if it considered in its cost of service
915		studies is not a complete list of all possible benefits that could be reviewed, i.e. several
916		types of environmental or economic benefits could also be analyzed. Second, many of the
917		avoided costs were not explicitly included by the Company in its cost of service studies.
918		For example, the Company explains that avoided transmission costs, avoided distribution
919		costs, and avoided environmental compliance are not explicitly included, but instead are

 $^{^{73}}$ The Company created seasonal energy blocks and on-peak and off-peak periods when it could do so. 74 See Exhibit RMP_(RMM-5).

920	considered a "benefit for reduced allocations of existing costs" ⁷⁵ . Further, the Company
921	explained that during the cost of service study period, which is a one-year test period
922	starting January 1, 2015, the transmission costs, distribution costs, and environmental
923	compliance costs "were not reduced as a result of the NEM program" ⁷⁶ . Since the
924	Company is using a one-year historic test-period as discussed from the Phase I
925	Commission Order, it is likely that any long-term transmission, distribution, and
926	environmental compliance avoided cost benefits may not be able to be properly captured.
927	
928	Avoided distribution costs, which potentially can reduce the need for the Company to
929	replace, upgrade, or expand its distribution system capacity due to system or localized
930	peak reductions, would need to be analyzed over a longer period of time and should also
931	be analyzed for providing location-specific benefits when possible. The Company did
932	complete two location-specific analyses (Northeast #16 and Bingham #11 circuit studies),
933	which it stated resulted in rooftop solar minimally reducing the peak circuit loading in
934	two different locations. ⁷⁷ In addition, the Company claims that it "will need to increase
935	the size of the local distribution system to handle the reverse power flow delivered to the
936	grid by the customers". ⁷⁸ While these two studies do indicate minimal localized circuit
937	peak load reduction on the selected circuits, it is possible that rooftop solar may have
938	greater impacts on other circuits or help further reduce the system peak, since there has

⁷⁵ RMP response to OCS 6.7(g), (h), and (j).
⁷⁶ *Id.*⁷⁷ Direct Testimony of Douglas L. Marx, pp. 2-3, lines 38-54.
⁷⁸ *Id.*, p. 3, lines 62-63.

939		been an exponential amount of solar added to the Company's system over the last few
940		years.
941		
942		However, it will be important to address how, if at all, such potential reductions might be
943		reflected in base rates or compensation levels for NEM customers because such benefits
944		do not fit well within traditional test year studies.
945		
946		Furthermore, the reverse power flow issue that Company witness Marx describes is not
947		addressed in Exhibit RMP_(DLM-1), the July 26, 2015 Distribution Rooftop Solar Study,
948		nor is it presented by the Company in any quantifiable way.
0.40		
949		
949 950	Q.	How did the Company include avoided energy and capacity costs in its cost of
	Q.	How did the Company include avoided energy and capacity costs in its cost of service studies?
950	Q. A.	
950 951	-	service studies?
950 951 952	-	service studies? The Company explained that avoided energy costs were "included as a benefit for
950 951 952 953	-	service studies? The Company explained that avoided energy costs were "included as a benefit for reduced NPC as well as for reduced energy based allocations" and avoided capacity costs
950 951 952 953 954	-	service studies? The Company explained that avoided energy costs were "included as a benefit for reduced NPC as well as for reduced energy based allocations" and avoided capacity costs were "included as a benefit for reduced demand based cost allocations". ⁷⁹ In calculating
 950 951 952 953 954 955 	-	service studies? The Company explained that avoided energy costs were "included as a benefit for reduced NPC as well as for reduced energy based allocations" and avoided capacity costs were "included as a benefit for reduced demand based cost allocations". ⁷⁹ In calculating the benefits of the NEM program to the NPC, the Company went from a system with
 950 951 952 953 954 955 956 	-	service studies? The Company explained that avoided energy costs were "included as a benefit for reduced NPC as well as for reduced energy based allocations" and avoided capacity costs were "included as a benefit for reduced demand based cost allocations". ⁷⁹ In calculating the benefits of the NEM program to the NPC, the Company went from a system with private distributed generation to one with no private DG, meaning the Company would

 $^{^{79}}$ RMP response to OCS 6.7(e) and (f).

