BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

IN THE MATTER OF THE INVESTIGATION OF THE)	DOCKET NO. 14-035-114
COSTS AND BENEFITS OF PACIFICORP'S NET))	DDU E-kikit 2 AD
METERING PROGRAM)	DPU Exhibit 2.0K
)	

COST OF SERVICE

(NET METERING PROGRAM)

REBUTTAL TESTIMONY OF STAN FARYNIARZ ON BEHALF OF

THE UTAH DIVISION OF PUBLIC UTILITIES

July 25, 2017

Table of Contents

I.	INTRODUCTION	3
II.	INTERVENOR TESTIMONY SUMMARIES	5
III.	ISSUES AND ANALYSIS	40
IV.	SUMMARY CONCLUSIONS AND RECOMMENDATIONS	61

1	I.	INTRODUCTION
2	Q.	What is your name?
3	А.	My name is Stan Faryniarz.
4		
5	Q.	Are you the same Stan Faryniarz who filed Direct Testimony in this proceeding?
6	A.	Yes.
7		
8	Q.	What is the purpose of your testimony?
9	A.	I wish to respond to certain arguments made by other intervenors in their direct testimony
10		in this proceeding. Specifically, I address the following:
11		• Analysis of the net metering program cost and benefits as they relate to utility-
12		scale versus distributed generation, and value of solar calculations presented by
13		EFCA.
14		• Cost of service analysis issues related to the characterization of bill credits.
15		• Use of the Company's recently filed Integrated Resource Plan as a source to
16		calculate net metering program costs and benefits.
17		• Price signals from time-based demand charges versus time of use energy rates,
18		and metering and other reforms that allow for accurate time of day and seasonal
19		price signals.
20		My testimony is laid out to first summarize the direct testimonies and comments put
21		forward by other intervening parties. I then address specific arguments, related to the

22		issues listed above, made by the witnesses for the other intervening parties. Therefore,
23		the main substance of my rebuttal testimony begins in Section III. Issues and Analysis.
24		
25		My testimony is in conjunction with the other Division of Public Utilities' witnesses
26		Artie Powell, Ph.D. and Ms. Myunghee Tuttle. Dr. Powell responds to Mr. Eliah
27		Gilfenbaum's ¹ assertions about the Company's earnings and long-term value of net
28		metering exports. Dr. Powell also addresses comments about the Company's one-year
29		test year for its cost of service studies, use of the Company's Integrated Resource Plan
30		process to determine net metering benefits, and the discusses the joint proposal put
31		forward by the Division of Public Utilities and Office of Customer Services. Ms. Tuttle
32		responds to the customer charge proposals offered by the Office of Consumer Services'
33		witness Mr. Danny A.C. Martinez.
34		
35	Q.	Please summarize your conclusions and recommendations.
36	A.	My conclusions and recommendations include:
37		• Customers should not be forced to pay a much higher cost for distributed solar
38		from their neighbors if the utility can offer it at a much lower cost from large
39		projects.
40		• At the same time, utilities should not overlook distributed generation as an
41		important potential resource in their system planning.

¹ Witness for the Energy Freedom Coalition of America.

42		• Customers who obtain power from the grid, regardless of whether they also
43		supply some of their own generation, must pay an appropriate cost-based rate for
44		that service.
45		• Under traditional utility ratemaking, a utility is not entitled to recover "lost
46		revenues," but it is entitled to recover its prudently-incurred costs.
47		• Effective price signals can be provided by time-based demand charges.
48		• A future distributed generation rate design should consider both demand-based
49		and TOU-based time varying rates, implemented gradually to ensure bill impacts
50		are modest, at least initially, and become well-understood by customers.
51		• A future distributed generation rate design should send accurate price signals to
52		all customers, corresponding to the cost and value of consumption and export
53		periods they are in effect, respectively, which requires appropriate metering, data
54		communication and customer understanding.
55		
56	II.	INTERVENOR TESTIMONY SUMMARIES
57	Q.	Who are the intervening parties in this proceeding?
58	A.	In addition to RMP, the Office of Consumer Services ("OCS"), and the Division of
59		Public Utilities ("DPU"), there are nine additional intervening parties that provided
60		written analysis in this proceeding, including renewable industry trade associations,
61		ratepayer representative organizations, solar energy system installers, environmental
62		advocacy groups, individual utility ratepayers, and a municipality. Eight of these parties
63		submitted pre-filed testimony and one filed written comments, and my testimony here

64	focuses upon the positions of those parties. Testimony was sponsored by Sierra Club,
65	Summit County, Utah Clean Energy ("UCE"), Utah Solar Energy Association ("USEA"),
66	HEAL Utah ("HEAL"), Vivint Solar, Inc. ("Vivint Solar"), Vote Solar, Energy Freedom
67	Coalition of America ("EFCA"), and the Office of Consumer Services ("OCS"). Written
68	comments were submitted by Utah Association of Energy Users ("UAE").

69 Q. Please provide a brief summary overview of each party's initial filing.

70 Below is a description of the filings and some key points made by each of the parties A. 71 regarding the issues relevant to RMP's residential NEM rate design proposal. Note that 72 the following summary does not purport to highlight every argument made by every 73 party. Additionally, in restating parties' positions in this Section II, note carefully that the 74 DPU does not imply it agrees with those positions. Rather, what follows are restatements 75 of parties' contentions, not a DPU characterization of its response to those contentions. 76 Thereafter, I do address in rebuttal several specific positions of certain parties, where 77 relevant, in Section III. Issues and Analysis.

78

79 A. Sierra Club

80 Sierra Club's witness Allison Clements asserts that RMP's proposal for a three-part rate 81 structure is discriminatory and harmful to the Company's rooftop solar customers due to 82 the high fixed rate, reduced volumetric charge, and improper demand charge associated 83 with the rate plan.² Regarding the demand charge, Ms. Clements explains that while a 84 demand charge may be fitting in the industrial customer class, it is inappropriate for

² Sierra Club Direct Testimony of Allison Clements, p. 24, lines 438-441.

85	residential customers since the usage profiles of these customers have a lesser impact on
86	the size and reliability of the system than those of industrial customers. Furthermore,
87	demand charges do not incentivize residential customers to reduce their demand since
88	they are generally unable to respond to demand price signals. ³ She contends the
89	Company's "proposed demand charge is a poor proxy for attempting to align rooftop
90	solar customers' cost of service with the rates they are charged for that service" and the
91	failure of several utilities to implement such a charge on rooftop solar customers in the
92	last few years illustrates the unorthodoxy of this approach. ⁴
93	
94	Ms. Clements addresses RMP's claim that the cost of service ("COS") burden is being
95	transferred from residential rooftop solar customers to other residential customers
96	because rooftop solar customers are buying less energy. She states that the Company's
97	cost shifting assertion is not properly supported, the cost of service studies the Company
98	conducted are flawed and therefore unable to demonstrate any level of cost shift. ⁵
99	Additionally, since cost of service studies are based on a "one-year snap shot of costs" by
100	design, these studies do not address the long-term benefits provided to the Company's
101	system by distributed solar resources. ⁶ She adds that another flaw with RMP's analysis is
102	the utilization of "production profiles of only 36 residential rooftop solar customers". ⁷

³ Id., p. 18, lines 327-331.
⁴ Id., p. 18, lines 336-346.
⁵ Id., p. 26, lines 472-476.
⁶ Id., p. 27, lines 491-493.
⁷ Id., p. 27 lines 501-502.

- 103 Ms. Clements maintains these limitations of the cost of service studies significantly104 diminish the robustness of their conclusions.
- 105

106Beyond the cost of service studies, Ms. Clements argues that cost shifts are a typical part107of cost-of-service rate design and therefore this cost shift may not warrant special108consideration, especially in light of the other cost shifts that may be occurring.⁸ After109conducting her own analysis on how the cost shift claimed by RMP may be harming110other residential customers, by dividing residential customers into three separate usage111classes, Ms. Clements concludes that the cost shift is not imposing a significant burden112on any of these groups.⁹

113

To conclude her testimony, Ms. Clements provides a discussion of the consequences tied to the imposition of rooftop solar rate design polices in other states like those proposed by RMP. As demonstrated by the experience of Nevada, she suggests the establishment of a rate structure like the rate design in RMP's proposal can lead to serious, long-term damage to the rooftop solar industry.¹⁰ In contrast, she describes how Colorado can be used as an example to show how "collaboration and gradualism" will help the solar industry grow.¹¹ Specifically, she explains that decoupling could be used in unison with

⁸ *Id.*, p. 32, lines 597-604.

⁹ *Id.*, p. 36, lines 665-669.

¹⁰ *Id.*, pp. 43-44, lines 791-799.

¹¹ *Id.*, p. 55, lines 981-982.

- the final rate design as a solution to the Company's declining revenues due to increased
 growth of rooftop solar.¹²
- 123

124 <u>B. Summit County</u>

125 Summit County witness Roger Armstrong discusses the cost-benefit and methods 126 associated with RMP's compliance filing and how it will impact the residents of Summit 127 County and its current renewable energy system. As a net metering customer of RMP, the county and its residents are concerned with how the Company's proposed rate structure 128 129 will impact its commitment to renewable energy and pollution reduction.¹³ Summit 130 County takes issue with RMP's rate design approach because it is based on the faulty premise that the Utah electric power market is a free market system.¹⁴ The Company 131 132 already has special privileges, such as "monopolistic powers, guaranteed profit, subsidies, and government police powers such as eminent domain", that allow it to restrict access to 133 the electrical grid in Utah.¹⁵ Since the net metering program is designed to allow 134 135 elements of competition to enter the electrical power market, the Commission should not accept changes to this program that would result in new barriers to market access.¹⁶ 136 137 Summit County suggests that the removal of barriers by the Commission, such as 138 adopting a broader view of the long term benefits afforded by rooftop solar, will bring

¹² *Id.*, p. 54, lines 961-965.

¹³ Summit County Direct Testimony of Roger Armstrong, pp.2-3, lines 13-36.

¹⁴ *Id.*, p. 3, lines 40-42.

¹⁵ *Id.*, p. 3, lines 44-46.

¹⁶ *Id.*, p. 4, lines 62-65.

- down costs for customers and is in the best interest of the residents of both the county andthe state of Utah.
- 141

142	Additionally Summit County addresses the cost-benefit analysis of the net metering
172	Additionally, Summit County addresses the cost-benefit analysis of the net metering
143	program conducted by RMP. Mr. Armstrong explains that RMP's cost-benefit analysis
144	does not recognize the value provided to neighborhoods and communities by distributed
145	generation, such as the provision of renewable power from net metered customers at no
146	cost to local households. ¹⁷ The local power provided by net metered customers helps
147	reduce transmission line losses, lessens the amount of electricity production needed from
148	RMP, and lowers harmful emissions. ¹⁸ Summit County asserts that RMP's 3-tier rate plan
149	proposed through Schedule 136 and Schedule 5 will reduce the average 900 kW/month
150	solar rooftop customer savings from \$133/month to \$74/month, which will essentially
151	end the net metering program in Utah and therefore impact the county and its
152	sustainability goals. ¹⁹
153	

154 <u>C. UCE</u>

UCE's witnesses discuss the Company's analysis of net metering costs and benefits, the new rates proposed for distributed generation customers, grandfathering for current NEM customers, and long-term approaches for developing distributed generation ("DG") rate structures. The direct testimony of Tim Woolf focuses on the cost and benefits of the net

¹⁷ *Id.*, p.5, lines 86-89.

¹⁸ *Id.*, p.5, lines 90-92.

¹⁹ *Id.*, p.6, lines 97-102.

