Large Generator Interconnection
Facilities Study Report

Final

Completed for

(“Interconnection Customer”)
Q0707

Proposed Point of Interconnection

Shirley Basin-Freezeout transmission line at 230 kV

March 6, 2017
TABLE OF CONTENTS

1.0 DESCRIPTION OF THE PROJECT .. 1
2.0 STUDY SCOPE AND OBJECTIVES ... 1
3.0 TYPE OF INTERCONNECTION SERVICE 1
4.0 STUDY ASSUMPTIONS .. 1
5.0 PROPOSED POINT OF INTERCONNECTION 2
6.0 SCOPE OF WORK .. 4
 6.1 Generating Facility Modifications ... 4
 6.1.1 Interconnection Customer to be Responsible For 4
 6.1.2 Transmission Provider to be Responsible For 6
 6.2 Tie Line Requirements .. 7
 6.2.1 Interconnection Customer to be Responsible For 7
 6.2.2 Transmission Provider to be Responsible For 8
 6.3 Point of Interconnection .. 9
 6.3.1 Interconnection Customer to be Responsible For 9
 6.3.2 Transmission Provider to be Responsible For 9
 6.4 Other ... 10
 6.4.1 Interconnection Customer to be Responsible For 10
 6.4.2 Transmission Provider to be Responsible For 10
7.0 COST ESTIMATE (+/- 20%) ... 11
8.0 SCHEDULE .. 13
9.0 PARTICIPATION BY AFFECTED SYSTEMS 13
10.0 APPENDICES ... 13
 10.1 Appendix 1: Higher Priority Request 14
 10.2 Appendix 2: Property Requirements 15
1.0 DESCRIPTION OF THE PROJECT

(“Interconnection Customer”) proposed interconnecting 250 MW of new generation to PacifiCorp’s (“Transmission Provider”) Shirley Basin-Freezout transmission line at 230 kV located in Carbon County, WY. The project (“Project”) will consist of 125 GE 2.0-116 turbines for a total output of 250 MW. The requested commercial operation date is November 1, 2024.

Interconnection Customer will NOT operate this generator as a Qualified Facility as defined by the Public Utility Regulatory Policies Act of 1978 (PURPA).

The Transmission Provider has assigned the Project “Q0707.”

2.0 STUDY SCOPE AND OBJECTIVES

The objective of the Facilities Study is to:

- Complete a facilities analysis, which shall specify and estimate the cost of equipment, engineering, procurement, and construction required to address issues as outlined in the system impact study, and
- Provide a scope of work and an estimated cost and schedule for completing the scope of work.

3.0 TYPE OF INTERCONNECTION SERVICE

The Interconnection Customer has selected Energy Resource Interconnection Service.

4.0 STUDY ASSUMPTIONS

- All active higher priority transmission service and/or generator interconnection requests will be considered in this study and are listed in Appendix 1. If any of these requests are withdrawn, the Transmission Provider reserves the right to restudy this request, as the results and conclusions contained within this study could significantly change.
- For study purposes there are two separate queues:
 o Transmission Service Queue: to the extent practical, all network upgrades that are required to accommodate active transmission service requests will be modeled in this study.
 o Generation Interconnection Queue: Interconnection Facilities associated with higher queue interconnection requests will be modeled in this study.
- The Interconnection Customer’s request for energy or network resource interconnection service in and of itself does not convey transmission service. Only a Network Customer may make a request to designate a generating resource as a Network Resource. Because the queue of higher priority transmission service requests may be different when a Network Customer requests network resource designation for this Generating Facility, the available capacity or transmission modifications, if any, necessary to provide network resource interconnection service may be significantly different. Therefore, the Interconnection Customer should regard the results of this study as informational rather than final.
This study assumes the Project will be integrated into Transmission Provider’s system at the Aeolus substation, Shirley Basin substation and the Q0707 new switching substation.

The Interconnection Customer will construct and own any facilities required between the Point of Interconnection (“POI”) and the Project unless specifically identified by the Transmission Provider.

Line reconductor or fiber underbuild required on existing poles will be assumed to follow the most direct path on the Transmission Provider’s system. If during detailed design the path must be modified, it may result in additional cost and timing delays for the Interconnection Customer’s Project.

Generator tripping may be required for certain outages.

All facilities will meet or exceed the minimum Western Electricity Coordinating Council (“WECC”), North American Electric Reliability Corporation (“NERC”), and Transmission Provider performance and design standards.

The Aeolus - Miracle Mile 230 kV line is planned but was not considered in service for this study.

All system improvements associated with prior queued projects, including the Transmission Provider’s Gateway West and South projects, are in service before Q0707.

