Technical Conference Innovative Technology Projects (STEP) Docket No. 16-035-36 April 2, 2019

Agenda

- 1:00 1:15 Introductions
- 1:15 1:30 STEP Funding Request
- 1:30 2:30 Battery Demand Response Project
- 2:30 2:45 Break
- 2:45 3:15 Advanced Resiliency Management System Project
- 3:15 3:50 Intermodal Hub Project
- 3:50 4:00 Wrap Up

STEP Funding Request

STEP Budget

- Total funds requested = **\$21.8 million**
 - Other Innovative Technology Funds
 - Intermodal Hub \$2.0 million
 - Battery Demand Response \$3.27 million
 - Conservation, Efficiency and Other New Technology Programs
 - ARMS \$16.52 million

Utah Solar Incentive Program (USIP) Funds

- The original STEP filing included all remaining USIP project applications that had received (or were expected to receive) conditional approvals but had not yet qualified for incentive payments.
- Since the time of the original filing an estimated \$14.2 million of approved project incentives have expired and are no longer incentive-eligible. The following table details the change in projected incentive payouts:

Original Filing: 2016-2023	Current Forecast: 2016-2023	Variance: Increase/(Decrease)
\$33.6 million	\$19.4 million	(\$14.2 million)

- Due to the high level of expired projects the USIP account has sufficient funds to cover all incentive payouts without the use of any of the \$50 million in STEP Pilot funds.
- Use of any excess USIP funds (Schedule No. 107 revenues) will be determined in a later proceeding.

Battery Demand Response Project

Bill Comeau

Project Overview

- The Soleil community is located in Herriman, Utah
 - 600 apartments for rent with options for one, two and three bedrooms
 - 5.2 MW solar, ~5 MW batteries
- Building and carport plan review Reference Handout
 - Solar installed on buildings and carports
- Installation of the batteries in first building scheduled for August 2019
 - All buildings expected to be complete with batteries installed by the end of 2020
- Soleil will own and maintain the solar and batteries
 - RMP will control and dispatch the batteries

Battery/Solar Configuration

- Batteries and solar are independent systems per each apartment and common area
 - Review of floor plan and one-line Reference handout
 - Solar wired to each battery and apartment
 - Battery unit meters usage and solar production
 - Battery inverters are IEEE 1547 compliant
 - Solar panels will not be DC coupled due to product availability, will consider in 2020 when product is available
 - The intent is to charge the batteries from only solar, although it is anticipated the data may indicate a benefit to charge from the grid, such as in the winter when cloudy to offset peaks
 - Initial use is not expected to have the batteries exporting energy back to the grid, part of project is to develop and implement a safe and sustainable way to dispatch battery capacity to the grid
 - Individual apartments can function like a micro-grid only during periods when the solar output is greater than usage
 - Batteries will provide apartments with backup for outages

Battery/Solar Configuration (Cont.)

- Each apartment will be on schedule 136 Customer Generator
 - During sunny and low load days (spring and fall) it is anticipated there will be excess energy from the solar
 - Data will help inform future rate designs for battery systems
- The partnership with Soleil allows for behind-the-meter solar and batteries to be controlled by Rocky Mountain Power through a utility application for ability to:
 - Dispatch for traditional demand response (offsetting customer loads)
 - Inform how to best optimize the grid by utilizing batteries
 - Monitor and control both batteries individually and also in aggregated groups

Battery/Solar Configuration (Cont.)

- The Sonnen battery was the only product that met all the needs for the project
 - Ability to daily cycle for over 25 years (capable of over 20,000 cycles)
 - Advanced software for daily load cycling, frequency response, aggregate batteries, etc.
 - Battery chemistry safe for indoor use
 - Ability to develop a utility application to dispatch and control the batteries
- Soleil evaluated use of large single batteries for each building
 - Existing products did not have all the functionality needed
 - Size and aesthetics were not complementary to the community
- Evaluation will inform uses of any battery
 - Functionality to utilize for price signals, demand response, load shaping, customer outages and cost-effectiveness

Battery/Solar Configuration (Cont.)

