BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

IN THE MATTER OF ROCKY MOUNTAIN) POWER'S SUSTAINABLE) TRANSPORTATION AND ENERGY PLAN) DOCKET NO. 16-035-36 ("STEP") ACT INITIATIVES))

DIRECT TESTIMONY

OF

GAVIN MANGELSON

FOR THE OFFICE OF CONSUMER SERVICES

MARCH 7, 2017

DIRECT TESTIMONY OF GAVIN MANGELSON

1 Q. PLEASE STATE YOUR NAME, OCCUPATION AND BUSINESS ADDRESS.

2 A. My name is Gavin Mangelson; I am a Utility Analyst for the Office of Consumer

Services (Office). My business address is 160 East 300 South, Salt Lake City, Utah
84111.

5 Q. PLEASE DESCRIBE YOUR EDUCATION AND EXPERIENCE.

6 A. I received a B.A. in Economics from the University of Utah in 2008. I have worked

7 for the Office for three and a half years, during which I have testified before the

8 Public Service Commission (Commission) in four other dockets and have submitted

9 comments in numerous dockets. Prior to my employment with the Office I was a

10 Financial Analyst for the Utah Department of Technology Services where I worked in

11 forecasts and rate design.

12

Q.

WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of my testimony is to present the position of the Office regarding the
proposal of Rocky Mountain Power Company (Company) to include Advanced
Substation Metering as part of the STEP program. I will address the direct benefits of
substation meters and their role in identifying and implementing solutions to system
constraints.

18 Q. WH

WHAT IS BEING PROPOSED IN REGARDS TO SUBSTATION METERS?

19 A. The Company is proposing to spend \$1.1 million dollars between 2017-2019 to

20 purchase and install meters on approximately 50 circuits connected to distribution

21 substations. This proposal is being made as part of the five-year STEP pilot program.

OCS – 4D Mangelson 16-035-36 Page 2 of 8 22 PLEASE IDENTIFY WHICH MATERIALS FILED OR PRESENTED BY 0. 23 THE COMPANY IN THIS PROCEEDING SPECIFICALLY SUPPORT 24 SUBSTATION METERING. 25 A. The proposal to include Advanced Substation Metering as part of the Innovative 26 Utility Program under STEP is supported by the Application on pages 20-23, the 27 Direct Testimony of Douglas L. Marx, and by Exhibit "C," to the Application, all 28 filed on September 12, 2016. Substation meters were also explained in the technical 29 conference held on December 6, 2016, the presentation materials were filed with the 30 Commission the same day. 31 PLEASE EXPLAIN HOW THE PROPOSAL FOR SUBSTATION METERS **Q**. 32 PERTAINS TO THE STEP PROGRAM. 33 A. The Company's request is made pursuant to Utah Code Ann. § 54-20-105, Innovative 34 Utility Programs. According to the Direct Testimony of Mr. Marx (lines 25-26) the 35 request for substation meters should be classified under section 54-20-105(1)(c)36 "an electric grid related program" and/or section 54-20-105(1)(h) "any other 37 technology program." 38 The statute states that the Commission *may* authorize such a program if it determines 39 that it is "in the interest of large-scale utility customers." Section 54-20-105(1). 40 **O**. PLEASE BRIEFLY EXPLAIN THE PURPOSE OF A SUBSTATION METER. 41 Unlike a typical meter attached to a home which measures and records customer A. 42 usage, a substation meter is a device capable of measuring load levels and load 43 profile, in addition to the power flow at the circuit to which it is connected. The 44 purpose of the substation meter is to provide accurate information about a portion of

OCS - 4D Mangelson16-035-36Page 3 of 845the system in order to better understand localized system demands and potential46system constraints.

47 Q. WHAT DOES THE COMPANY ASSERT ARE THE BENEFITS OF THE 48 SUBSTATION METERING PROGRAM?

A. The Company asserts the primary benefit of the proposed meters as their ability to
provide system information. According to the Direct Testimony of Mr. Marx, the
installation of the proposed substation meters will provide "greater data visibility of
the distribution system and integration of distributed energy resources" (Marx Direct
lines 36-37). Such information is expected to be useful in identifying system
constraints, particularly those that may be caused by Distributed Energy Resources
(DER).