All the existing and proposed Remedial Action Scheme(s) (“RAS”) associated with prior queue Generating Facilities are assumed to be in service for this study.

A RAS that will drop up to 600 MW of generation for the following outages is assumed to be in service:
- Aeolus - Anticline 500 kV line
- Anticline - Populus 500 kV line
- Aeolus - Clover 500 kV line
- Clover 500/345 kV auto transformer

Transmission Provider reserves the right to restudy the Project if any of the mentioned assumptions are changed or any of the required mitigations are not in service at the time of interconnection.

This report is based on information available at the time of the study. It is the Interconnection Customer’s responsibility to check the Transmission Provider’s web site regularly for Transmission system updates at (http://www.pacificorp.com/tran.html)

5.0 PROPOSED POINT OF INTERCONNECTION

The Interconnection Customer’s proposed Generating Facility is to be interconnected through a new Q707 POI 230kV four-breaker ring bus substation. Figure 1 below is a one-line diagram that illustrates the interconnection of the proposed Generating Facility to the Transmission Provider’s system. Two additional breakers will need to be installed at Aeolus 230 kV substation to interconnect the Generating Facility and construction of a nine mile Aeolus – Q0707 POI 230 kV line. Additionally, a 230 kV circuit breaker outside the POI substation will be required to protect the Interconnection Customer’s tie line. Based on the data provided by the Interconnection Customer, the Project consists of two 230/34.5 kV auto transformers with the rating of 84/112/140 MVA each. Each one of the 230/34.5 kV auto transformers is connected to two separate 34.5 collector systems. The first collector system has sixty-two (62) 2.0 MW GE turbines connected to it totaling 124 MW, and the second collector system has sixty-three (63) 2.0 MW GE turbines.
connected to it totaling 126 MW. The total maximum output of the Project shall not exceed 250 MW.

![System One Line Diagram](image)

Figure 1: System One Line Diagram
6.0 SCOPE OF WORK

6.1 Generating Facility Modifications

The following outlines the design, procurement, construction, installation, and ownership of equipment at the Interconnection Customer’s Generating Facility.

6.1.1 Interconnection Customer to be Responsible For

- Obtain all necessary permits, lands, rights of way and easements required for the construction and continued maintenance of the facilities required for the Q0707 Project. All easements and permits shall be recorded in the name of the Transmission Provider and shall be on forms acceptable to the Transmission Provider. All easements and rights of way will be obtained for durations acceptable to the Transmission Provider; this includes all permits/easements for ingress and egress prior to the start of construction.

- Provide a separate fenced area along the perimeter of the Interconnection Customer’s Generating Facility in which the Transmission Provider can install a control house for any protection and communication equipment. This area will share a fence and ground grid with the Generating Facility and have a separate access. AC station service for the control house will be supplied by the Interconnection Customer.

- Provide a CDEGS grounding analysis.

- Design and install conduits, per Transmission Provider’s standards, to the demarcation point.
 - The collector substation batteries will be sized to carry the communication equipment with DC to DC converters.
 - Demonstrate the reactive capability of the Generating Facility and the voltage control system prior to commercial operation.
 - Operate in voltage control mode with the ability to deliver power output to the POI within the range of +/- 0.95 power factor. (Please see Standard Large Generator Interconnection Agreement, article 9.6.1 and 9.6.2 in OATT.) Any additional reactive compensation must be designed such that the discrete switching of the reactive device, if required, does not cause step voltage changes greater than ± 3% at any load serving bus on the Transmission Provider’s system.
 - As required by NERC standard VAR-001-1a, the Transmission Provider will provide a voltage schedule for the POI. Generating Facilities should be operated so as to maintain the voltage at the POI, or other designated point as deemed appropriate by Transmission Provider, between 1.00 per unit to 1.04 per unit. The Transmission Provider may also specify a voltage and/or reactive power bandwidth as needed to coordinate with upstream voltage control devices such as on-load tap changers. At the Transmission Provider’s discretion, these values might be adjusted depending on operating conditions.
 - At low output levels, the Project needs to ensure that it maintains the power factor within ± 0.95 at the POI and minimize the reactive power flow towards the transmission system to prevent high voltages.
 - Generating Facilities capable of operating with a voltage droop are required to do so. Voltage droop control enables proportionate reactive power sharing among
Generating Facilities. Studies will be required to coordinate voltage droop settings if there are other facilities in the area. It will be the Interconnection Customer's responsibility to ensure that a voltage coordination study is performed, in coordination with Transmission Provider, and implemented with appropriate coordination settings prior to unit testing.