- The project has been in development for over a year
 - Technical items with battery manufacturer have been resolved
 - Auric Solar has become certified to install the batteries
 - City of Herriman and fire department has provided requirements for the battery install and has provided preliminary approval, final approval expected within a month
 - Installed an emergency shut-off switch near the outside service panel that is connected to all batteries
 - Unless unknown issues come up the project is on-track to complete as planned
- The software platform allows for robust data gathering
 - The Company intends to either use one of its pre-qualified vendors for evaluation services, or establish a new contract for these services through a competitive RFP
 - The data will be shared publicly in a report and may help inform cost-effectiveness approaches for utility scale battery demand response solutions

Project Costs and Other Benefits

- The total cost of the solar and battery solution is approximately \$34.3 million
 - \$22.3 million for the solar panels, inverters, wiring, materials for mounting and labor
 - \$12 million for the batteries, the battery component is not economic for the developer without tax incentives and funding from STEP
- The 5 MW capacity of the batteries will not be large enough for meaningful reductions on the overall system, but will provide a foundation to build a battery demand response program to help with managing the system
 - Due to the uncertainty of the performance of the project the local infrastructure was sized to serve the development without the batteries. Existing infrastructure and capacity existed near the site.
 - Frequency response functionality will be part of the design to inform how to scale for system management of increasing levels of variable generation (renewables)
 - Although the project is small from a utility perspective it will allow the Company to learn how to implement a larger solution
- Residents of Soleil are expected to have lower overall energy costs and other benefits
 - Backup power in the event of an outage
 - Living in a community that is minimizing impact on air quality and utilizing new technology
- Inform future rate design for batteries
 - Look at daily load shaping, peak impacts etc.

ARMS Project Rohit Nair

Project Overview

- Deploy advanced line sensor technology on select distribution circuits
- Install and test communication hardware devices on strategic field equipment to enable remote monitoring, operation and control capability
- Install and operate ERT Gateways to extend AMI network to 764,000 AMR meters
 - ERT Gateways captures outage information and aggregates meter reads into hourly interval data from AMR meters
- Integrate field equipment data into the Company's control center operations to provide for faster outage response, shorter restoration times and improved reliability

Project Benefits

- Improves customer service by providing faster outage restoration
- Enhances visibility into field operating conditions (e.g. outage reporting)
- Delivers cost savings
- Provides customers with timely interval energy usage data
- Reduces CO₂ emissions via fewer vehicles on the road
- Provides a platform for future Smart Grid applications

Intermodal Hubs Project James Campbell

"If consumers purchase EVs at the expected rates in the next five to ten years, a lack of charging infrastructure could become an obstacle". Engel et al 2018

1-450 KW charger requires 450 KW of Infrastructure

6-450 KW chargers require 2700 KW of Infrastructure

Why Intermodal Hub

State of the art chargers 450 KW overhead bus 150 KW-350 KW passenger cars

Stacking of loads "worst case" particularly for low utilization

Line Voltage

Intermodal Hub Pilot Project

TRAX line, predictable MWlevel pulsed load

Intermodal Hub facility variable demand

Intermodal Hub Site-level Energy Management System

- Project does not impact substations or feeder circuits
- Develop control system tools
 - Increase utilization
- Evaluate potential for utility demand response program or other solutions
- Conduct cost benefit evaluation

2x actively controlled 450 kW overhead bus chargers

3x actively controlled 100 kW bus depot chargers

(TBD) actively controlled public DC fast and L2 EV chargers

- Add 2 e-buses (Hub to PC)
- Potential to add 27 more e-buses

- Expand Hub to include trucking and ride hailing
- Take advantage of infrastructure
- Increase utilization

Energy management system tools

Compile-time (planning) optimization tools

- Route & schedule optimization
- Statistical and agent-based demand modeling
 - Train, bus, and passenger vehicle models
- Leverages historical data, growth models, planned upgrades
 - Historical data from trains and bus fleets, utility, chargers, and passenger vehicle participants
- Algorithms developed by USU team, ported to commercial server systems
- Outputs
 - Recommended fleet management, route schedules, overhead and overnight charger queuing schedules
 - Forward looking projections, anticipated limits, future impacts on schedules
 - Proposed schedule for system upgrades
 - Algorithm updates for run-time optimization tools

Run-time optimization tools

- Adaptive and learning control algorithms predict demand in presence of changing conditions
- Optimize real-time charger power levels and queuing to minimize impact on prioritized loads
- Communicates with UTA fleet management and public vehicle participants (via phone apps)
- Real-time data monitoring
 - Connected into the UTA back office
 - Communicate to all on-site chargers through secure UTA network via open charging protocol (OCPP)
 - Back office access to remote 10-second location and battery status data via on-board AT&T broadband cards, breadcrumb historical data via WIFI at the Hub
 - Utility data via bridge to phone equipment
 - Public vehicle participant data via cell phone apps
- Hosted by the UTA IT team, supported by the USU team

Roadmap for Future

Source: 2018 UTA study on e-buses

Olympic Exploratory Committee report calls for "zero emission transportation system"

If technology is proven then opportunity to deploy:

- UTA study identified 70 potential charging locations
- In addition 50 light rail substation upgrades needed
- Other transit possibilities
 - Park City
 - Zion National Park
 - Airport
- Truck and distribution centers
- Other industries?
- Company and USU will hold outreach and workshops to share findings

Photo: NREL

THANK YOU