159	metering program, finding that RMP's own cost of service analyses show the current net
160	metering program provides net benefits to customers, even though the Company
161	understates net metering benefits due to only featuring one year of data in its cost of
162	service studies. ²⁰ Additionally, UCE witness Woolf finds that the Company's proposed
163	net metering compensation mechanism will make distributed solar less economically
164	feasible thereby reducing the impetus for residential customers to install distributed solar
165	systems in the future. ²¹ He further finds that the Company "conflated the cost-benefit
166	analysis of net metering with cost-shifting," which makes it difficult to draw clear
167	conclusions regarding the effect of either one. ²² Regarding cost-shifting, Mr. Woolf
168	suggests that RMP's analysis overstates the impacts of cost-shifting caused by distributed
169	generation because it undervalues DG benefits and assumes all lost revenues DG creates
170	will be recouped from customers. ²³ Lastly, Mr. Woolf finds that the expansion of solar
171	DG is consistent with RMP's 2017 Integrated Resource Plan ("IRP"), which shows that
172	increased penetrations "can reduce the cumulative net present value of revenue
173	requirements by more than \$440 million." ²⁴
174	
175	Based on his findings, Mr. Woolf recommends the Commission find that current NEM

- program benefits outweigh the costs, that RMP's analysis of the current NEM program 176
- does not show a cost-shift from NEM to non-NEM customers, and that a future 177

 ²⁰ UCE Direct Testimony of Tom Woolf, p. 4-5, lines 79-85.
 ²¹ *Id.*, p. 4, lines 73-75.

²² Id., p. 4, lines 75 75.
²³ Id., p. 23, lines 424-430.
²⁴ Id., p. 5, lines 81-83.

178	compensation mechanism for DG should allow for continued growth of DG installation. ²⁵
179	Further, he recommends that the Commission require future DG cost-benefit and cost-
180	shifting analyses be conducted separately with the cost-benefit analysis based on revenue
181	requirements not bill credits, which should be accounted for in the cost-shifting
182	analysis. ²⁶ Lastly, he recommends the Commission require a 20-year study period be
183	used for cost-benefit analyses due to costs and benefits occurring beyond one year. ²⁷
184	
185	UCE witness Melissa Whited focuses more specifically on the proposed residential tariff
186	and finds the following: the reduced economics of DG under the Company's proposed
187	residential DG tariff would cause few customers to install DG in the future; residential
188	customers are not suited for demand charges; and DG customers should not be placed in
189	a separate rate class from other residential customers because their load characteristics do
190	not justify the segregation and it would only cause an increase in the costs to serve non-
191	NEM customers. ²⁸ Based on her findings, witness Whited recommends the Commission
192	should: reject the Company's rate design proposal because it eliminates the economics of
193	installed DG; find that residential customers are not suited for demand charges; DG
194	compensation should "strike a balance between enabling reasonable growth in distributed
195	generation, while mitigating cost-shifting to non-net metered customers" and be modified
196	over time as conditions change; and if any changes to the NEM program do occur, "only

²⁵ *Id.*, p. 5, lines 92-98.
²⁶ *Id.*, pp. 5-6, lines 99-104.
²⁷ *Id.*, p. 5, lines 105-107.
²⁸ UCE Direct Testimony of Melissa Whited, p. 3, lines 44-54.

197	the compensation for monthly net excess generation be reduced" and this compensation
198	"should be based on the best estimate of long-term benefits, including the benefits of
199	avoiding large capital investments. ²⁹
200	
201	When analyzing the Company's cost of service studies, witness Whited found that the
202	studies show that DG actually reduces revenue requirements, which leads to lower costs
203	for all customers. ³⁰ Further, she found that the results of the Actual Cost of Service
204	("ACOS") and NEM Breakout cost of service studies show that placing NEM customers
205	in a separate rate class would actually cause the cost allocation, on a per-customer basis,
206	to non-NEM customers to increase. ³¹ This suggests that the separation of NEM customers
207	into a separate rate class would also not shield customers from cost-shifting.
208	
209	Regarding demand charges, Ms. Whited asserts that demand charges are not appropriate
210	for residential customers because they violate widely-accepted ratemaking "principles of
211	efficiency, simplicity, and stability". ³² She explains how demand charges provide a less
212	efficient price signal than other rate designs, are complicated in design, and do not ensure
213	rate stability.
214	
215	Witness Whited concludes her testimony by presenting several recommendations

regarding the DG rate design, demand charges, and compensation. She recommends that

²⁹ *Id.*, pp. 3-4, lines 58-78.
³⁰ *Id.*, pp. 15-16, lines 259-264.
³¹ *Id.*, p. 20, lines 311-313.
³² *Id.*, p. 23, lines 387-388.

217	if the Commission modifies the current NEM program, it should only reduce excess
218	generation compensation or in the alternative suggests time-of-use ("TOU") pricing be
219	implemented to send proper price signals. ³³ She offers the suggestion of gradually
220	stepping down the compensation for excess generation over time as solar penetration
221	levels increase ³⁴ Lastly, she explains that if netting was changed from monthly to hourly,
222	customer bills may dramatically change and therefore netting should remain monthly
223	until there is a better understanding of hourly netting impacts. ³⁵
224	
225	UCE's last witness, Justin Barnes, discusses the issue of grandfathering for existing NEM
226	customers and long-term designs for improving DG rate structures. Mr. Barnes discusses
227	and provides an evaluation table that shows how regulatory commissions in several states
228	have approached grandfathering for existing DG customers in the context of NEM
229	program and rate design structural changes for these customers. ³⁶ He generally finds that
230	grandfathering is widely supported by regulators, usually lasts 20 years or more, and
231	eligibility is based on application submissions before or on a decision date or
232	benchmark. ³⁷ Mr. Barnes recommends that existing DG customers, "defined as those that
233	submit an interconnection application before the latter of the date of a final Commission
234	order in Docket No. 14-135-114 or the effective date of any tariff changes", be
235	grandfathered for 20 to 25 years on the currently applicable rate structure. ³⁸ He further

³³ *Id.*, p. 33, lines 559-565.
³⁴ *Id.*, p. 34, lines 575-578.
³⁵ *Id.*, p. 34, lines 583-589.
³⁶ UCE Direct Testimony of Justin R. Barnes, pp. 11-19, lines 191-320.
³⁷ *Id.*, p. 12, lines 205-210.
³⁸ *Id.*, p. 4, lines 37-41.

236	recommends that future DG customers should also be grandfathered for a period of 20 to
237	25 years "to support long-term investments under any new rate design in this
238	proceeding". ³⁹ Finally, he recommends that the Commission gradually develop DG rate
239	structures that target long-term solutions for incorporating DG into the electric system. ⁴⁰
240	
241	D. USEA
242	USEA addresses the rooftop solar industry in Utah and nationally, how the solar industry
243	has benefited Utah, and the detrimental effect RMP's proposal would have on
244	participation in NEM programs. ⁴¹ USEA states that they strongly support the current
245	NEM policy in Utah, since it satisfies customer demand for these programs and has a
246	positive effect on different parts of Utah's economy, such as generating competition in
247	the solar market, energy source diversification, energy price reduction, grid security, and
248	grid stability. ⁴² USEA claims that RMP's rate structure proposal will make rooftop solar
249	uneconomic in Utah, which will lead to slowing down or completely stopping the state's
250	solar economy, and cites the situation in Nevada where a similar rate structure was
251	introduced. ⁴³ Therefore, USEA recommends that the Company's proposal be rejected by
252	the Commission and [that it should] instead "adopt a rate structure that fairly and
253	adequately incents them [customers] to participate in NEM programs."44 However,

³⁹ *Id.*, p. 4, lines 44-45.

⁴⁰ *Id.*, p. 4, lines 42-43.
⁴¹ USEA Direct Testimony of Ryan Evans, pp. 3-4, lines 41-48.

 ⁴² *Id.*, p. 5, lines 84-89.
 ⁴³ *Id.*, p. 9, lines 157-162.
 ⁴⁴ *Id.*, p. 9, lines 165-167.

- USEA does agree with RMP's proposal in that grandfathering of current NEM customers 254 should continue on their current rate schedule under the current NEM program.⁴⁵ 255
- 256

257	USEA witness Micah Stanley points to several errors and incorrect methods in the
258	Company's cost of service studies which obscure the net benefit actually produced by the
259	NEM program. ⁴⁶ Mr. Stanley claims that a one-year test period is an inadequate amount
260	of time to collect reliable NEM program cost and benefit data. ⁴⁷ He further claims that
261	the Company's methodology is flawed because it excludes "significant benefits of the
262	NEM program" and relies only on data collected from a small sample of NEM
263	customers. ⁴⁸ Some of the omitted quantifiable benefits of the NEM program he believes
264	were excluded in the cost of service studies include benefits from system upgrades from
265	NEM customers, positive contributions associated with locally produced energy, and
266	benefits from upgrades to smart meters. ⁴⁹ Additionally, Mr. Stanley claims that there are
267	issues with how RMP's studies determine NEM program costs that include the incorrect
268	attribution of administrative costs, lack of administrative cost data, and absence of
269	evidence supporting distribution costs. ⁵⁰ Mr. Stanley asserts that the Company does not
270	account for the variable production of energy by the NEM program throughout the day
271	and incorrectly relies on an exponential annual growth rate for NEM customers. ⁵¹ He

⁴⁵ *Id.*, p. 10-11, lines 183-185 and 208-209.
⁴⁶ USEA Direct Testimony of Micah Stanley, pp. 3-4, lines 38-48.

⁴⁷ *Id.*, p. 4, lines 61-63.

⁴⁸ *Id.*, p. 5, lines 79-81.

⁴⁹ *Id.*, pp. 6-7, lines 93-132.
⁵⁰ *Id.*, pp. 7-8, lines 133-158.

⁵¹ *Id.*, p. 9, lines 159-160 and 165-167.

272	explains that the exponential growth of the NEM program predicted by RMP has been
273	improperly used as justification for the expeditious implementation of the Company's
274	rate proposal. ⁵² Lastly, Mr. Stanley states that RMP has incorrectly claimed that there are
275	inherent profile differences between NEM and non-NEM customers caused by NEM
276	customers exporting energy to the grid and consuming less energy. ⁵³ He argues that the
277	power generation by NEM customers does not lead to further use of RMP's resources and
278	the profile of NEM customers, separate from the NEM program, is not dissimilar from
279	that of a non-NEM customer who utilizes RMP's efficiency programs. ⁵⁴
280	
281	<u>E. HEAL</u>
282	HEAL witness Jeremy Fisher examines RMP's cost of service studies ("CCOS") based
283	on net power costs ("NPC"), evaluates avoidable energy elements omitted from the
284	Company's analysis, seeks to quantify short-term and long-term DG system benefits not
285	featured in RMP's assessment, and assesses cost-shifting. ⁵⁵ There are several issues that
286	HEAL finds with RMP's NEM analysis. Regarding the CCOS analysis, Mr. Fisher
287	asserts the following: it illustrates only short-term energy benefits, uses an outdated
288	renewable integration charge (from a 2012 study), does not account for all short-term
289	avoidable costs (full variable cost of coal and existing coal plants' avoided variable
290	operations and maintenance costs), does not account for avoided capacity benefits and

⁵² *Id.*, p. 9, lines 172-175.
⁵³ *Id.*, p. 11, lines 199-201.
⁵⁴ *Id.*, p. 11-12, lines 202-207.
⁵⁵ HEAL Utah Direct Testimony of Jeremy I. Fisher, p. 3, lines 11-18.