- For areas with multiple Generating Facilities, additional studies may be required to determine whether critical interactions, including but not limited to control systems, exist. These studies, to be coordinated with Transmission Provider, will be the responsibility of the Interconnection Customer. If the need for a master controller is identified, the cost and all related installation requirements will be the responsibility of the Interconnection Customer. While study costs of subsequent interconnection projects nearby will be the responsibility of the new project, participation by the Q707 Project may be required post commercial operation to ensure Bulk Electric System reliability is maintained.

- Design, procure, install and own Phasor Measurement Units (PMUs).
- Provide a standard model from the WECC Approved Dynamic Model Library prior to interconnection, since the Transmission Provider cannot submit a user written model to WECC for inclusion in base cases. The list of approved generator models is continually updated and is available on the http://www.WECC.biz website.
- All generators must meet the Federal Energy Regulatory Committee ("FERC") and WECC low voltage ride-through requirements as specified in the interconnection agreement.
- Prior to construction, arrange construction power with the electric service provider holding the certificated service territory rights for the area in which the load is physically located.
- The Project is near both the Transmission Provider's and Carbon Power and Light's ("CPL") service territory. A determination of which service provider will hold rights must be determined once the final design is provided by Interconnection Customer.
- Prior to back feed, arrange distribution voltage retail meter service for electricity consumed by the Project and arrange back up station service for power that will be drawn from the transmission or distribution line when the Project is not generating. Interconnection Customer must call the PCCC Solution Center 1-800-625-6078 to arrange this service if the Project is determined to be within the retail service territory of the Transmission Provider. If within CPL service territory, the Interconnection Customer must arrange a transmission service request submission through CPL's transmission service provider for the backfeed service. It is recommended the Interconnection Customer begin this process at least two (2) years prior to the expected backfeed date of the Project.
- Provide the following data points from the Q0707 collector substation from the 230 kV breakers (assuming five (5) per transformer):
 - Analogs:
 - Real power flow through 34.5 kV line feeder breaker 1
 - Reactive power flow through 34.5 kV line feeder breaker 1
- Real power flow through 34.5 kV line feeder breaker 2
- Reactive power flow through 34.5 kV line feeder breaker 2
- Real power flow through 34.5 kV line feeder breaker 3
- Reactive power flow through 34.5 kV line feeder breaker 3
- Real power flow through 34.5 kV line feeder breaker 4
- Reactive power flow through 34.5 kV line feeder breaker 4
- Real power flow through 34.5 kV line feeder breaker 5
- Reactive power flow through 34.5 kV line feeder breaker 5
- Real power flow through 34.5 kV line feeder breaker 6
- Reactive power flow through 34.5 kV line feeder breaker 6
- Real power flow through 34.5 kV line feeder breaker 7
- Reactive power flow through 34.5 kV line feeder breaker 7
- Real power flow through 34.5 kV line feeder breaker 8
- Reactive power flow through 34.5 kV line feeder breaker 8
- Real power flow through 34.5 kV line feeder breaker 9
- Reactive power flow through 34.5 kV line feeder breaker 9
- Real power flow through 34.5 kV line feeder breaker 10
- Reactive power flow through 34.5 kV line feeder breaker 10
- Average Plant Wind speed
- Average Plant Atmospheric Pressure (Bar)
- Average Plant Temperature (Celsius)

- Status:
 - 230 kV breaker T1
 - 34.5 kV collector circuit breaker T1-1
 - 34.5 kV collector circuit breaker T1-2
 - 34.5 kV collector circuit breaker T1-3
 - 34.5 kV collector circuit breaker T1-4
 - 34.5 kV collector circuit breaker T1-5
 - 230 kV breaker T2
 - 34.5 kV collector circuit breaker T2-1
 - 34.5 kV collector circuit breaker T2-2
 - 34.5 kV collector circuit breaker T2-3
 - 34.5 kV collector circuit breaker T2-4
 - 34.5 kV collector circuit breaker T2-5

6.1.2 Transmission Provider to be Responsible For
- Design, procure and install a control building at a location provided and prepared by the Interconnection Customer inside the Generating Facility fence line.
- The list of major equipment identified for this portion of the Project is as follows:
 - (1) control building with AC and DC panels and temperature controlled
 - (1) 125VDC, 100Ah battery bank
 - (1) 130VDC, 12A battery charger
 - (1) GE D20 RTU
 - (1) open frame rack (DNP 3.0 protocol with hard wired connections)
o (2) router (to interface with meters and substation equipment)

- Revenue metering is required for each of the two Interconnection Customer power transformers and will be located on the high side of each of the step-up transformers. The primary metering transformers shall be combination 230kV, 500/5, CT/VT extended range for high accuracy metering.
- Design and procure the collector revenue metering panels. The panels shall be located inside the collector control house. The collector substation metering panel shall include two revenue quality meters, test switches, and all SCADA metering data terminated at a metering interposition block.
- An Ethernet phone line is required for retail sales and generation accounting via the MV-90 translation system.