960	multiplying the actual costs of generation and market transactions by the incremental
961	changes to each needed to make up for the loss of private generation. ⁸⁰ Then, since DG
962	interconnection costs are treated as an avoided cost in the NPC calculation, the
963	\$2.83/MWh for solar DG interconnection costs is treated as a reduction to the NPC. So,
964	the Company reduced the total unit value of solar in \$/MWh by the \$2.83/MWh
965	integration cost before multiplying the total unit value of solar by the MWh generation
966	from private generation to get the total net power cost benefit of the state's NEM
967	program. ⁸¹
968	
969	The Company created a standardized production profile using data from 36 production
970	profile meters that were installed on private DG systems during the load research study.
971	This production profile enabled the Company to estimate private DG production, which
972	the Company would need to supply customers in the CFCOS study because they no
973	longer have such private generation to rely on for part of their energy needs. So, the loss
974	of private DG production would result in an increase in demand in the state, and could
975	potentially increase state load interjurisdictional allocations (whether they be interstate or
976	intrastate). Thus, the CFCOS had its allocation factors modified to reflect what they
977	would have been without private DG production.
978	

979 Q.

Did the Company include a benefit for avoided line losses, and if so, how?

⁸⁰ Direct Testimony of Michael G. Wilding, p. 2, lines 33-35.
⁸¹ This was done monthly.

980	A.	Yes. The Company had to figure out the line losses applied to private generation to
981		calculate the avoided line loss benefit to the system. RMP explained that it determined
982		the nameplate installed capacity each month for customers served at both the primary and
983		secondary voltage levels. Then the Company used loss factors from a 2015 COS study
984		for the nameplate capacity quantities to expand the private generation by class and
985		ultimately bring it to the input level. ⁸² While the Company's method to calculate avoided
986		line losses is a reasonable proxy, it could potentially under- or over-estimate actual line
987		losses avoided, depending on distance to certain generation facilities, distribution line
988		length, and distribution equipment for each customer.
989		
990	Q.	Are there other avoided costs or benefits to the distribution system the Company
990 991	Q.	Are there other avoided costs or benefits to the distribution system the Company should have considered in the cost of service studies?
	Q. A.	
991	-	should have considered in the cost of service studies?
991 992	-	should have considered in the cost of service studies? There are other potential avoided costs or benefits to the distribution system the
991 992 993	-	should have considered in the cost of service studies? There are other potential avoided costs or benefits to the distribution system the Company could consider in its cost of service studies, insofar as they are quantifiable and
991 992 993 994	-	should have considered in the cost of service studies? There are other potential avoided costs or benefits to the distribution system the Company could consider in its cost of service studies, insofar as they are quantifiable and not double-counted. These possible benefits of DG to the distribution system include
991 992 993 994 995	-	should have considered in the cost of service studies? There are other potential avoided costs or benefits to the distribution system the Company could consider in its cost of service studies, insofar as they are quantifiable and not double-counted. These possible benefits of DG to the distribution system include
991 992 993 994 995 996	-	should have considered in the cost of service studies? There are other potential avoided costs or benefits to the distribution system the Company could consider in its cost of service studies, insofar as they are quantifiable and not double-counted. These possible benefits of DG to the distribution system include environmental, societal, and market benefits.

⁸² Direct Testimony of Robert M. Meredith, p. 14, lines 267-274.

1000		does environmental control, and any environmental benefits in addition to that could be
1001		considered double-counting in this category of benefits.
1002		
1003		In other jurisdictions, Commissions have considered these benefits of DG to the
1004		distribution system, but have typically done so through opening separate dockets or
1005		proceedings. The reason for separating out costs and benefits in a different docket is to
1006		allow for proper, focused analysis and stakeholder vetting of each.
1007		
1008	Q.	Should the Utah Public Service Commission consider expanding the current docket
1009		or opening a separate proceeding to ensure a robust analysis of DG benefits and
1010		costs over a longer planning horizon?
1011	A.	Yes. I would recommend that the Commission consider opening a separate docket to
1012		properly vet possible DG costs and benefits to RMP's distribution system, potentially to
1013		include parties to the current docket and all stakeholders with an interest in DG. Such a
1014		process would take considerable time but need not forestall transitional rate changes in
1015		the interim that might lead to better-designed rates than currently exist.
1016		
1017		D. Residential Demand Charge for new NEM Customers
1018	Q.	Please explain the issues with implementing a demand charge.
1019	A.	Using demand charges to recover transmission and distribution ("T&D") costs can be
1020		justified under cost causation principles, as T&D systems are designed to meet aggregate
1021		peak demand and are mostly fixed cost in nature. Coincident or TOU demand charges,