Exhibit "C" contains nine bullet points that address benefits of the 56 57 information obtained from the proposed meters in terms of the various types of 58 potential harm that the information is expected to identify, particularly load 59 imbalances and harmonic disturbances caused be DER. Several of the bullet points 60 employ specifically technical language in describing the types of potential constraints 61 in a manner that appears designed to make a more impressive statement of benefits. 62 Further, the second bullet point may be interpreted to indicate that the meters have 63 broader technical abilities than they actually have, when it states: "Assists in 64 preventing load imbalances." Ultimately, a careful reading shows that the principle 65 benefits asserted by the Company are derived from the fact that the meters will 66 provide information about power flows on the grid, that this information can be used to identify potential stresses impacting the reliability of electrical equipment, as well 67

	OCS –	4D Mangelson	16-035-36	Page 4 of 8			
68		as to identify necessary solutions to existing system constraints. Mr. Marx does not					
69		discuss in detail the risks introduced to the system by DER, but states that the					
70		proposed meters will "help identify and control risks associated with the integration					
71		of significant penetration of distri	buted energy resources" (Marx Direct lin	nes 54-55).			
72		As additional benefits, Mi	r. Marx further states that metering "will	provide			
73		information necessary for a more	progressive grid" (Marx Direct line 41-4	2), and the			
74		seventh bullet point in Exhibit "C	" states that the proposed meters will "R	educe time			
75		delays of approvals for customers	s seeking distributed generation intercon	nections,"			
76		however the existence of time delays within the current approval process is not					
77		otherwise supported in the exhibit.					
78		My testimony addresses the	he potential benefits listed below:				
79		• Whether substation meter	s facilitate increased penetration of DER	,			
80		• Whether substation meter	s may reduce time delays for DER interc	onnections,			
81		• Whether DER has been sh	nown, in this proceeding, to create proble	ms on the			
82		system,					
83		• Whether substation meter	s have been shown, in this proceeding, to	remedy			
84		certain potential problems	s, and				
85		• How substation meters ma	ay facilitate a "more progressive grid."				
86		I will conclude by providing the 0	Office's position regarding the proposed	advanced			
87		substation metering program.					
88	Q.	HOW DO SUBSTATION METERS FACILITATE INCREASING LEVELS OF					
89		DER?					

OCS – 4D Mangelson

- 90 A. Substation Meters do not directly facilitate the integration of DER on a circuit.
- 91 Rather, the information provided by substation metering can verify that the additional
- 92 DER will not compromise the integrity of system components operating on the
- 93 circuit, or provide the information necessary to determine what measures are required
- be to allow the circuit to accommodate additional DER.
- 95 Q. HOW DO SUBSTATION METERS REDUCE TIME DELAYS FOR

96 CUSTOMERS SEEKING DER INTERCONNECTIONS?

- 97 A. The supporting documents do not provide additional information about existing time
- delays in the current approval process, however, potential time delays were the
- 99 subject of limited discussion at the December 6, 2016 technical conference. In that
- 100 discussion Company representatives indicated that a customer seeking a DER
- 101 interconnection may face significant delays if the Company suspected and could not
- 102 immediately verify that the intended circuit may be near capacity for DER. Such a
- 103 case would require a more time intensive study to determine the viability of the
- 104 circuit to host additional DER, a study that would not otherwise be necessary if the
- 105 information was already available through the proposed substation meter installations.
- 106 Q. DO CURRENT LEVELS OF DER CREATE PROBLEMS ON THE
- 107

DISTRUBUTION SYSTEM?