291	low-cost incremental procurement as determined in RMP's 2017 IRP, and the long-run
292	cost-shift analysis is flawed. ⁵⁶ Additionally, Mr. Fisher makes several findings regarding
293	the Company's least or non-economic coal units. He asserts that if the Company's least-
294	economic coal units were evaluated similarly to DG resources, these coal units would
295	need above retail rates to be economically viable, impact ratepayers in excess of any DG
296	attributed cost shifts, and have equal if not greater long-term losses than RMP's long-run
297	cost-shift estimate. ⁵⁷ Lastly, Mr. Fisher asserts that the CCOS analysis does not include
298	the benefits derived from DG's contribution to emissions reduction and based on the
299	estimated high-penetration of DG predicted by the Company, it can retire one or more
300	non-economic coal units, without replacing any, that need selective catalytic reduction to
301	be installed by 2021/22, which will lead to system cost savings. ⁵⁸ Ultimately, Mr. Fisher
302	concludes that the current NEM tariff does not need to be modified. ⁵⁹

304 <u>F. Vivint Solar</u>

Vivint Solar addresses the impacts of RMP's proposal on both residential solar customers
and the solar industry in Utah, how the net metering tariff compares to particular
ratemaking principles, grandfathering the net metering structure for current solar, and
errors and incorrect assumptions it found in the ACOS, CCOS, and NEM Breakout
analyses. Vivint Solar witness Thomas Plagemann evaluates the three parts of the rate
structure proposed by RMP, which include an increased monthly fixed charge, a monthly

⁵⁶ *Id.*, pp. 5-6, lines 6-26 and 1-7.

⁵⁷ *Id.*, p. 6, lines 8-25.

⁵⁸ *Id.*, pp. 6-7, lines 26-27 and 1-8.

⁵⁹ *Id.*, p. 41, lines 7-9.

311	demand charge, and a reduced volumetric charge. He asserts that the three-part rate
312	design proposed by the Company was similar to the rate structure introduced in Nevada
313	that resulted in significant job losses within the solar industry and a "99% decrease in net
314	metering applications year-over-year."60 If the RMP proposal was accepted, he expects
315	that Utah would experience a negative impact on the solar industry comparable to what
316	occurred in Nevada with an estimated loss of "3,000-4,000 jobs" and several "associated
317	downstream economic impact[s] to the state." ⁶¹
318	Mr. Plagemann states that the high monthly fixed charge put forth by RMP discriminates
319	against residential solar, which is no different than any other technology that reduces
320	residential energy consumption, and does not take into account DG benefits both short-
321	term and long-term. ⁶² He argues that the Commission should reject this type of
322	discriminatory ratemaking and instead implement "a reasonable and small minimum bill
323	for all residential customers" that encourages customers to reduce energy use and practice
324	conservation and assures "some minimal level of cost recovery."63 Mr. Plagemann
325	considers the use of a demand charge for residential NEM customers unusual, since
326	demand charges are generally only used in industrial and commercial ratemaking design
327	due to these customers being "larger, with higher average peak usage, are more
328	sophisticated, and are better equipped to manage such rate structures." ⁶⁴ He asserts that

⁶⁰ Vivint Solar Direct Testimony of Thomas Plagemann, p. 3, lines 38-40.
⁶¹ *Id.*, pp. 12-13, lines 241-250.
⁶² *Id.*, p. 4, lines 54-57 and 62-64.
⁶³ *Id.*, pp. 5-6, lines 85-89.
⁶⁴ *Id.*, p. 6, lines 96-100.

329	the application of a demand charge for residential customers would need to at least: apply
330	to all residential customers; be communicated and understood clearly by all residential
331	customers; reflect the actual cost of interconnection or incremental costs of customer
332	usage; and enable customers to manage their peak demand from accessible data. ⁶⁵ Lastly,
333	Mr. Plagemann explains that a reduced volumetric charge does not capture the short-term
334	and long-term benefits provided by a residential solar system. ⁶⁶ He finds that RMP's rate
335	structure proposal not only ignores the long-term grid benefits of residential solar, it also
336	eliminates consumer choice and discriminates against solar customers.67
337	
338	Mr. Plagemann urges the Commission to reject RMP's proposal and support the use of
339	gradualism in rate making design. ⁶⁸ Additionally, he provides an alternative rate design
340	that contemplates, under the current NEM program, grandfathering a meter for 25 years
341	from the date RMP gives the customer permission to operate. ⁶⁹ He further explains that
342	there should be a small increase in the minimum bill for all residential customers and new
343	residential solar systems would have a maximum offset percentage set at 90% of the prior
344	12 months of energy usage by the customer. ⁷⁰ Lastly, a monthly true-up value for energy
345	exports should be established as a step down rate that starts at the average retail rate and
346	eventually reaches a rate floor and is based on solar penetration levels, which are

⁶⁵ *Id.*, pp. 6-7, lines 107-112.
⁶⁶ *Id.*, p. 8, lines 139-141.
⁶⁷ *Id.*, p. 9, lines 170-173.
⁶⁸ *Id.*, p. 13, lines 260-267.
⁶⁹ *Id.*, p. 14, lines 274-275.
⁷⁰ *Id.*, p. 14, lines 278-280.

determined by the percentage of total residential solar customers out of the total 347 residential class.⁷¹ 348

349

350	Vivint Solar witness Dan Black provides testimony supporting RMP's proposal to
351	grandfather existing NEM customers. He asserts that the effectiveness of grandfathering
352	hinges on its application being on the meter being located at the home where the solar
353	system is installed, instead of being tied to an individual customer. ⁷² Mr. Black suggests
354	that this is necessary to protect the value of a DG system, so when a home is sold, the
355	grandfathering applies to the meter of the new buyer. ⁷³ He recommends that
356	grandfathering should occur for a system for at least 25 years, to allow the net metering
357	customer enough time to recoup costs of and benefit from the investment. ⁷⁴
358	
359	Additionally, Mr. Black explains that while rates can change, the current NEM program
360	"must remain stable." ⁷⁵ He further recommends that new customers coming online after
361	the decision in this proceeding should be tied to the same rate structure that was in place
362	when they made their solar system investment. ⁷⁶ He recommends that if changes to the
363	net metering program do occur under as a result of this proceeding, these changes should
364	"not take effect for at least 90 days after the Commission's order is final." ⁷⁷ He suggests

⁷¹ *Id.*, p. 14, lines 281-285.
⁷² Vivint Solar Direct Testimony of Dan Black, p. 1, lines 15-17.

⁷³ *Id.*, p. 1, lines 17-18.

⁷⁵ *Id.*, p. 1, lines 17-18.
⁷⁴ *Id.*, p. 2, lines 30-34.
⁷⁵ *Id.*, p. 3, lines 54-56.
⁷⁶ *Id.*, p. 7, lines 150-152.
⁷⁷ *Id.*, p. 7, lines 157-158.

365	that any customers who submit an application during the 90-day period should be
366	grandfathered under existing net metering program, and applications submitted after
367	would be part of the new NEM regime. ⁷⁸
368	
369	Vivint Solar witness Richard Collins recommends that the results of RMP's cost of
370	service study be rejected because of various errors and incorrect assumptions contained
371	within the ACOS, Counterfactual Cost of Service ("CFCOS"), and NEM Breakout
372	analyses. ⁷⁹ He asserts that the issues with the cost of service analyses led to an
373	underestimation of benefits and overestimation of costs relating to the NEM program. ⁸⁰
374	Mr. Collins states that NEM customers should not be put under a different tariff or rate
375	class. ⁸¹ Additionally, he asserts that "[b]ecause the Commission's required analytical
376	framework fails to take into account the long-term benefits of a net metering program, it
377	does not implement the Legislature's intent," and therefore the Commission should
378	consider long-terms benefits and costs of the NEM program when deciding this
379	proceeding. ⁸² Due to the errors made by the Company in its analyses, which cause
380	concern about the impacts of costs and benefits of the NEM program, he recommends
381	"the Commission make no or only incremental changes to the current residential net
382	metering tariff."83

⁷⁸ *Id.*, p. 8, lines 161-166.
⁷⁹ Vivint Solar Direct Testimony of Richard S. Collins, p. 3, lines 52-55.
⁸⁰ *Id.*, p. 3, lines 60-61.
⁸¹ *Id.*, p. 3, lines 64-66.
⁸² *Id.*, p. 4, lines 73-78.
⁸³ *Id.*, p. 15, lines 318-322.

383

384	Mr. Collins further discusses the methodological errors in the Company's analyses. He
385	first asserts that the Company is inappropriately trying to collect for lost revenues from
386	behind-the-meter customer generators reducing consumption. ⁸⁴ Then he suggests that the
387	new meter cost calculation does not consider any benefits from redeploying old meters to
388	other customers or alternatively offsetting the costs against a salvage value. ⁸⁵ Other cost
389	issues Mr. Collins addresses include using a fixed cost per hour for engineering and
390	administrative functions and potential overestimation of NEM program billing costs. ⁸⁶ He
391	further asserts that there are multiple issues with the Company's NPC calculation: not all
392	of costs associated with additional generation needed to replace power generated from
393	residential NEM systems [were] included in the CFCOS; a system capacity value from
394	the NEM program was not included by the Commission; and the integration adjustment
395	was not appropriate. ⁸⁷ One last issue Mr. Collins discussed was the Company's
396	underestimation of rooftop solar's peak shaving ability. ⁸⁸ Mr. Collins later presented two
397	long-term, quantifiable benefits: renewable energy credits that the Company will not have
398	to purchase; and avoiding future carbon reduction expenses. ⁸⁹

⁸⁴ *Id.*, p. 16, lines 340-341.
⁸⁵ *Id.*, p. 17, lines 364-367.
⁸⁶ *Id.*, pp. 18-19, lines 385-391 and 397-402.
⁸⁷ *Id.*, p. 23, lines 485-489.
⁸⁸ *Id.*, p. 28, lines 590-595.
⁸⁹ *Id.*, p. 39, lines 815-817.

400	Additionally, Mr. Collins addresses concerns about RMP's proposed rate design not
401	following several important Bonbright ratemaking principles. The proposed residential
402	net metering tariff does not promote the efficient use of resources and would devastate
403	the solar industry within Utah, and the inclusion of a demand charge would make it hard
404	to implement. ⁹⁰ Further, there will not be revenue stability in the long-run because the
405	demand charge will eventually incentivize customers to avoid it.91 Overall, Mr. Collins
406	recommends that the Company should be required to correct and resubmit its analysis or
407	the recommended tariff revisions outlined in fellow Vivint Solar witness testimonies of
408	Thomas Plagemann and Dan Black be adopted by the Commission. ⁹²
409	
410	G. Vote Solar
411	Vote Solar evaluates several topics including RMP's request to separate residential solar
412	rooftop customers into a new customer class, the Company's proposed rate design, the
413	cost and benefit of residential DG resources, and suggested changes to the NEM
414	program. Vote Solar witness Rick Gilliam demonstrates that separation of NEM
415	customers into their own class has no basis because their load characteristics are similar
416	to non-NEM customers. ⁹³ He then asserts that RMP's proposed rate design is
417	"inappropriate, discriminatory, and tantamount to a straight fixed-variable rate
418	structure." ⁹⁴ Mr. Gilliam presents two main issues with the rate design and recommends:

⁹⁰ *Id.*, p. 34, lines 710-712 and 716-717.
⁹¹ *Id.*, p. 11, lines 226-227.
⁹² *Id.*, p. 3, lines 55-58.
⁹³ Vote Solar Direct Testimony of Rick Gilliam, p. 4, lines 64-67.
⁹⁴ *Id.*, p. 4, lines 73-74.