1022		which have been proposed by the Company, can send a better price signal than demand
1023		charges based on maximum billed demand in each billing cycle, and thus will better
1024		reflect the cost causation principles of ratemaking. This may be largely academic,
1025		however, since metering currently in place, outside of the load research study ⁸³ , does not
1026		allow for measurement of coincident or TOU demands.
1027		
1028		It would also be difficult to implement demand charges for residential customers at this
1029		point for several reasons, including higher costs for new metering that would be
1030		necessary for implementing such charges, as well as a lack of and cost for customer
1031		outreach and education, and anticipated issues with general customer acceptance. ⁸⁴
1032		Because demand charges, with or without ratchets ⁸⁵ , can affect customer bills
1033		significantly, there is also the potential for significant rate shock and dislocation, which
1034		would violate another key ratemaking principle of rate stability. ⁸⁶
1035		
1036	Q.	What would you recommend regarding demand charges?
1037	A.	Demand charges have the potential to better reflect cost causation on the distribution
1038		system, especially if they are based on coincident peak or are time-differentiated.
1039		However, based on issues regarding the installation and cost of required metering capable

⁸³ *Id.*, p. 10, lines 183-186.

⁸⁴ See additional discussion of these topics in *Distributed Energy Resources Rate Design and Compensation*: A Manual Prepared by the NARUC Staff Subcommittee on Rate Design (November 2016), pp. 98-108.

⁸⁵ An example of a ratchet is when the demand charge is based on historical peak demand. If the peak demand from the previous summer was 100 kW and a company had a 50% ratchet, the minimum billing demand would be 50 kW (100 kW times 50%) for a set number of months. Under this structure, it would not matter if actual demands were lower.

⁸⁶ Bonbright, James C., Principles of Public Utility Rates, pp. 383-384 (1988) (rate structure characteristics).

1040		of recording demands over all hours of the billing cycle, customer acceptance and
1041		understanding, ability to monitor and control electricity bills, and the potential for rate
1042		shock and dislocation, I recommend demand charges be implemented gradually. Further
1043		data collection, including on DG and non-DG customer load shapes and the impacts on
1044		residential customers where such charges have been implemented in other jurisdictions, is
1045		warranted to better understand the effects of demand charges on gross and net
1046		consumption and how these charges would impact DG resource development on a
1047		forward-looking basis. I recommend the Commission concurrently consider alternative
1048		rate designs or other ratemaking tools to address problems with current rates.
1049		
1049 1050	Q.	What alternatives to demand charges could be considered?
	Q. A.	What alternatives to demand charges could be considered? Demand charges that are time-based or based on coincident peak demand can be effective
1050	-	
1050 1051	-	Demand charges that are time-based or based on coincident peak demand can be effective
1050 1051 1052	-	<i>Demand</i> charges that are time-based or based on coincident peak demand can be effective at signaling the times of highest long-term cost on the aggregate utility system, including
1050 1051 1052 1053	-	<i>Demand</i> charges that are time-based or based on coincident peak demand can be effective at signaling the times of highest long-term cost on the aggregate utility system, including the distribution system. On the other hand, a TOU or other time-differentiated <i>energy</i>
1050 1051 1052 1053 1054	-	<i>Demand</i> charges that are time-based or based on coincident peak demand can be effective at signaling the times of highest long-term cost on the aggregate utility system, including the distribution system. On the other hand, a TOU or other time-differentiated <i>energy</i> rate with higher charges during hours of the day when the residential class typically peaks
1050 1051 1052 1053 1054 1055	-	<i>Demand</i> charges that are time-based or based on coincident peak demand can be effective at signaling the times of highest long-term cost on the aggregate utility system, including the distribution system. On the other hand, a TOU or other time-differentiated <i>energy</i> rate with higher charges during hours of the day when the residential class typically peaks (i.e., early evening), would also reflect cost causation and send an appropriate price

1058TOU pricing is generally viewed more favorably among a broad variety of non-utility1059stakeholders, and may be preferable at this point to the proposed demand charges or other1060fixed charges. Properly-designed TOU or other time-differentiated energy rates can1061reflect changes in hourly energy prices throughout the daytime and seasons and therefore

