

Time-of-Use Rates Methods, Experience, Results

Utah Public Service Commission November 3, 2016

Richard Sedano, John Shenot, and Jim Lazar

The Regulatory Assistance Project (RAP)®

Agenda

- Why Consider TOU Rates
- Types of TOU Rates (with and without AMI)
- How to Select TOU Periods
- Expected Uptake and Results
- Incorporating TOU with Inclining Blocks
- Peak Time Rebates: An Alternative
- Communicating with Consumers
- Thinking Ahead: California and Hawaii

Why Consider TOU?

- Peak load (and cost) reduction
- Equity between customers
- Equitable treatment of solar
 - Reduction of load during high-cost hours
 - Augmentation of load during high-output

Peak Load Reduction

Energy solutions for a changing world

Equity Between Customers

Equitable Treatment of Solar

Customer Load by Hour in 1 Day

Types of TOU Rates

- Simple Two-Period Rates
- Seasonal Two-Period rates
- Three-Period Rates
- Critical Peak Pricing (CPP)
- Real-Time Pricing (RTP)
- Alternative: Peak-Time Rebates (PTR)

Example Two-Period Rate

			Optional
		Standard	TOU
Customer Charge	\$/month	\$7.34	\$7.34
Energy Charge	\$/kWh		
On-Peak		\$0.1072	\$0.0628
Off-Peak		\$0.1072	\$0.2156

Example Three-Period Rate Arizona Public Service

June – August Billing Cycles (Super Peak Summer)

\$0.46517 per kWh during Super-Peak hours, plus\$0.24477 per kWh during On-Peak hours, plus\$0.05517 per kWh during Off-Peak hours

Super Peak: 3 – 6 PM On-Peak: 12 – 3 PM and 6 – 7 PM

Example Seasonal Three-Period Rate Southern California Edison

	Summer	Winter
Customer Charge	\$0.94	\$0.94
On-Peak	\$0.436	\$0.336
Shoulder	\$0.286	\$0.282
Off-Peak	\$0.131	\$0.135

Example Critical Peak Rate Oklahoma Gas and Electric

		Summer
Customer Charge		\$13.00
Off-Peak		\$0.044
On-Peak		\$0.160
Critical Peak		\$0.400
Critical: Maximum 8	30 hours	per year
On-Peak: 2 - 7 PM M	londay - F	riday

Example Critical Peak Rider Arizona Public Service

RATES

- A. <u>Critical Peak Price</u> \$ 0.250000 per kWh Critical Peak Price applies to KWh usage during a CPP Event.
- B. Energy DiscountAll residential customers\$ (0.012143)per kWh

Real-Time Pricing Commonwealth Edison

- Customer Charge
- Distribution Charge
- "Personal Capacity Charge"
- Hourly Energy Charge

Energy solutions for a changing world

Choosing TOU Periods

- System Dispatch Characteristics
- Current Load Shape
- Projected Future Load Shape
- Integrated Resource Plan
- Market Price Data

Different Classes and Circuits Peak at Different Times

Class Demands May Drive Distribution Capacity Requirements

Energy solutions for a changing world

System Peak Drives Power Supply Costs

Solar Can Change This

Energy solutions for a changing world

Possible Result: Different TOU Periods for Different Classes Residential: Commercial:

Monday – Sunday 3 PM – 8 PM

Monday – Friday 1 PM – 6 PM

How Long Should the On-Peak Period Be?

- Evidence is that 3 hours is the longest that people can defer without significant impact.
- Example: SRP EZ-3 Rate
 - Peak Period is 3 PM 8 PM
 - Each customer chooses 3 hour slot
 - All customers are in the 5-6 PM slot

Assigning Costs to Periods Based on System Utilization in Periods

Off-Peak	Baseload Generation, Transmission, Distribution
Mid-Peak	Intermediate Generation, Transmission, Distribution
On-Peak	Peaking Generation, Distribution
Critical Peak	Demand Response

Functionalized System Costs

Energy solutions for a changing world

Expected Results

- Lower loads during peak hours
- Higher loads during off-peak hours
- Value proposition for:
 - Load management technology
 - Consumer engagement
 - Customer-based storage

Demand Charges

- Historically used for Commercial and Industrial customers
- NOT used for small commercial or residential due to high diversity.
- Non-Coincident Peak (NCP):
 \$/kW measured at any hour
- Coincident Peak (CP):
 - \$/kW measured 3 PM 7 PM ONLY