419	rejecting the proposed demand charge structure; and rejecting the shift to cost recovery
420	through a monthly customer charge because it does not follow proper ratemaking
421	principles.95 Next, he recommends that if the Commission modifies the current NEM
422	program, it should adopt a principle of gradualism to protect NEM customers from
423	adverse rate impacts. ⁹⁶ Along with the concept of gradualism, Mr. Gilliam discusses three
424	groups of NEM customers: current NEM customers; transitional solar customers; and
425	future solar customers. He recommends the current NEM customers remain under the
426	current NEM program structure, including "allowing for carry-forward of net excess
427	energy to future months for a reasonable period of time" based on current investments
428	made by these customers. ⁹⁷ Mr. Gilliam defines the transitional solar customers as those
429	who submit an application after the current NEM group is closed, and will be subject to
430	monthly net billing that compensates excess generation at the end of the month at a rate
431	tied to the total aggregate retail rate ("TARR").98 Lastly, he discusses piloting of a long-
432	term rate design. A TOU rate design is recommended, that can be refined and
433	implemented in the recommended target year of 2025 for future solar customers and all
434	residential customers in general.99 Specifically, he recommends implementing "tiered
435	energy rates within temporal blocks of a TOU structure commensurate with the tiered

⁹⁵ *Id.*, p. 5, lines 79-85.

⁹⁶ *Id.*, p. 5, lines 87-90.
⁹⁷ *Id.*, pp. 5-6, lines 95-100.

⁹⁸ TARR is calculated as total residential revenue divided by total residential kilowatt-hour sales for the most recent calendar year and will decline over time as solar penetration increases. *Id.*, p. 6, lines 101-108. ⁹⁹ Vote Solar Direct Testimony of Rick Gilliam, p.7, lines 121-131.

- rate that exist[s] currently" to protect low-income customers not able to change their 436 energy usage.¹⁰⁰ 437
- 438

439	Mr. Gilliam explains that the basis for RMP's proposal to segregate residential NEM
440	customers into separate rate classes rests on several assertions that include: rooftop solar
441	customers and other residential customers having different usage characteristics; the grid
442	is utilized more by NEM customers because they import and export electricity; and peak
443	solar generation does not coincide with the RMP's peak load. ¹⁰¹ However, he explains
444	that the range of load factors for residential rooftop solar customers and non-solar
445	residential customers do not significantly differ from each other. ¹⁰² Regarding grid usage
446	by residential solar rooftop customers, he asserts that the exportation of excess generation
447	from these customers has not been shown to seriously impact the grid, especially since
448	RMP does not "manage" excess energy nor has it provided data supporting reverse
449	flows. ¹⁰³ Furthermore, any additional equipment needed to accommodate DG is paid for
450	by the NEM customer and not the utility or other customers. ¹⁰⁴
451	

Vote Solar witness David DeRamus presents similar conclusions that include finding 452 that: costs are not greater than benefits of the NEM program; there is no reasonable basis 453 454 to separate residential NEM customer into their own rate class; demand charges or

¹⁰⁰ *Id.*, p. 41, lines 820-824. ¹⁰¹ *Id.*, p. 15, lines 316-320.

¹⁰² *Id.*, p. 17, lines 346-347. ¹⁰³ *Id.*, p.19, lines 377-382.

¹⁰⁴ *Id.*, p.19, lines 392-393.

455	increased fixed monthly charges have not been reasonably based; and any modifications
456	to the NEM program should be made gradually and only to the compensation credit for
457	excess generation exports. ¹⁰⁵ He further asserts that the export credit value should be
458	reevaluated periodically through a separate process. ¹⁰⁶
459	
460	In support of his conclusions, he argues that although RMP claims the costs of the current
461	residential NEM program outweigh the benefits, this interpretation is incorrect and is
462	based on inadequate data and analysis. ¹⁰⁷ He then argues that the Company's claim that
463	NEM customers may add costs associated with reverse flows is not supported by
464	evidence showing that these flows cause additional costs. ¹⁰⁸ In fact, he suggests that
465	reverse flows would produce a benefit by reducing both peak demand on the system and
466	loading on transformers and distribution circuits. ¹⁰⁹ Further, he suggests that RMP's
467	claims that there is a cost associated with the sales revenue foregone because of
468	residential NEM customers' consumption of their own generation should not be
469	considered an increase in costs, especially since revenue reductions tied to energy
470	efficiency "are never treated as a cost of service." ¹¹⁰ When considering benefits of DG
471	that RMP incorporated, Dr. DeRamus argues that the Company discounts the value of
472	export generation and ignores the many long-term benefits associated with DG, while

¹⁰⁵ Vote Solar Direct Testimony of David W. DeRamus, p. 3, lines 48-55.

¹⁰⁶ *Id.*, p. 3-4, lines 55-58.
¹⁰⁷ *Id.*, p. 4, lines 61-62.
¹⁰⁸ *Id.*, p. 4, lines 64-66.
¹⁰⁹ *Id.*, p. 4, lines 66-69.
¹¹⁰ *Id.*, p. 4, lines 69-74.

473	only considering avoided line losses and the avoided cost of generation and purchases. ¹¹¹
474	He then describes other benefits provided by residential DG that are ignored by RMP,
475	which include grid resiliency, reliability, capacity, and environmental benefits. ¹¹² Further,
476	he explains that the excess energy provided by NEM customers benefits the system by
477	serving the load of nearby customers, especially during peak loads. ¹¹³ Lastly, he asserts
478	that DG will provide a net benefit to customers when appropriately valued. ¹¹⁴
479	
480	Dr. DeRamus then observes that RMP is seeking to implement a three-part rate design for
481	residential NEM customers that contains an increased monthly fixed customer charge, a
482	demand charge, and a reduced energy rate. While the Company argues that this rate
483	structure will prevent cost-shifting from residential NEM customers to non-NEM
484	customers, he posits that its main concerns are an increase in the Company's risk of
485	under-recovery and limiting the development of its asset base. ¹¹⁵ However, Dr. DeRamus
486	argues that these new charges combined with lower energy rates do not incentivize
487	customers to reduce consumption, adopt supplementary energy efficiency measures, or
488	switch their usage from high to low demand time periods. ¹¹⁶
489	

490 Dr. DeRamus has several similar recommendations for the Commission regarding NEM 491 compensation and rate design. He recommends that the Commission adopt a principle of

¹¹¹ *Id.*, p. 4, lines 76-79.
¹¹² *Id.*, p. 4, lines 80-81.
¹¹³ *Id.*, p. 5, lines 94-95.
¹¹⁴ *Id.*, p. 5, lines 83-84.
¹¹⁵ *Id.*, pp. 5-6, lines 106-110.
¹¹⁶ *Id.*, p.6, lines 113-116.

492	gradualism if they decide to modify the NEM program, and limit any change of the
493	current NEM program to the export credit or the crediting mechanism, which should
494	consider changes in DG costs and benefits over time, the deployment of complementary
495	technologies, and changes in the state's energy mix and grid management concerns. ¹¹⁷
496	Lastly, he suggests implementation of TOU rates for all residential customers because
497	they encourage customers to shift their load, which could lead to a reduction in RMP's
498	need for system investments. ¹¹⁸

500 <u>H. EFCA</u>

501 EFCA witness Eliah Gilfenbaum addresses the topics of cost-shifting, the Company's 502 cost of service studies, and the valuation of energy exports. He begins his testimony by 503 arguing that the alleged amount of cost-shifting caused by residential NEM customers is 504 very small compared to the cross-subsidization that currently exists due to the Company collecting revenue that greatly exceeds the cost of service for all classes.¹¹⁹ He maintains 505 506 the overearning experienced by RMP, and any issues with cross-subsidization, could be rectified through a general rate case to readjust revenues.¹²⁰ However, the Company has 507 508 decided not to use a general rate case to address such issues he notes.

509

510 The COS analyses conducted by RMP consists of three studies: the CCOS; ACOS; and
511 NEM Breakout COS. Although Mr. Gilfenbaum agrees that these studies provide

¹¹⁷ Id., p.6, lines 121-128.

¹¹⁸ *Id.*, pp. 6-7, lines 128-132.

¹¹⁹ EFCA Direct Testimony of Eliah Gilfenbaum, p. 4, lines 67-70.

¹²⁰ *Id.*, pp. 4-5, lines 87-90.

512	meaningful and pertinent information, he points out several issues with these analyses.
513	One issue he points to is the use of only a single historical test year in the analysis, which
514	makes it impossible to assess the long-term benefits of a resource. ¹²¹ Additionally, he
515	notes the COS studies do not differentiate between the generation consumed onsite by
516	NEM customers and the value of energy they export, which could lead to excessively
517	broad policy changes that impact self-generation rights. ¹²² After excluding the credit for
518	exports, Mr. Gilfenbaum compares the theoretical revenue derived from customers who
519	are billed based on delivered load to the full cost to serve that load, finding that
520	residential solar customers contribute 91.6% of their cost of service without changes to
521	assumptions and calculations in the Company's studies. ¹²³
522	
523	Mr. Gilfenbaum questions the basis for allocating distribution line transformer costs,
524	arguing that the July NCP should be used to allocate line transformer costs for residential
525	NEM customers and not the December NCP. He finds that this change would result in
526	having a \$209,872 lower allocation of line transformer costs being charged to the
527	residential NEM class. ¹²⁴ Regarding the coincidence factor involved in line transformer
528	cost allocation, the lower numbers of NEM customers per transformer is due in his view
529	to the pervasiveness of single-family homes in this portion of the residential class and not
530	because these customers have solar rooftop systems. ¹²⁵ He found that the Company's

¹²¹ Id., p. 6, lines 117-119.
¹²² Id., p. 9, lines 184-189.
¹²³ Id., p. 12, lines 239-243.
¹²⁴ Id., p. 14, lines 281-285.
¹²⁵ Id., p. 15, lines 299-305.

531	calculated coincidence factor for broken out NEM customers is based on an estimate that
532	there are less customers per transformer among NEM customers than for the residential
533	class in general. ¹²⁶ Although this difference in customers per transformer signifies that
534	transformer load diversity decreases if the customer has a solar system, this is an
535	incorrect interpretation he maintains. ¹²⁷ He counters that solar customers would most
536	likely increase load diversity, resulting in a lower coincidence factor. ¹²⁸ Mr. Gilfenbaum
537	demonstrates that by changing from the December NCP to the July NCP, or using the
538	residential class average coincidence factor of .76 for the NEM group of customers, can
539	lead to a COS parity that is on par with the residential class in the ACOS study. ¹²⁹ Based
540	on these findings, he does not support the Company's arguments for creating a separate
541	residential NEM rate class. ¹³⁰
542	
543	Regarding the valuation of exported energy, Mr. Gilfenbaum argues that the Company
544	has not fully captured the value of exported energy. ¹³¹ In particular, he suggests the

Company has neglected to evaluate the additional benefits derived from the following: 545

"long-run energy; losses and CO₂ value; avoided generation capacity; and avoided 546

transmission and distribution ("T&D") costs."132 Using data from the Company's IRP for 547

his analysis, Mr. Gilfenbaum calculated the numerous benefits and costs associated with 548

- ¹²⁹ *Id.*, pp. 18-19, lines 343-344 and 370-372.
- ¹³⁰ *Id.*, p. 19, lines 378-379. ¹³¹ *Id.*, p. 21, lines 423-424.

¹²⁶ Id., p. 16, lines 326-329.

¹²⁷ *Id.*, p. 17, lines 334-338.

¹²⁸ *Id.*, pp. 17-18, lines 338-342.

¹³² *Id.*, p. 22, lines 438-440.