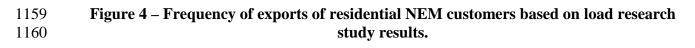
1062	serve as an appropriate determinant for recovery of many fixed costs associated with
1063	T&D service as well as better reflecting market prices for energy. Under TOU or other
1064	time-differentiated energy rates, regardless of when a customer sets a peak demand, the
1065	customer still has an incentive to adjust energy consumption, add DG, or both, in
1066	response so that it can benefit from lower bills if the customer can shift usage to lower
1067	TOU rate periods going forward. In addition, the use of super or "critical" peak TOU
1068	periods during times of peak demand on the overall system and/or the utility distribution
1069	system could also help ensure recovery of T&D costs without introducing demand
1070	charges. TOU energy rates, like demand charges, rely on the installation of metering
1071	capable of capturing hourly interval demand data. So, these rates will also incur higher
1072	meter costs to implement and may suggest that other intermediate steps might be
1073	preferable in the near term to address shifted costs. Division witness Dr. Artie Powell will
1074	address these steps.

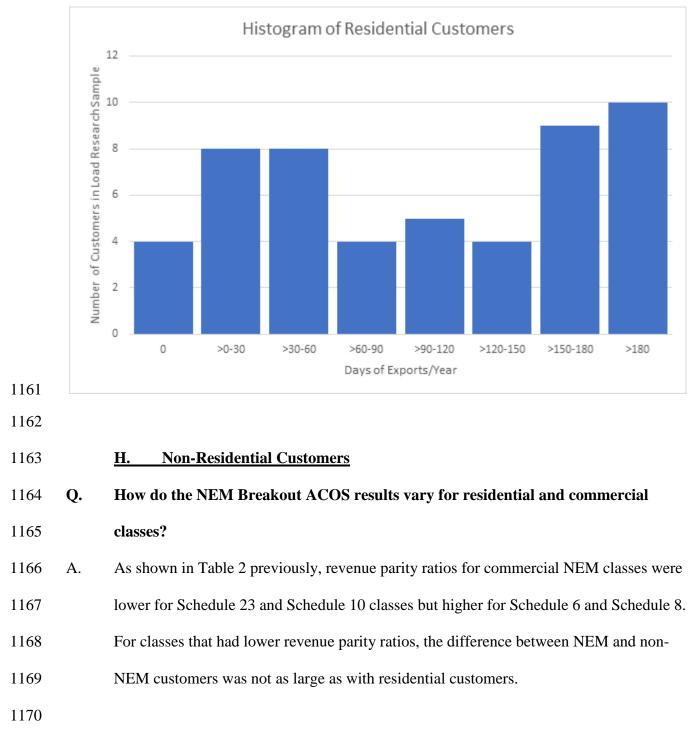
1076 Q. What would you recommend regarding TOU-based energy rates?

1077A.TOU or other time-differentiated energy charges may more closely align NEM rate1078design with cost causation principles, if metering can be implemented to measure1079customer imports and exports separately over all hours of the billing cycle, to reflect1080hourly and seasonal differences in wholesale power supply costs and the peak demand1081periods which T&D systems are built to meet. The design of TOU or other time-1082differentiated rates would be informed by additional data collection and analysis to better1083understand the impact of such rates have sending price signals to the NEM customer so

1084		they shift their loads out of the peak, higher cost periods. Data collection through a rate
1085		pilot program(s) could enable the Commission to make more informed decisions about
1086		different time-based rate structures going forward.
1087		
1088	Q.	What do you conclude regarding the use of demand charges and TOU-based rates?
1089	А.	I support the consideration of both a demand charge schedule and TOU schedule to allow
1090		for customer choice, as noted in Division Witness Dr. Artie Powell's Direct Testimony.
1091		
1092		<u>E. Gradualism</u>
1093	Q.	Please explain how any rate design approved by the Commission should be adopted.
1094	А.	Regardless of the ultimate rate design and rates approved by the Commission, the rate
1095		design and rates should be gradually implemented through steps that enable proper
1096		transition to bi-directional meters and avoid or mitigate adverse average rate and bill
1097		impacts for customers. It will take time for the Company to replace or reprogram meters
1098		that capture bi-directional energy flow, proper customer outreach, and for customers to
1099		adjust to the new rate structure(s) by altering usage patterns to coincide with the change
1100		in price signals.
1101		
1102		F. Grandfathering
1103	Q.	Did the Company address grandfathering of current NEM customers in its
1104		testimony?