- 108 A. At this time the Company does not have any information that constraints are indeed
- 109 occurring. The Office asked the Company for any documentation, records, or
- 110 evidence regarding this potential issue in a data request (OCS DR No. 8.2). The
- 111 Company indicated in its response that "to date, and due to the low levels of single-
- 112 phase sources, no evidence has been noted of load imbalances attributable to

	OCS -	4D Mangelson	16-035-36	Page 6 of 8
113		distribution energy resources." Alt	hough this response only addresses one	of the
114		potential sources of harm stated in	the supporting documents, in fact, the C	Company
115		did not provide any evidence that	DER was currently causing any of the p	otential
116		problems described in the proposa	1.	
117	Q.	DO SUBSTATION METERS H	AVE THE ABILITY TO REDUCE,	
118		ELIMINATE, OR CONTROL A	ANY OF THE POTENTIAL HARM 7	ГНАТ
119		THE COMPANY ASSERTS CO	OULD BE CAUSED BY DER?	
120	A.	No, a substation meter has the abil	ity to provide information about how th	e system is
121		functioning on the circuit to which	it is attached, and cannot directly resol	ve any of
122		the effects such as load imbalance	s or harmonic issues. The purpose of th	ese meters
123		is to obtain information about pote	ential system constraints so that solution	s can be
124		identified and implemented. The C	Company provided no evidence to sugge	st that the
125		meters themselves could resolve a	ny problems.	
126	Q.	THE COMPANY HAS ALSO A	SSERTED THAT INSTALLATION	OF
127		SUBSTATION METERS WILL	ALLOW FOR THE DEVELOPME	NT OF A
128		MORE PROGRESSIVE GRID.	WHAT IS YOUR RESPONSE?	
129	A.	The Company did not clearly defin	ne what it meant by a more progressive	grid, so I
130		asked for additional clarification in	n a data request. According to the Com	pany's
131		response to OCS Data Request No	. 8.1:	
132 133		The term "progressive grid the electric grid to operate	" as used here is intended to convey the effectively and efficiently as emerging t	ability for technologies
134		and communication netwo	rks become a more integrated componer	it of the
135 136		grid as compared to tradition include, but are not limited	to, advanced metering, distributed gene	s may eration,

137 distribution automation, etc. OCS – 4D Mangelson

Basically, a progressive grid is one that integrates diverse energy resources and has a greater ability to respond to load changes, as opposed to a system that flows power from principle sources and possesses fewer tools to measure and control the current on the system. Although more advanced metering technology may be necessary in order to develop a "progressive grid," it is important to acknowledge that this asserted benefit is basically another description of the general benefit of the information made available by the installation of substation meters.

145

Q. WHAT IS THE POSITION OF THE OFFICE REGARDING THE PROPOSAL

146 TO INCLUDE SUBSTATION METERS IN THE STEP PROGRAM?

A. The Office agrees that Advanced Substation Metering qualifies under the STEP
legislation, particularly as an "electric grid related program" or "any other technology
program" and therefore the proposal should be acknowledged and approved by the
Commission. The Office also agrees that the data and information yielded by the
installation of the proposed meters may help to identify potential sources of stress on
the system.

153 The Office recognizes however, that no evidence yet exists that the system is 154 being unduly stressed in the ways that the meters intend to verify, and that the 155 proposed metering units in and of themselves do not possess the capability to resolve 156 any such issues. If the Commission approves this substation metering proposal, the 157 Office recommends that the Commission also order certain reporting requirements. 158 At a minimum, these requirements should include:

	OCS -	– 4D Mangel	son 16-035-36	Page 8 c	of 8
159		1.	Annual and final comprehensive program evaluation report	ts as outlined	d in
160			the Company's STEP Reporting Plan. ¹		
161		2.	A final report of actual meter installation locations, includir	ig the reason	ing
162			for any deviations from the originally targeted locations.		
163		3.	Any and all determinations that can be made or infe	erred from	the
164			information provided by the meters, including harm	that can	be
165			substantiated, as well as those harmful effects that cannot b	e substantiat	ted,
166			as they have been described in Exhibit "C" of the Applicati	on.	
167	Q.	DOES TH	IS CONCLUDE YOUR TESTIMONY?		
168	A.	Yes.			

¹ Rebuttal Testimony of Steven R. McDougal filed November 23, 2016 in Docket No. 16-035-36, Phase 1, Lines 246 – 304.