549	each of the previously stated categories, and when data was not available he used
550	standard industry approaches to calculate marginal costs, such as avoided T&D marginal
551	costs. ¹³³ Summing these benefits and costs gives a long-term levelized value of NEM
552	energy exports of \$0.1257/kWh, which is larger than the average exported kWh credit
553	amount of approximately \$0.106/kWh. ¹³⁴ The analysis of these values presented, shows
554	that there are significant benefits generated by NEM systems and facilities in the long-
555	term, which are not captured by the analytical methodology used by RMP. ¹³⁵ Based on
556	this analysis, Mr. Gilfenbaum recommends that "the Commission consider additional
557	perspectives to inform its long-term consideration of customer-sited generation and other
558	distributed generation energy resources". ¹³⁶
559	
560	<u>I. OCS</u>
561	The OCS covers several topics, including the COS studies, RMP's proposal for new rates
562	and tariffs, and the net metering cap. Additionally, the OCS submits several proposals
563	that include a suggested sustainable successor rate design, a transition plan, and a
564	communications plan. Regarding RMP's COS studies, the OCS agrees with the Company
565	that they show the load shapes and usage characteristics between residential DG and non-
566	DG customers are uniquely different and that the current NEM program creates a net cost
567	to the Company's system due to non-NEM customers subsidizing the NEM customers. ¹³⁷

¹³³ *Id.*, p. 24, lines 479-481.
¹³⁴ *Id.*, p. 24, lines 485-489.
¹³⁵ *Id.*, p. 45, lines 840-842.
¹³⁶ *Id.*, p. 45, lines 838-840.
¹³⁷ OCS Direct Testimony of James W. Daniel, p. 6, lines 146-153.

568	However, the OCS considers cost-shifting between NEM program customers and non-
569	NEM customers to be an emerging issue that can be better evaluated during the next rate
570	case or when DG penetration reaches "a critical point". ¹³⁸
571	
572	The OCS also asserts that the use of a 2015 test year in RMP's COSS analysis is
573	inadequate for creating new rates, that updating the 2015 COSS for one modification, and
574	a separate residential NEM class with its own rate, constitutes "piecemeal ratemaking." ¹³⁹
575	Besides arguing against establishing a new NEM rate class and corresponding new
576	schedules (Schedules 5 and 136), the OCS asserts that the Company has "not adequately
577	considered customer impacts caused by its proposed Schedule No. 5" and would like the
578	Commission to consider a bill impact analysis comparing what new NEM customers
579	would pay under the proposed and current NEM programs. ¹⁴⁰ Further, OCS witness
580	Daniel argues that RMP did not properly consider a TOU rate design for its proposed
581	Schedule No. 5 and the Company's proposed deferral account offer "to capture
582	differences in revenues from new DG residential customers" should be rejected. ¹⁴¹
583	
584	The OCS further evaluates RMP's proposed net metering rate design, particularly the
585	customer charge and the net metering application fee. OCS witness Danny Martinez

argues that the proposed customer charge is "excessive and includes costs not previously

¹³⁸ *Id.*, p. 6, lines 153-158.
¹³⁹ *Id.*, p. 6, lines 163-167.
¹⁴⁰ *Id.*, p. 9, lines 219-228.
¹⁴¹ *Id.*, p. 15, lines 391-395.

587	prescribed or approved by the Commission to be included in a residential customer
588	charge." ¹⁴² Mr. Martinez recalculated the customer charge by starting with "the
589	Commission's customer charge calculation method," but then adding "some FERC ¹⁴³
590	accounts directly related to meter and service drops along with customer accounts
591	currently not included in the Commission Method." ¹⁴⁴ Additionally, he explains that
592	transformer costs should be excluded from the customer charge "since they are not
593	directly related to costs of net plant for service lines or meters, customer billing, and
594	meter reading." ¹⁴⁵ Further, he states that the customer charge should not collect costs
595	shared by multiple customers. ¹⁴⁶ Lastly, he explains that "[f]unctionalized miscellaneous
596	costs are not directly associated with customer billing, metering, and net plant (service
597	lines and meters) and thus do not belong in the customer charge." ¹⁴⁷ Mr. Martinez's
598	calculations result in a residential NEM customer charge of \$8.50.148
599	
600	Regarding NEM customer application fees, the OCS supports RMP's proposal to increase
601	the base fee for Level 1 applications from "\$0 to \$60 with no increase in the per kW fee,"
602	but asserts that the Level 2 and Level 3 application fees should remain the same until the
603	Company can adequately justify why they should increase. ¹⁴⁹ Additionally, the OCS

¹⁴² OCS Direct Testimony of Danny A.C. Martinez, p. 2, lines 58-60.

¹⁴³ Federal Energy Regulatory Commission ("FERC").

¹⁴⁴ *Id.*, p. 3, lines 69-74.

¹⁴⁵ *Id.*, p. 3, lines 69-74.
¹⁴⁵ *Id.*, p. 7, lines 198-200.
¹⁴⁶ *Id.*, p. 8, lines 207-208.
¹⁴⁷ *Id.*, p. 8, lines 214-216.
¹⁴⁸ *Id.*, p. 8, lines 222-225.
¹⁴⁹ *Id.*, p. 9, lines 253-258.

supports RMP's request for the Commission to "[g]rant a waiver of R746-312-13(a)" and 604 605 to "[c]onsider whether a formal rulemaking proceeding should be initiated to review R746-312-13 on a longer term basis."¹⁵⁰ 606 607 608 The OCS makes some additional recommendations and proposes a new rate design. 609 First, the OCS recommends the Commission reject the Company's proposed Schedule 5 and Schedule 136.¹⁵¹ Next, the OCS states that a separate customer class is not necessary 610 611 and its new rate design proposal will not require one.¹⁵² OCS witness Michele Beck 612 explains that the new rate design will require TOU rates "for consumption and a separate compensation rate for excess energy (determined hourly or more frequently)."¹⁵³ Further, 613 the OCS is recommending the Commission approve a new, lower NEM program cap.¹⁵⁴ 614 615 While the OCS is against the creation of an unjustified rate design for new NEM 616 customers, it does agree that RMP's COSS shows net metering is not a feasible long-term rate design.¹⁵⁵ Therefore, the OCS proposes that the Commission set a cap for the level of 617 NEM resource penetration, preferably closer to a penetration level of 10%.¹⁵⁶ Lastly, the 618 619 OCS is recommending that the Commission "approve a transition plan that includes a 620 rate design solution to grandfather the rate design for net metering customers for a time 621 limited period and a phased-in compensation rate for excess energy for new, post net

¹⁵⁰ Id., p. 13, lines 370-376.

¹⁵¹ OCS Direct Testimony of Michele Beck, p. 4, lines 78-79.

¹⁵² *Id.*, p. 4, lines 72-74.

¹⁵³ *Id.*, p. 5, lines 95-98.

¹⁵⁴ *Id.*, p. 5, lines 93-94.

¹⁵⁵ *Id.*, p. 12, lines 252-253.

¹⁵⁶ *Id.*, p. 15, lines 323-324.

- metering DG customers" and "incorporate a communication plan" to educate 622 customers.157 623
- 624

625	The OCS proposes an alternative rate design for this docket that seeks to properly
626	compensate NEM customers for their energy exports while also ensuring that they pay an
627	adequate amount of utility system costs. ¹⁵⁸ The new tariff rate would measure excess
628	energy on an hourly or smaller, appropriately metered interval, with customer bills being
629	credited for the "dollar value of excess energy, with bill credits that expire at the end of
630	the annual period," which eliminates netting within the billing period. ¹⁵⁹ Under this
631	proposed tariff, customers are required to participate in a TOU rate to receive
632	compensation. ¹⁶⁰ Lastly, the monthly customer charge would include an adder to recover
633	the costs related to additional metering requirements. ¹⁶¹ The OCS expects this new rate
634	design to be implemented after the Company's next general rate case, when new rates
635	become effective. ¹⁶² Regarding the compensation rate, the OCS recommends "developing
636	a compensation rate using similar methodology to what is used in developing Schedule
637	37." ¹⁶³

¹⁵⁷ *Id.*, p. 5, lines 99-105.
¹⁵⁸ *Id.*, p. 16, lines 353-355.
¹⁵⁹ *Id.*, p. 17, lines 368-376.
¹⁶⁰ *Id.*, p. 17, lines 377-378.
¹⁶¹ *Id.*, p. 18, lines 381-382.
¹⁶² *Id.*, p. 18, lines 384-385.
¹⁶³ *Id.*, p. 19, lines 406-407.

639	A transition plan is put forth by the OCS to help support a post net metering rate design.
640	The proposed transition plan would establish a transition period of about twelve years to
641	grandfather NEM customers and phase in a new excess energy compensation rate. ¹⁶⁴
642	Current NEM customers would be allowed to switch to a post NEM rate structure. ¹⁶⁵
643	NEM customers would have to pay a facilities fee based on the installed kW to properly
644	collect costs to serve those customers. ¹⁶⁶ A process would be initiated to develop a new
645	compensation rate for excess energy with an hourly or sub-hourly definition of exported
646	energy. ¹⁶⁷ The compensation rate for exports would be changed from a set dollar design
647	to a formulaic rate with other new rates, including a TOU rate, being set in a new general
648	rate case. ¹⁶⁸ Finally, a new NEM cap would be created to match the expected level of DG
649	installed at the time of the next general rate case or January 1, 2020. ¹⁶⁹ Additionally, the
650	OCS proposed a communications plan to support the transition plan.

652 <u>J. UAE</u>

UAE argues that RMP did not sufficiently demonstrate that changes to the net metering
program for Schedule 6 and 8 customers are warranted and therefore the Commission
should not accept the Company's proposal.¹⁷⁰ According to UAE, the Company's
proposal does not satisfy the Utah law requirement that charges and credits be deemed

¹⁶⁴ Id., p. 26, lines 571-573.

¹⁶⁵ *Id.*, p. 26, lines 574-575.

¹⁶⁶ *Id.*, p. 26, lines 576-579.

¹⁶⁷ *Id.*, p. 27, lines 586-588.

¹⁶⁸ *Id.*, p. 27, lines 591-592 and 600.

¹⁶⁹ *Id.*, p. 28, lines 618-620.

¹⁷⁰ UAE Direct Testimony of Phillip J. Russell, p. 2.

657	just and reasonable "in light of the costs and benefits" associated with the net metering
658	program. ¹⁷¹ Under Utah Code § 54-15-105.1 (the "NEM Statute"), two subsections
659	dictate that the Commission will determine if the net metering program costs exceed the
660	benefits, or vice versa, and in light of cost and benefits, determine charges, credits, or any
661	rate structure of the net metering program that are just and reasonable. ¹⁷² UAE states that
662	RMP's proposal is contrary to the NEM Statute because for Schedule 6 and 8 net energy
663	metered customers the Company seeks to increase charges and decrease credits for
664	reasons that are not backed by or connected to the cost and benefits shown for these
665	customers. ¹⁷³
666	
667	Additionally, UAE contends that RMP's data actually shows lower rates under the
668	current net metering program for other Schedule 6 and 8 customers and the claimed
669	benefits exceed claimed costs for those classes. ¹⁷⁴ In a comparison of the cost of service
670	studies included in the Company's Compliance filing, UAE explains that the foregone
671	revenue tied to behind-the-meter consumption of privately generated energy should not
672	be treated as a cost of net metering. ¹⁷⁵ UAE explains this is an incorrect assumption
673	because there is no evidence that offsetting part of a NEM customer's load from behind-
674	the-meter generation causes an increase in the cost of serving the NEM customer. ¹⁷⁶

¹⁷¹ *Id.*, p. 3.
¹⁷² *Id.*¹⁷³ *Id.*, p. 5.
¹⁷⁴ *Id.*¹⁷⁵ *Id.*, p. 7.
¹⁷⁶ *Id.*, p. 8.