1105	A.	No. The Company only addressed the fact that current residential NEM customers would
1106		not be placed under the proposed Schedule 5, but could voluntarily opt in if desirable.
1107		Grandfathering considerations are important because of the potential for discrimination
1108		between current versus future NEM customers. It is practical to employ grandfathering,
1109		along with gradualism, during a rate design transition process to minimize customer
1110		impacts and allow the Company to get the proper metering infrastructure and billing set
1111		up to handle a new rate design(s). After an appropriate transition period, all NEM
1112		customers could likely be subject to the same rate design.
1113		
1114		Under the Utah NEM Statute, the Company must have a NEM program, but that program
1115		can be capped in size. The current cap size set by the Commission can be adjusted
1116		downwards to a lower level, which would help usher in the beginning of a transition
1117		period where grandfathering of current NEM customers can be used to help those
1118		customers adjust to a future rate design(s). In short, by decreasing the NEM program cap
1119		to a level near the current program size or a near-term projection of size, the Commission
1120		can create a defensible class of NEM customers that might be gradually transitioned
1121		while newcomers after the Commission's order in this proceeding might have a new
1122		regime immediately applied.
1123		
1124		G. Interconnection Application Fees
1105	0	Discourse and the intervence of an enable of a fear more and has the Commence


1125 Q. Please explain the interconnection application fees proposed by the Company.


1126	A.	The Company is proposing to implement a Level 1 interconnection application fee, as
1127		well as increase the current Level 2 and Level 3 interconnection application fees already
1128		in place. The interconnection application fees are charged by the Company to cover the
1129		NEM program administration and engineering costs when customers looking to add
1130		private DG apply for interconnection. These costs cover the Company's customer call
1131		center costs of handling all three levels of applications, as well as the customer
1132		generation, and engineering and operating costs of reviewing each of the applications. As
1133		the Company suggests, each level of application carries with it increasing complexity and
1134		therefore adds to the overall interconnection costs to properly integrate increasing levels
1135		of DG at any point on the system.
1136		
1137		Currently, only Level 2 and Level 3 applications have been charged interconnection
1138		application fees. However, as the Company has explained "[a]pproximately eighty
1139		percent of applications reviewed are satisfied at Level 1."87 In addition, the Company
1140		continues to experience an increasing volume of applications and is considering ways to
1141		automate the application process. ⁸⁸ In support of the Company's implementation of an
1142		application fee for Level 1, it explains that California and Washington have implemented
1143		application fees for smaller systems. ⁸⁹

⁸⁷ Direct Testimony of Douglas L. Marx, p. 9, lines 169-170.
⁸⁸ *Id.*, p. 11, line 197, Figure 2.
⁸⁹ *Id.*, p. 12, lines 210-215.

1145	Q.	Do you agree with the Company's proposal to increase interconnection application
1146		fees for all three levels of application?
1147	A.	In general, I agree with the Company that there is a cost of interconnection incurred for
1148		both program administration and engineering review when a customer submits an
1149		interconnection application for any system, regardless of size. These costs should be
1150		borne only by the applicants, since non-NEM customers are not contributing to these
1151		costs. Note as well that it is standard in the electric power industry for generation
1152		developers to pay for costs to interconnect to the grid.
1153		
1154		Because of the potential for additional costs to deal with reverse power flows, I also
1155		recommend that interconnection costs vary based on whether the interconnecting DG
1156		system is expected to export power to the grid. Based on the Company's load research
1157		results, some residential customers export most days, while others not at all. The
1158		distribution of the frequency of exports is shown in the chart below. ⁹⁰

⁹⁰ See RMP response to EFCA 1.3 Attachment [CONFIDENTIAL].

1171 Q. What factors contribute to the difference in results for residential classes and 1172 commercial classes?

1173 A. The difference reflects the different rate structures for these classes. Except for small 1174 customers on Schedule 23, commercial classes listed in Table 2 have demand charges and 1175 lower energy charges than residential customers. Customer maximum demand can be 1176 reduced by solar DG systems if the maximum demand level in the absence of DG occurs 1177 during daylight hours, but the amount of reduction from solar DG is limited to the 1178 difference in maximum demand during daylight hours and maximum demand in non-1179 daylight hours. Put another way, a customer cannot fully zero out its demand charge with 1180 a solar system unless it has an energy storage system such as a battery, because demand 1181 will be placed on the grid when the solar system does not generate.