What Rate Form Is Most Effective at Tracking Capacity-Related Costs

Exhibit 3. Garfield and Lovejoy Criteria and Alternative Rate For

Garfield and Lovejoy Criteria	CP Demand Charge	NCP Demand Charge	TOU Energy Charge
All customers should contribute to the recovery of capacity costs.	Ν	Y	Y
The longer the period of time that customers pre-empt the use of capacity, the more they should pay for the use of that capacity.	Ν	Ν	Y
Any service making exclusive use of capacity should be assigned 100% of the relevant cost.	Y	Ν	Y
The allocation of capacity costs should change gradually with changes in the pattern of usage.	Ν	Ν	Y
Allocation of costs to one class should not be affected by how remaining costs are allocated to other classes.	Ν	Ν	Y
More demand costs should be allocated to usage on-peak than off-peak.	Y	Ν	Υ
Interruptible service should be allocated less capacity costs, but still contribute something.	Y	Ν	Y

Impact of Different Rate Forms On kWh Usage and Peak Demand

	Peak Demand	Total kWh
Flat Rate \$5/mo + \$.12/kWh	Baseline	Baseline
Inclining Block	▼ 5% -10%	▼ 5% -10%
High Fixed Charge	▲ 5% - 10%	▲ 5% - 10%
NCP Demand Charge	▼1%-2%	▲ 5% - 10%
CP Demand Charge	▼ 5% -10%	▲ 5% - 10%
TOU Rate	▼10%-20%	Little Change
Critical Peak Rate	V 20% - 30%	Little Change
TOU + Inclining Block	▼15% - 30%	▼5%-10%
Critical + Inclining Block	▼ 25% - 35%	▼ 5% -10%

SMUD: Customers Actually Do Things

Energy solutions for a changing world

TOU and Critical Peak Pricing Works

Energy solutions for a changing world

Current Rocky Mountain Power Rate (Summer)

Energy Charge:

Billing Months - May through September inclusive 8.8498¢ per kWh first 400 kWh 11.5429¢ per kWh next 600 kWh 14.4508¢ per kWh all additional kWh

Incorporating TOU with Inclining Blocks Is Not Difficult

Energy Charge: Billing Months - May through September inclusive 8.8498¢ per kWh first 400 kWh 11.5429¢ per kWh next 600 kWh 14.4508¢ per kWh all additional kWh

TOU Overlay:

On-Peak Surcharge: \$.05/kWh Off-Peak Discount: \$.05/kWh

Peak-Time Rebates

- Targeted at key critical peak hours
- Events announced
- Customer usage during event compared to a baseline usage for that customer.
- Credit applied for reduced usage
 NO surcharge applied for increased usage

Baltimore Gas and Electric PTR

Customer Charge	\$/month	\$ 7.90
Distribution Charge	\$/kWh	\$ 0.035
Default Supply	\$/kWh	\$ 0.092
PTR Credit	\$/kWh	\$ 1.25

Customer Empowerment

- Keep it simple!
- Print the rate on the bill, including all riders.
- Provide technology to curtail use "hands-free" for major loads
- Shadow billing / Bill Guarantee for first year.

Technology Can Help

Energy solutions for a changing world

Looking Ahead: Hawaii and California

Once installed solar passes about 25% of peak demand, the system "net" load shape changes.

Energy solutions for a changing world

Hawaii: Solar @ 16% of Customers

Table 3. HECO Companies' Net Energy Metering Program Capacity and
Enrollment

Capacity (MW)	HECO	HELCO	MECO
Installed or Approved	327.9	73.3	88.8
In the Queue	17.3	5.1	11.9
Total	345.2	78.4	100.7
Total NEM Customers	51,680	11,549	12,893
System Peak Load (MW)	1,165	188	191
NEM % of All Customers	17%	14%	18%
NEM of System Peak	30%	42%	53%

Peak Load Impacts May Reach A Limit

Figure 1-7. O'ahu System Load Profiles, 2006-2014

Source: Hawaiian Electric Co

Grid-Supply Rate (Hawaii)

Charges for all power received from grid	
Customer Charge	\$10.30
First 350 kWh	\$.234
Next 850 kWh	\$.246
Over 1,200 kWh	\$.265
Minimum bill:	\$25.00
Credit for all power delivered to grid	(\$.151)

Any customer surplus credit at end of month is forfeited.

Summary

- Customers can, will, and do respond.
- TOU rate design is utility-specific
- Costs can be assigned based on multiple functions
- TOU is more effective at reducing peak demand than demand charges.
- TOU combined with inclining block rates = BOTH load-shifting AND kWh savings.
- Peak-Time Rebates are an option.

Smart Rate Design

Customer-Specific Charges

Customer Charge	\$/Month	\$ 3.00
Transformer:	\$/kVA/Mo	\$ 1.00

Bi-Directional Energy Charges			
Off-Peak	\$/kWh	\$ 0.08	
Mid-Peak	\$/kWh	\$ 0.12	
On-Peak	\$/kWh	\$ 0.18	
Critical Peak	\$/kWh	\$ 0.75	

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power sector. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

Jim Lazar Senior Advisor jlazar@raponline.org

The Regulatory Assistance Project (RAP)®

Beijing, China • Berlin, Germany • Brussels, Belgium • Montpelier, Vermont USA • New Delhi, India

www.raponline.org