675	Further, the Company's own evidence shows that NEM customers subsidize non-NEM
676	customers under the current NEM program because Schedule 6 and 8 customers paid a
677	higher percentage of the costs to serve them than did non-NEM customers. ¹⁷⁷ Since as
678	UAE maintains, data from RMP's Compliance filing shows how the benefits of the
679	currently constructed net metering program exceed the costs with respect to Schedule 6
680	and 8 customers, RMP's proposal to make revisions for Schedule 6 and 8 customers
681	should be denied as these changes are not "in light of the cost and benefits" of the net
682	metering program under the NEM Statute.
683	
684	UAE's final argument is that RMP's proposal to eliminate the Average Retail Rate
685	Option for new customers should be rejected, especially since the Company fails to
686	address the concerns that necessitated the creation of this rate or demonstrate how the
687	proposal will secure fair compensation for excess generation. ¹⁷⁸ UAE explains that while
688	RMP shows that the Average Retail Rate Option leads to a higher credit amount than the
689	other crediting options, the Company does not supply clear justifications for why this
690	option should be removed. ¹⁷⁹ Further, UAE asserts that the Average Retail Rate Option
691	undervalues Schedule 6 and 8 customers' excess generation because the current NEM
692	program leads to high costs for NEM customers and lower costs for non-NEM
693	customers. ¹⁸⁰

¹⁷⁷ *Id.*, p. 14.
¹⁷⁸ *Id.*, pp. 16-18.
¹⁷⁹ *Id.*, pp. 18-19.
¹⁸⁰ *Id.*, p. 19.

695 III. ISSUES AND ANALYSIS

696		A. <u>Response to Analyses of NEM Costs and Benefits</u>
697	Q.	Please describe your testimony in this section.
698	A.	Herein, I describe arguments made by certain intervenors which are notable, pertinent to
699		the Company's compliance filing and with which I either partially to fully agree or
700		disagree.
701		However, silence on any particular finding, argument, or recommendation by a party
702		should not necessarily be interpreted as agreement by either Division Staff or myself.
703		
704	Q.	Have other intervenors criticized RMP's quantification of NEM costs and benefits?
705	A.	Yes. As described in my summaries above, many parties argue that RMP has
706		underestimated NEM benefits. A common theme is that RMP has not properly evaluated
707		NEM benefits on a long-term horizon, and therefore not accounted for long-term
708		avoided cost savings from avoided energy, generation capacity, and transmission and
709		distribution investment.
710		
711	Q.	Do you agree with the intervenors' arguments?
712	А.	I agree that generation resources are best evaluated over a long-term horizon because
713		they are long-term investments. Utility resource planning is typically performed over a
714		horizon of 10-20 years or more, and the typical objective is to forecast which types of
715		generation resources meet customer needs over time at the lowest cost. PacifiCorp's

716 Integrated Resource Plan, for instance, presents just such a long-term analysis.

717

718		However, none of the intervenors attempt to show that distributed solar generation is the
719		resource that meets demand at lowest-possible cost. Importantly, they do not compare
720		distributed solar generation to utility-scale wind and solar, but instead compare
721		distributed solar generation to fossil fuel-based resources. If, under an appropriate
722		analysis, it was found that a utility-scale renewable energy project could provide similar
723		benefits when compared to fossil-fired generation, but at a lower cost, it would likely be
724		preferred over distributed solar generation.
725		
726	Q.	How do the benefits of utility-scale solar compare to those of distributed solar?
727	А.	Both provide a reliable source of emission-free, green energy. Utility-scale projects
728		typically have advantages of using technology that can better track the sun and produce
729		higher capacity factors than a typical fixed tilt rooftop system. Utility-scale solar is
730		typically sited in more optimal locations for generation, generally in Utah at lower
731		latitudes. Utility-scale projects also typically come with performance guarantees and
732		provide utilities with more control over the generation, which makes it a more reliable
733		source of capacity than a distributed system controlled by a customer.
734		
735		At the same time, distributed solar has locational advantages over utility-scale projects
736		due to its proximity to load. This can avoid energy losses, the need for transmission to
737		interconnect centralized generation with distribution circuits, and potentially even some
738		distribution costs, depending on the location and size of the systems. It also has

739		environmental siting advantages in that rooftop systems are on previously-developed
740		land.
741		
742	Q.	How do the costs of utility-scale solar and distributed solar compare?
743	A.	Economies of scale and higher capacity factors typically yield significantly lower
744		levelized costs for utility-scale systems. For example, RMP claims it can acquire
745		wholesale utility-scale solar for less than \$0.04/kWh. ¹⁸¹
746		
747	Q.	What renewable energy technologies besides solar are also available at lower costs
748		on the utility-scale and were not considered by intervenors in their cost-benefit
749		analyses?
750	А.	There are several, but those most-applicable to PacifiCorp's system are large wind farms
751		and large hydro dams. For example, RMP is proposing "to construct or acquire
752		approximately 860 MW of new wind projects and construct the transmission projects"
753		that it asserts will lower the net power costs and produce renewable energy credits that
754		once sold in the market can lead to lower costs for customers, as well as lead to further
755		decarbonization of the Company's portfolio. ¹⁸² Additionally, the Company could add
756		utility-scale storage in the future, which would provide better overall grid reliability than
757		small clusters of DG customers located throughout the distribution system.

¹⁸¹ Direct Testimony of Gary W. Hoogeveen, p. 17, lines 354-355.
¹⁸² Docket No. 17-035-40, Direct Testimony of Rick T. Link, p. 3, lines 40-41 and 46-53.

758	Q.	Given the cost advantages of utility-scale projects, do you foresee distributed
759		generation having any value in Utah's future electric system?
760	A.	Yes. I expect distributed generation will still play a significant role in Utah's electric
761		grid for multiple reasons. First, customers should always have the ability to meet their
762		own load with their own generation if they so choose. Based on their own values,
763		customers may still choose to build and own solar, even if utilities can supply renewable
764		power at much lower costs than they do today. This is especially true in a future where
765		distributed solar systems are paired with low-cost battery storage to allow a customer to
766		supply its own energy even when it loses power from the grid. However, the future is
767		not yet here and only the customer can appropriately gauge such reliability benefits'
768		worth.
769		
770		Second, despite the typical cost advantages of utility scale projects at the generation
771		level, it is still possible for distributed solar to have higher net benefits than utility solar.
772		This is especially true in cases where there is a lack of good utility solar sites, where
773		utility solar requires high transmission interconnection costs, and when right-sized,
774		distributed solar can avoid some distribution costs.
775		
776	Q	What do you recommend regarding the comparison of utility-scale and distributed
777		renewable generation?
778	A.	I recommend the following:

779		• Customers should not be forced to pay a much higher cost for distributed solar
780		from their neighbors if the utility can offer it at a much lower cost from large
781		projects - after factoring in generation, transmission and distribution costs
782		associated with utility-scale projects.
783		• Nevertheless, utilities should not overlook distributed generation as an important
784		potential resource in their system planning, especially when ratepayers and
785		society realize measurable and verifiable avoided cost benefits to the system.
786		• Customers who receive service from the grid, regardless of whether they also
787		supply some of their own generation, pay an appropriate cost-based rate for that
788		service.
789		These recommendations apply to all utilities in all states, including RMP in Utah. As long
790		as these recommendations are met, customers and utilities should be able to find the right
791		balance of distributed and utility-scale projects that respect customer choice while
792		maximizing net benefits of renewable power.
793		
794	Q.	Do you have any additional issues with the intervenors' analyses of the benefits of
795		solar?
796	A.	Yes. For example, EFCA presents its own analysis of the value of solar, and I do not
797		agree with all the assumptions in its analysis. I describe my concerns below.
798		• EFCA breaks with RMP's IRP assumptions by assuming a Resource Balance
799		Year of 2021 instead of 2028. ¹⁸³ I have not conducted an independent analysis of

¹⁸³ EFCA Direct Testimony of Eliah Gilfenbaum, p. 31, lines 595-597.

RMP's IRP assumptions, but such a planning exercise is always subject to
uncertainty. Instead of attempting to update an IRP in estimating the value of
solar, I recommend including distributed solar generation as a resource in the IRP,
perhaps in a well-constructed with-and-without analysis. This best captures DG's
costs and benefits compared to all relevant generation alternatives, including
utility-scale projects as discussed above.

806 EFCA grosses up its estimate of avoided capacity cost by 13%, an amount equal • to RMP's planning reserve margin.¹⁸⁴ This supposedly reflects that from a utility 807 808 planning perspective, distributed solar acts as a load reduction, which can 809 therefore avoid the need for planning reserves. I disagree with this assertion. 810 Planning reserve margins are required to ensure system reliability in the case of 811 generation forced and planned outages. Distributed solar generation also has 812 outages that a utility must plan for. In fact, utilities have little control over solar 813 generation assets owned by their customers. Such assets may be taken offline for 814 any number of reasons, such as technical failure, damage to the panels, and 815 planned construction projections at the home or business. At high penetrations of 816 solar energy, sudden cloud cover could even become a contingency requiring 817 special consideration in utility planning and the need for additional reserves. 818 Meeting load with solar is not equivalent to not placing any load on a system and 819 they should not be treated the same way.

¹⁸⁴ EFCA Direct Testimony of Eliah Gilfenbaum, p. 37, lines 705-707.

• 820	EFCA estimates a value of avoided transmission cost of \$0.0294/kWh based on a
821	regression analysis. ¹⁸⁵ On its face, this value seems unreasonably high given that
822	the embedded cost of transmission based on RMP's allocated COS study is
823	\$0.016/kWh for the residential class. The value is likely too high for two reasons.
824	First, I recommend a lower carrying charge rate for transmission assets. EFCA
825	used a value developed for a new combustion turbine ("CT"), ¹⁸⁶ and I expect
826	transmission assets will have longer lifetimes than a CT, which would lead to a
827	lower carrying charge all else being equal. Second, it relies only on a regression
828	analysis and not any specifics of avoided costs of any transmission projects. I
829	expect there will still be need for growth in transmission investment even in a
830	future with high amounts of distributed solar generation. Significant transmission
831	costs will still be necessary to transmit power from generation assets that generate
832	when the sun does not shine, including other green power such as wind and
833	hydro. ¹⁸⁷ Please refer to Division witness Dr. Powell's testimony for additional
834	critiques of the regression-based approach used by EFCA in its long-term
835	transmission benefit analysis.
836 •	EFCA estimates a long-term distribution capacity value of \$0.0178/kWh, also
837	based on a regression analysis. ¹⁸⁸ I do not agree there is any one avoided
838	distribution cost that would apply to all distributed solar generation. The potential

¹⁸⁵ EFCA Direct Testimony of Eliah Gilfenbaum, p. 43, lines 810-816.

¹⁸⁶ EFCA Direct Testimony of Eliah Gilfenbaum, p. 42, lines 791-796.

¹⁸⁷ Docket No. 17-035-40, Application for Approval of a Significant Energy Resource Decision and Voluntary Request for Approval of Resource Decision, where the Company is seeking to construct or procure 860 MW of wind from Wyoming and construct multiple transmission projects. Direct Testimony of Rick T. Link, pp. 2-3, lines 34-44. ¹⁸⁸ EFCA Direct Testimony of Eliah Gilfenbaum, p. 44, lines 827-832.