1182

1183 Lower energy charges also create a lower rate of compensation for some exports to the 1184 grid. Under current tariffs, commercial NEM customers are billed for their net energy 1185 consumed each month as long as exports to the grid are less than energy consumed from 1186 the grid. For these customers, exports are all compensated at the retail energy rate. If 1187 exports exceed energy consumed from the grid, the net credit for excess NEM generation 1188 is valued either at an avoided cost rate from Schedule 37 or a total average retail rate. 1189 Since total average retail rates are higher than avoided costs, to date commercial NEM customers have all chosen this compensation option.⁹¹ For these customers, exports then 1190

⁹¹ Direct Testimony of Joelle R. Steward, p. 33, lines 637-638.

1191		have two different compensation rates: the retail energy rate up to the level to net out all
1192		energy consumption and then the total average retail rate for the excess.
1193		
1194		The Company proposes to eliminate the option to value excess NEM credits at total
1195		average retail rates, which would lower export compensation levels significantly for
1196		customers with excess NEM bill credits.
1197		
1198	Q.	Do your conclusions and recommendations regarding residential NEM customers
1199		also apply to commercial NEM customers?
1200	A.	Most of them do, yes. The analysis supporting placing residential NEM customers in a
1201		separate class is specific to residential customers, and the Company does not propose to
1202		place commercial NEM customers into a separate class from non-NEM customers. My
1203		other conclusions, namely on the importance of correctly valuing exports, NEM costs and
1204		benefits, and the use of application fees and interconnection fees also apply to all NEM
1205		customers.
1206		
1207	Q.	Did you do any further analysis of commercial NEM customers?
1208	A.	Yes. I analyzed Schedule 23 NEM customers and their differences from Schedule 23
1209		non-NEM customers. I focused on these customers because some of them are similar to
1210		residential customers in that they do not pay demand charges and the NEM breakout

1211 ACOS results show a lower parity ratio for NEM customers in this class compared to

1212		non-NEM customers. Moreover, customer-related costs are a more significant portion of
1213		the total bill for small commercial customers compared to large commercial customers.
1214		
1215	Q.	What data did you analyze for Schedule 23 NEM customers?
1216	A.	Load research for these customers was not available, but I did analyze differences in
1217		customer unit costs between NEM and non-NEM Schedule 23 customers from the NEM
1218		Breakout ACOS study.
1219		
1220	Q.	How do Schedule 23 metering costs vary for NEM and non-NEM customers?
1221	A.	Based on the results in the Company's NEM Breakout ACOS, metering costs per
1222		customer are about equal for NEM and non-NEM customers, but this may be due to an
1223		error in the COS model.
1224		
1225	Q.	Explain the possible error in allocating Schedule 23 metering costs.
1226	A.	It appears that RMP mistakenly uses the cost of a bidirectional meter for residential
1227		customers (\$162/meter) for allocating metering costs to Scheduler 23 customers. ⁹² This
1228		cost is less than the cost of a meter for non-NEM Schedule 23 customers. If we assume
1229		NEM and non-NEM Schedule 23 customers have similar metering costs per meter, NEM
1230		metering costs would be \$238 per meter not \$162. Also, since bidirectional meters are
1231		costlier, the cost of meters for Schedule 23 NEM customers should likely be even higher
1232		than \$238. ⁹³

 ⁹² Based on data from the Company used to create the metering cost allocator in the NEM Breakout ACOS.
 ⁹³ See RMP response to OCS Data Request 4.2 Attachment [CONFIDENTIAL], which discusses the kinds of meters

- Q. Explain the differences in customer costs between NEM and non-NEM customers
 after the rectification of the metering cost error.
 A. After using an average unit cost of \$238 per meter for Schedule 23, customer unit costs
 for Schedule 23 NEM customers were higher than non-NEM Schedule 23 customers in
- all categories of customer-related costs I analyzed. This is shown in the table below.

1239Table 17 – Customer unit costs for Schedule 23 NEM and non-NEM customers based on1240NEM Breakout ACOS results. Assumes Schedule 23 NEM meters cost an average of1241\$238/meter.

SMALL COMMMERCIAL NON-NEM	SMALL COMMMERCIAL NEM
\$3.38	\$4.54
\$1.02	\$1.63
\$1.08	\$4.17
\$5.48	\$10.33
	\$3.38 \$1.02 \$1.08

1242

1243 Q. How did Schedule 23 service drop costs change for NEM and non-NEM customers?

1244 A. The unit cost assumptions for Schedule 23 NEM and non-NEM customers were the same.

1245 However, the NEM class had a higher proportion of 3-phase services compared to the

- 1246 non-NEM class, as shown in the table below. This results in an increase of costs per
- 1247 customer in that class because 3-phase service drops cost more than 1-phase service
- 1248 drops.

used for Schedule 23 customers.

Direct Testimony of Stan Faryniarz Docket No. 14-035-114 DPU Exhibit 2.0 DIR-COS June 8, 2017

Schedule 23 Non-NEM Schedule 23 NEM 1-Phase 65.81% 11.80% 3-Phase 34.19% 88.20%

1249 Table 18 – Percentage of Schedule 23 NEM and non-NEM customers by phase service type.

1250

1251 Q. How did Schedule 23 retail costs change for NEM and non-NEM customers?

1252 A. As with residential NEM customers, Schedule 23 NEM retail costs were higher per

1253 customer due to direct cost assignments to NEM customers. These are shown in the table

1254 below.

1255

Table 19 – Retail function costs assigned to Schedule 23 NEM customers.

Schedule 23 NEM
\$16,110
(\$7,404)
\$4,415
\$13,120
\$3.35

1256

1257 Q. Based on these results are the differences in customer-related unit costs significant 1258 for NEM and non-NEM small commercial customers?

A. No. Metering costs may be higher, but changes in service drop costs are driven more by other characteristics of the customers, namely larger customer size and higher frequency of 3-phase service. Additional administrative costs for the NEM program—if assigned

1262		only to NEM customers—or increased transformer costs necessary to accommodate
1263		bidirectional flows are best recovered through an alternative charge such as an
1264		application fee or interconnection fee as discussed previously in this testimony.
1265		
1266	Q.	What recommendations do you make specifically regarding Schedule 23 NEM
1267		customers?
1268	A.	I recommend the Company clarify how the need to meter bidirectional flows would
1269		impact average per meter costs to serve Schedule 23 NEM customers compared to non-
1270		NEM customers.
1271		
1272	<u>IV.</u>	Summary Conclusions and Recommendations
1273	Q.	Please outline your conclusions and recommendations to the Commission.
1274	A.	Based on my analysis, I make the following conclusions and recommendations.
1275		• Residential NEM customers do have a different load shape than non-NEM
1276		customers. More specifically, NEM customers exhibit the "duck curve" shape that
1277		has lower midday net consumption followed by a rapid rise in demand at sunset.
1278		• Differences in load shape between residential NEM and non-NEM customers do
1279		not translate into large differences in annual load factors.
1280		• There is more variation in the load factors of the residential NEM customers, but
1281		not drastically so.
1282		• NEM and non-NEM residential customers have similar total unit costs.

1283 •	I do not recommend that transformer costs be included in the customer charge for
1284	residential customers. Although these costs may be fixed, that does not by itself
1285	justify their inclusion in the customer charge.
1286 •	If there is a need for transformer upgrades to interconnect a DG system, then the
1287	cost of the upgrade is best recovered from the connecting customer through an
1288	interconnection charge and not a monthly customer charge.
1289 •	The use of a 1NCP allocator for allocating transformer costs may double count
1290	customer loads for residential customers who switched to NEM service between
1291	July and December 2015.
1292 •	I recommend the Company ensure that the transformer allocator does not double
1293	count customers in its NCP calculation. This should reduce costs allocated to the
1294	NEM residential class for the NEM breakout ACOS study.
1295 •	NEM customers do require modestly higher metering costs, but that difference
1296	alone does not justify a higher customer charge.
1297 •	Changes in service drop costs between NEM and non-NEM residential customers
1298	are driven more by other characteristics of the customers, such as placement on
1299	the underground or overhead system.
1300 •	Based on my analysis and findings described above, it is not necessary, for now
1301	and at the current level of penetration, to separate NEM customers into their own
1302	class.