839		variation is so wide, it cannot be reasonably ignored. For example, distributed
840		solar generation with minimal power exports on circuits with high loads
841		compared to distribution system capacity may provide a significant distribution
842		avoided cost benefit. In contrast, distributed generation systems that export large
843		amounts of power on circuits saturated with solar power can require distribution
844		system upgrades to safely interconnect. While interconnection costs borne by the
845		solar customer can offset some of these upgrade costs, there are likely to be
846		increased marginal distribution system investments required due to solar
847		saturation that cannot be assigned solely to the newly interconnected customer for
848		practical or other reasons.
849		
850	Q.	You stated above that some of the intervenors relied on data from the Company's
851		2017 IRP. Briefly explain how the IRP data was used.
852	A.	UCE witness Woolf uses the IRP as an example of a cumulative present value of revenue
853		requirements ("PVRR") analysis, which is used to identify if a resource will result in net
854		costs or net benefits to customers, because it compares electricity resource portfolios with
855		alternative portfolios. ¹⁸⁹ Mr. Woolf further asserts that the "Company's most recent IRP
856		estimates the net benefits of different levels of distributed generation on its system". ¹⁹⁰
857		Vivint Solar witness Collins makes similar claims to Mr. Woolf regarding the PVRR
858		showing long-term benefits of DG. ¹⁹¹ He further argues that the IRP shows a higher solar

¹⁸⁹ UCE Direct Testimony of Tim Woolf, p. 15, lines 276-282.
¹⁹⁰ UCE Direct Testimony of Tim Woolf, p. 25, lines 466-467.

¹⁹¹ Vivint Solar Direct Testimony of Richard Collins, pp. 9-10, lines 194-197.

859	capacity contribution, the peak demand reduction shown in the IRP reduces the subsidy
860	from non-NEM customers, and using a proxy price from the 2015 RMP IRP for the
861	unbundled REC price in Utah leads to quantifiable REC benefits. ¹⁹²
862	
863	Vote Solar witness DeRamus uses the 2015 and 2017 IRPs to make similar claims about
864	how distributed generation can help reduce T&D investment due to benefits from reduced
865	load. ¹⁹³ He further discusses the benefit of peak capacity reduction, which was not
866	included in the COS studies. ¹⁹⁴ Lastly, Dr. DeRamus uses the 2015 and 2017 IRPs to
867	determine avoided CO ₂ compliance costs. ¹⁹⁵
868	
869	HEAL witness Fisher uses the IRP to argue that the Company's COSS analysis failed to
870	take into account avoided capacity benefits and incremental low-cost procurement, both
871	of which he claims are shown as benefits from distributed generation. ¹⁹⁶ Mr. Fisher
872	further uses the IRP as a means to compare distributed generation resources to the
873	Company's least-economic coal units. ¹⁹⁷
874	
875	EFCA witness Gilfenbaum uses the IRP data that was available to determine a long-term

value of energy exports for NEM facilities located on the Company's system.¹⁹⁸

¹⁹² Vivint Solar Direct Testimony of Richard Collins, pp. 31, 32, and 39, lines 644, 679-683, and 828-830.

¹⁹³ Vote Solar Direct Testimony of David W. DeRamus, pp. 55and 66, lines 1090, 1096-1097, 1275, and 1280-1281.

¹⁹⁴ Vote Solar Direct Testimony of David W. DeRamus, pp. 66-67, lines 1291-1293.

¹⁹⁵ Vote Solar Direct Testimony of David W. DeRamus, p. 68, lines 1326-1329.

¹⁹⁶ HEAL Direct Testimony of Jeremy I. Fisher, pp. 5-6, lines 19-26 and 1-2.

¹⁹⁷ HEAL Direct Testimony of Jeremy I. Fisher, p. 6, lines 8-25.

¹⁹⁸ EFCA Direct Testimony of Eliah Gilfenbaum, p. 24, lines 479-489.

- 878 Q. Do you agree with the use of the Company's 2017 IRP as a source for calculating
 879 NEM costs and benefits?
- A. No. Using the Company's IRP analysis to calculate the value of NEM costs and benefits
 is inappropriate. This is especially true since the Company filed its 2017 IRP earlier this
- year and the IRP is still being reviewed and vetted to determine if it is reasonable.
- Additionally, the IRP is subject to modifications during the review process that could
- lead to updates to initial data and scenario analyses, and costs and benefits of alternative
- resource portfolios will indeed change over time. As Mr. Woolf notes, the IRP does an
- 886 energy portfolio analysis that compares alternative options. However, the IRP process is a
- 887 more integrated planning process that considers several factors in determining a PVRR
- for a resource plan at a given time, which is only partially comparable to a longer-term
- benefit-cost analysis needed to incorporate values of benefits and costs of the net
- 890 metering program that do not accrue within the Company's test year.
- 891
- 892 It is notable that the Company has not attempted to directly value the benefits and costs
- of DG in its last IRP. As described by the Company in its 2015 IRP:¹⁹⁹
- 894The major difference in the treatment of DG in the 2015 IRP is the895application of DG as a reduction to load. The Navigant study identifies896expected levels of customer-sited DG. The DG is then netted against the897IRP load forecast rather than being selected as a utility resource. This898methodology more accurately reflects drivers behind DG penetration, which899is customer economics, not utility economics.

¹⁹⁹ Docket No. 15-035-04, PacifiCorp 2015 IRP, Volume I, p. 72.

900

901		Therefore, due to the more integrated planning and analysis nature of the IRP, the fact
902		that there is no direct valuation of the costs and benefits of DG specifically included in
903		the IRP, as well as the fact that the proceeding to review it is still open and therefore the
904		IRP is subject to change, I do not believe it should not be considered a reliable resource
905		used to calculate long-term costs and benefits of the Company's NEM program.
906		
907	Q.	Do you have any other comments about NEM costs and benefits?
908	A.	Yes. Vivint Solar witness Black recommends that grandfathering should occur for a
909		system for at least 25 years, to allow the net metering customer enough time to "recover
910		and benefit from their investment."200 I disagree with this notion of the need for
911		grandfathering. Grandfathering is meant to lessen the burden of a wholesale change in
912		rate structure, rates, or a program on all ratepayers, not to ensure they receive the all
913		benefits they thought they were getting when making an investment. Such a guarantee
914		would exceed the standard for utilities with regard to the "opportunity" to earn a fair
915		return on rate-based investments.
916		
917		B. <u>COS Analysis</u>
918	Q.	What issue did you have with Vote Solar witness DeRamus' and Vivint Solar

919 witness Collins' analyses of RMP's Counterfactual COS Study?

²⁰⁰ Vivint Solar Direct Testimony of Dan Black, p. 2, lines 30-34.

920	A.	I disagree with how Dr. DeRamus and Mr. Collins characterize bill credit "costs" in the
921		counterfactual COS ("CFCOS") study. Both witnesses claim that RMP should not have
922		included lost revenues due to solar generation consumed onsite as a "cost" in the CFCOS
923		study. They state that RMP does not attempt to recover "lost revenue" from customers
924		who reduce loads from energy efficiency investments and that behind-the-meter
925		consumption by NEM customers should not be treated any differently. ²⁰¹ Reducing the
926		"cost" of bill credits to include only lost revenues from exported energy decreases the net
927		cost of NEM for residential customers from \$1.7 million to \$357,000. ²⁰²
928		
929	Q.	Why do you disagree with this characterization?
930	A.	Under traditional utility ratemaking, a utility is not entitled to recover "lost revenues," but
931		it is entitled to recover its prudently-incurred costs. If a utility had been earning its
932		revenue requirement and then its revenues decline more than its costs decline over the
933		same period, it can request a rate increase. The point of the CFCOS study, as I
934		understood it, was to compare RMP's costs and revenues under two scenarios: one as
935		actually occurred and one with no distributed generation. Thus, in the counterfactual
936		scenario all solar output was excluded, both what was exported and consumed onsite.
937		RMP's methodology to consider all revenue reduction from all solar generation therefore
938		seems appropriate. By only removing the lost revenues from onsite generation without

²⁰¹ Vote Solar Direct Testimony of David W. DeRamus, p. 32, lines 658-664; Vivint Solar Direct Testimony of Richard S. Collins, p. 16, lines 346-353.
²⁰² Vote Solar Direct Testimony of David W. DeRamus, p. 32, lines 655-657.

940		that a utility can achieve reduced net power costs from reduced load without any loss of
941		revenues, which does not make sense.
942		
943		One may also wish to analyze scenarios with and without only exported energy in order
944		to value that exported energy, but that is simply a different analysis, and neither witness
945		has presented the results of such an analysis.
946		
947		C. <u>Netting and Crediting</u>
948	Q.	How do the intervenors address netting of consumption and generation?
949	А.	Several of the intervenors support monthly netting and carry over of excess generation
950		under the current NEM program, which rolls excess kWh generated at the end of a month
951		into the next month, and so on, until an annual cash-out occurs for any excess kWh
952		remaining. Some intervenors specifically address changes to the current monthly netting
953		process moving forward, as discussed below.
954		
955		Vote Solar witness Gilliam explains that several parties are concerned about seasonal
956		impacts of carrying over net excess generation from month to month. ²⁰³ Even though he
957		does not believe this is currently an issue, he proposes "to allow netting of energy only
958		within the billing period and any net excess generation that remains after such netting be
959		compensated at a rate that recognizes the value of excess energy."204 Fellow Vote Solar

²⁰³ Vote Solar Direct Testimony of Rick Gilliam, p. 36, lines 746-748.
²⁰⁴ Vote Solar Direct Testimony of Rick Gilliam, pp. 36-37, lines 752-758.

960	witness DeRamus agrees that as solar DG penetration increases, a monthly netting
961	process will address seasonal concerns instead of "crediting exports to future months on a
962	kwh-for-kwh basis over the year." ²⁰⁵
963	
964	The OCS is proposing a post net metering rate design that would measure excess energy
965	at hourly or smaller intervals, which would lead to the "elimination of netting within the
966	billing period." ²⁰⁶ Further, excess energy would be credited to customer bills based on the
967	dollar value of that energy, and like the current NEM program design, bill credits would
968	"expire at the end of the annual period." ²⁰⁷ In support for this change, the OCS explains
969	that "it will be extremely difficult or impossible to assign costs correctly while
970	maintaining netting across the billing period," without creating intra-class subsidies
971	between NEM and non-NEM customers. ²⁰⁸
972	
973	Contrary to the post net metering design put forward by the OCS, UCE does not support
974	changing the current monthly netting process to netting on an hourly basis due to
975	potential "dramatic" customer bill impacts, as well as the possible undermining of "the
976	economics of solar in a similar manner to the Company's proposed Schedule 5."209
977	Further, UCE asserts that based on the hourly load profile of a customer, hourly netting

²⁰⁵ Vote Solar Direct Testimony of David W. DeRamus, p. 80, lines 1585-1592.
²⁰⁶ OCS Direct Testimony of Michele Beck, p. 17, lines 368-370.
²⁰⁷ OCS Direct Testimony of Michele Beck, p. 17, lines 374-376.
²⁰⁸ OCS Direct Testimony of Michele Beck, p. 22, lines 485-488.
²⁰⁹ UCE Direct Testimony of Melissa Whited, p. 34, lines 583-585.