1303	• Despite this, I do not object to the separation of NEM customers into a separate
1304	class if deemed appropriate for other policy reasons, or to address compensation
1305	rates for excess generation exported to the grid.
1306	• Compensation for energy exports at retail rates is the primary driver of the low
1307	revenue parity ratio for residential NEM customers shown in the Company's
1308	NEM Breakout ACOS study.
1309	• Traditional NEM excess energy compensation, at full retail rates, is not
1310	sustainable in the long-run with very high rates of DG penetration.
1311	• All the incremental costs the Company considered for the NEM program,
1312	including administration costs, engineering costs, and integration costs appear
1313	reasonable.
1314	• Since the Company is using a one-year historic test-period for its cost-benefit
1315	analyses as discussed from the Phase I Commission Order, it is likely that
1316	transmission, distribution, and environmental compliance avoided cost benefits
1317	may not be able to be properly captured. Evidence of such benefits might be
1318	presented by other parties in this docket and I will respond subsequently as
1319	appropriate.
1320	• Avoided distribution costs would need to be analyzed over a longer period of time
1321	than one year and should also be analyzed for providing location-specific benefits
1322	when possible.
1323	• Avoided transmission and avoided generation capacity benefits would need to be
1324	analyzed over a longer period of time than one-year.

1325 •	While the Company's method to calculate avoided line losses is a reasonable
1326	proxy, it could potentially under- or over-estimate actual line losses avoided.
1327 •	I would recommend that the Commission consider opening a separate docket to
1328	properly vet possible DG costs and benefits to RMP's distribution system, which
1329	could potentially include parties to the current docket and all stakeholders with an
1330	interest in DG, in order to determine the compensation rate.
1331 •	Demand charges have the potential to properly reflect cost causation on the
1332	distribution system, especially if they are based on coincident peak or are time-
1333	differentiated.

- Due to issues regarding the installation and cost of required metering capable of
 recording demands over all hours of the billing cycle, customer acceptance and
 understanding, ability to monitor and control electricity bills, and the potential for
 rate shock and dislocation, I recommend demand charges be implemented
 gradually, if they are part of the approved rate design.
- I recommend the Commission also consider alternative rate designs or other
 ratemaking tools to address problems with current rates.
- TOU or other time-differentiated energy charges may more closely align NEM
 rate design with cost causation principles, if metering can be implemented to
 measure customer imports and exports separately over all hours of the billing
 cycle, to reflect hourly and seasonal differences in wholesale power supply costs
 and the peak demand periods which T&D systems are built to meet.

1346	• I support the consideration of both a demand charge schedule and TOU schedule
1347	to allow for customer choice, as noted in Division Witness Dr. Artie Powell's
1348	Direct Testimony.
1349	• Data collection through a rate pilot program(s) could enable the Commission to
1350	make more informed decisions about different time-based rate structures going
1351	forward.
1352	• Regardless of the ultimate rate design and rates approved by the Commission, the
1353	rate design and rates should be gradually implemented through steps that enable
1354	proper transition to bi-directional meters and avoid or mitigate adverse average
1355	rate and bill impacts for customers.
1356	• By decreasing the NEM program cap to a level near the current program size or a
1357	near-term projection of size, the Commission can create a defensible class of
1358	NEM customers that might be gradually transitioned, while newcomers after the
1359	Commission's order in this proceeding might have a new regime immediately
1360	applied.
1361	• I agree with the Company that there is a cost of interconnection incurred for both
1362	program administration and engineering review when a customer submits an
1363	interconnection application for any system, regardless of size. These costs should
1364	be borne only by the applicants, since non-NEM customers are not contributing to
1365	these costs.
1366	• I recommend that interconnection costs vary based on whether the interconnecting
1367	DG system is expected to export power to the grid.

1368		• My conclusions regarding the importance of correctly valuing exports, NEM costs
1369		and benefits, and the use of application fees and interconnection fees apply to
1370		both residential and commercial NEM customers.
1371		• I recommend the Company clarify how the need to meter bidirectional flows
1372		would impact average per meter costs to serve Schedule 23 NEM customers
1373		compared to non-NEM customers.
1374		
1375	Q.	Does this conclude your testimony?
1376	A.	At this time, yes.