978		would make the economics of solar installation vary significantly. ²¹⁰ UCE recommends
979		that the current monthly netting process should continue until there is a better
980		understanding of hourly netting impacts. ²¹¹
981		
982	Q.	Should the current annual netting and crediting process be reformed?
983	A.	Yes. Netting over a month or annual period, with kWh banking, is a flawed policy.
984		Allowing excess generation in one period (e.g. a non-summer month) to offset
985		consumption in another period when wholesale energy prices, and generation,
986		transmission and distribution capacity requirements are likely to be different (e.g. higher-
987		priced summer months), is economically inefficient. Not only does it unfairly
988		compensate DG exports at certain times, it sends a poor price signal to DG owners, which
989		may incent consumption or generation decisions that are not least cost for the system and
990		all ratepayers.
991		
992	Q.	What kind of reforms would be more economically efficient?
993	A.	I agree with the OCS that hourly (or perhaps sub-hourly) interval netting is a better way
994		to assign costs and compensate NEM customers for exported energy, since the
995		consumption of, and compensation for excess generation, ought to reflect the then-current
996		value of energy and capacity. Lessening the netting interval would send a superior price
997		signal.

²¹⁰ UCE Direct Testimony of Melissa Whited, p. 34, lines 592-593.
²¹¹ UCE Direct Testimony of Melissa Whited, p. 34, lines 587-589.

998

999	Q.	Can such a reform be made overnight?
1000	A.	No. The current rate structure does not include a time varying rate for either
1001		consumption or exported energy. In addition, the necessary metering is not in place to
1002		implement hourly interval netting.
1003		
1004	Q.	What does this mean for the NEM program?
1005	A.	A time-varying rate structure may take some time to develop, and it may require a pilot
1006		program(s) before any extensive rollout to a mandatory (i.e. non "opt-in" or "opt-out")
1007		rate design.
1008		
1009		Further, as a practical matter, for customers without "smart meters" capable of recording
1010		real-time consumption and either total generation or more practically, generation exports,
1011		hourly or more frequent netting is impossible.
1012		
1013		In addition, existing NEM customers have become familiar with the monthly netting
1014		process and it may take some time to ensure they understood and were in a position to
1015		optimize their consumption and excess generation for their own benefit and that of the
1016		system overall.
1017		
1018	Q.	What reforms could be implemented in the meantime?

1019	A.	A number of Commissions in other jurisdictions have focused on the crediting
1020		mechanism for excess generation as a first step. Instead of crediting and banking excess
1021		kWh, they have approved plans to convert the kWh into a monetary value based on the
1022		then-current value of that exported energy.
1023		
1024		Additionally, I agree with the OCS that there should be dollar crediting on a customer's
1025		bill each month. Monetary crediting over kWh banking provides a better link to the
1026		market value of exported energy.
1027		
1028	Q.	How long a period should the monetary credits roll over?
1029	A.	As one means of assuring DG systems are sized appropriately relative the host
1030		customer's consumption, at the end of an annual period, the credits would be zeroed. Any
1031		remaining funds could then be allocated to other programs deemed to be in the public
1032		interest, for instance to assist low income customers, like the current program requires.
1033		
1034		D. <u>Effective Price Signals</u>
1035	Q.	Do the intervenors support demand charges as proposed in the Company's three-
1036		part rate design for proposed Schedule 5?
1037	A.	Overall, and as discussed above, no intervenor supports the use of demand charges for
1038		residential customers. Below I provide some examples of the many reasons demand
1039		charges are not supported, and are recommended to be rejected, along with the rest of the
1040		Company's proposed rate design.

1041

1042	Sierra Club witness Clements argues that demand charges will not incent residential
1043	customers to respond to the demand price signals because they are not able to do so. ²¹²
1044	She further explains that the price signals customers receive from demand charges are
1045	inefficient and will not incent reduced consumption because "one bad afternoon can
1046	result in more than doubling a monthly electricity bill." ²¹³ Additionally, Ms. Clements
1047	argues that even "sophisticated energy users would require education" to understand how
1048	the new demand charge rate structure would impact their electric bills. ²¹⁴ The OCS
1049	echoes similar comments about residential customers needing to be educated about
1050	demand charges because residential customers are not used to thinking about demand,
1051	what drives their demand, and how they could manage demand charges. ²¹⁵
1052	
1053	UCE witness Whited also explains that demand charges send inefficient prices signals
1054	because the price signal from a demand charge is concentrated "into the single hour of
1055	the month – the hour of the customer's individual maximum demand." ²¹⁶ Additionally,
1056	she argues that implementing a demand charge will not lead to overall reduced energy
1057	usage because the energy charge is reduced significantly. ²¹⁷ Further, Ms. Whited suggests
1058	that "[d]emand charges have a fundamental flaw, even when designed to apply only

²¹² Sierra Club Direct Testimony of Allison Clements, p. 18, lines 327-331.

 ²¹³ Sierra Club Direct Testimony of Allison Clements, p. 23, lines 416-419.
 ²¹⁴ Sierra Club Direct Testimony of Allison Clements, p. 23, lines 420-422.

²¹⁵ OCS Direct Testimony of Michele Beck, p. 11, lines 237-242.

²¹⁶ UCE Direct Testimony of Melissa Whited, p. 24, lines 390-393.

²¹⁷ UCE Direct Testimony of Melissa Whited, p. 24, lines 395-397.

1059	during certain hours each day." ²¹⁸ She argues that "[a] more effective price signal would
1060	encourage customers to reduce energy consumption in each and every hour that the
1061	system is stressed, not just for the single hour that an individual customer reaches his or
1062	her own maximum demand." ²¹⁹
1063	
1064	Vivint Solar witness Plagemann asserts that if residential demand charges are ever
1065	considered, they should "at a minimum: (i) be applicable to all residential customers in
1066	the same fashion; (ii) be properly communicated and understood by all customers; (iii)
1067	reflect the actual incremental costs of the customer's usage or the actual cost of
1068	interconnection; and (iv), be accompanied by data and/or technology allowing a customer
1069	to manage his/her peak demand and incurrence of those charges." ²²⁰ Mr. Plagemann
1070	further argues that demand charges are merely a strategy used by utilities to recover
1071	costs, while poorly reflecting "actual incremental costs to the grid." ²²¹ Fellow Vivint
1072	Solar witness Collins explains that demand charges could lead to a reduction of peak
1073	usage because they are a large portion of a customer's bill, but since residential
1074	customers "have little visibility into their kilowatt usage in any given hourly period" their
1075	ability to reduce demand is minimal. ²²² He further argues that residential customers "lack

 ²¹⁸ UCE Direct Testimony of Melissa Whited, p. 26, lines 444-445.
 ²¹⁹ UCE Direct Testimony of Melissa Whited, p. 24, lines 400-402.

²²⁰ Vivint Solar Direct Testimony of Thomas Plagemann, pp. 6-7, lines 107-112.
²²¹ Vivint Solar Direct Testimony of Thomas Plagemann, p. 7, lines 123-124.
²²² Vivint Solar Direct Testimony of Richard Collins, p.10, lines 212-216.

- the sophistication, resources, and technology to adjust time-based demand habits in any
 meaningful" way.²²³
- 1078

1079	Vote Solar argues that demand charges do not "provide an easily "actionable" price
1080	signal to consumers."224 Additionally, Vote Solar claims that "RMP's customers do not
1081	have real-time metering, and even if they did, it would be impossible for them to
1082	sufficiently monitor their real-time usage to try to determine when their peak demand is
1083	likely to occur, and to reduce their consumption during that unknown peak hour."225
1084	
1085	Further, Vote Solar asserts that for "customers to even know when their demand charges
1086	are being set; such knowledge would require near constant monitoring of real-time
1087	consumption data, which RMP does not collect (much less disseminate to customers)."226
1088	
1089	Lastly, Vote Solar states that "[i]f RMP wants to send customers actionable price signals
1090	to reduce peak consumption and encourage energy efficiency, it should have proposed
1091	TOU rates instead." ²²⁷ TOU rates are preferable because they allow customers to
1092	"differentiate between on and off-peak periods," which will "provide better and more
1093	effective price signals." ²²⁸
1094	

²²³ Vivint Solar Direct Testimony of Richard Collins, pp.10-11, lines 216-218.

²²⁴ Vote Solar Direct Testimony of David W. DeRamus, p. 72, line 1409.

²²⁵ Vote Solar Direct Testimony of David W. DeRamus, p. 72, lines 1410-1412.

²²⁶ Vote Solar Direct Testimony of David W. DeRamus, p. 73, lines 1425-1428.

²²⁷ Vote Solar Direct Testimony of David W. DeRamus, p. 72, lines 1419-1420.

²²⁸ Vote Solar Direct Testimony of Rick Gilliam, p. 32, lines 664-665.

1095 Q. Do you agree that demand charges are unnecessary or inappropriate for residential
 1096 NEM customers?

- 1097 A. Not necessarily. As I explained in my Direct Testimony, demand charges can be justified
- 1098 under cost causation principles to recover T&D costs since T&D systems are mostly
- 1099 fixed cost in nature and are designed to meet aggregate peak demand. Specifically, TOU
- 1100 and coincident²²⁹ demand charges can send a better price signal than demand charges that
- 1101 are based on maximum billed demand in each billing cycle, and better reflect cost
- 1102 causation principle of ratemaking. Even though I disagree that all types of demand
- 1103 charges are inappropriate for residential customers, I do agree that properly designed
- 1104 TOU or time-differentiated energy charges can reflect changes in hourly energy prices,
- 1105 which allows the Company to recover many of the fixed T&D service costs and better

1106 reflect market prices for energy.

- 1107
- 1108 However, much of this is academic for now. As I and the intervenors have noted, the
- 1109 Company may not currently have the metering in place that would allow for
- 1110 measurement of coincident or TOU demand, as well as other time varying rates.
- 1111
- 1112

2 Q. What do you recommend?

A. I recommend that the Commission consider in the future both TOU-based and coincident
peak or TOU demand-based rate schedules that allow for customer choice. To make bill
impacts more gradual, the Company could start with a small demand charge or small

²²⁹ Insofar as customers have a solid understanding of when coincident peaks are likely to occur.

1116		peak/off-peak energy price differential. This allows customers to have a billing history
1117		under the new rate structure before significant bill changes occur. As part of the
1118		foundation for either type of rate structure, the design process would be better informed
1119		by additional data collection and analysis to better understand how demand charges
1120		compare to TOU energy rates at sending price signals to NEM customers, leading to load
1121		shifts to lower cost, off-peak periods. This may be an appropriate exercise for a general
1122		rate case.
1123		
1124	IV.	SUMMARY CONCLUSIONS AND RECOMMENDATIONS
1125	Q.	Please outline your conclusions and recommendations to the Commission.
1126	A.	Based on my analysis, I make the following conclusions and recommendations:
1127		• Customers should not be forced to pay a much higher cost for distributed solar
1128		from their neighbors if the utility can offer it at a much lower cost from large
1129		projects after consideration of the total costs of generation, transmission and
1130		distribution.
1131		• At the same time, utilities should not overlook distributed generation as an
1132		important, potentially economic resource in their system planning.
1133		• Customers who obtain power from the grid, regardless of whether they also
1134		supply some of their own generation, must pay an appropriate cost-based rate for
1135		that service.
1136		• Under traditional utility ratemaking, a utility is not entitled to recover "lost
1137		revenues," but it is entitled to recover its prudently-incurred costs.

1138		• Effective price signals can be provided by time-based demand charges.
1139		• A future distributed generation rate design should consider both demand-based
1140		and TOU-based time varying rates, implemented gradually to ensure bill impacts
1141		are modest, at least initially, and become well-understood by customers.
1142		• A future distributed generation rate design should send accurate price signals to
1143		all customers, corresponding to the cost and value of consumption and export
1144		periods they are in effect, which requires appropriate metering, data
1145		communication and customer understanding.
1146	Q.	Does this conclude your testimony?
1147	A.	At this time, yes.