6.2 Tie Line Requirements
The following outlines the design, procurement, construction, installation, and ownership of equipment associated with the radial line connecting the Interconnection Customer’s Generating Facility to the Transmission Provider’s POI substation.

6.2.1 Interconnection Customer to be Responsible For
- Obtain all necessary permits, lands, rights of way and easements required for the construction and continued maintenance of the facilities required for the Q0707 Project tie line.
- Design and install approximately four miles of 230 kV transmission line between the Q0707 Generating Facility and the Q0707 POI. The Transmission Provider requires that the bus is built to the Transmission Provider’s 230 kV standard.
- Design and install ½” OPGW and attachment hardware per the Transmission Provider’s standards with ADSS underground fiber to the collector substation. The OPGW cable will be coiled on the above structure such that there is enough cable and conductor to reach the POI substation tower with normal sags. Also, provide all hardware for stringing of the last span of conductor and OPGW into the POI substation tower.
 o This fiber is to be installed by the Interconnection Customer and upon acceptance will be owned and maintained by Transmission Provider. Channels will be crossed at the POI Q0707 substation to the back bone communication system.
- Design and construct a single 230 kV circuit breaker and associated equipment tie line substation adjacent to the Q0707 POI substation with a common fence between the two facilities.
 o The ground mats between the Q0707 POI substation and the tie line substation will be tied together. Therefore, the Interconnection Customer must match the standards of the Q0707 POI substation.
 o Conduit will be required to be installed between the two yards. The Interconnection Customer will provide their conduit drawings and install the necessary conduit to demarcation point at the POI. The Transmission Provider will install the connecting conduit in the Q0707 POI substation.
- Design (per the Transmission Provider’s standards) and install a dead-end structure with sufficient bus to allow for proper attachment to two 230 kV disconnect switch inside the Transmission Provider’s substation. The line side switch will be the change of ownership location.

- Provide the output from a set of current transformers to be fed into the bus differential relays with a maximum current transformer ratio matching the maximum CT ratio of the breakers at the Q0707 POI substation. The detection and clearing of faults on the tie line between the tie line and the collector substations will be the responsibility of the Interconnection Customer. Facilities must be installed to detect and isolate the line if its faulted in five cycles or less.

6.2.2 Transmission Provider to be Responsible For

- Review the Interconnection Customer’s design of the proposed new transmission line, OPGW and connection to the Q0707 POI substation structure for general conformance with Transmission Provider’s construction standards.

- Provide a CDEGS grounding analysis of the Q0707 POI substation.

- Provide the Transmission Provider’s construction standards and review the Interconnection Customer’s design for the last bus support structure located outside the POI substation fence line to ensure compatibility with the termination switch.

- Connect the Interconnection Customer’s last span of bus to the 230 kV disconnect switch at the change of ownership location including the OPGW cable. The Transmission Provider will maintain this last bus span at the Interconnection Customer’s expense.

 o This short span of bus will be protected with a redundant bus differential relay system. The bus differential relays will be located in the Q0707 POI substation. The Interconnection Customer will need to provide the output from a set of current transformers to be fed into the bus differential relays with a maximum current transformer ratio matching the maximum CT ratio of the breakers at Q0707 POI substation. If a fault is detected in the short conductor connection, both the 230kV breakers in the Q707 POI substation and the 230 kV breaker in the Interconnection Customer’s tie line substation will be tripped.

 o A relay at the Q707 POI substation will monitor the voltage magnitude and frequency. If the magnitude or frequency of the voltage is outside of normal range of operation, a signal will be sent over the communication system to the collector substation. At the collector substation this signal is to trip open all of the 34.5 kV feeder breakers to disconnect the solar inverters. By tripping the 34.5 kV breakers instead of the 230 kV breakers, the station service to the Generating Facility is maintained to facilitate the restoration of the generation. This relay will also have phase and ground directional overcurrent elements set to operate for faults in the line between the Q707 POI substation and the collector substation and serve as a backup to the main protection installed by the Interconnection Customer.
6.3 Point of Interconnection

The following outlines the design, procurement, construction, installation, and ownership of equipment at the POI.

6.3.1 Interconnection Customer to be Responsible For

- Obtain all necessary permits, rights of way and easements required for the construction of the new POI substation.

6.3.2 Transmission Provider to be Responsible For

- Complete design and construction of a four-breaker ring bus Q0707 POI substation to terminate the tie line in. The following equipment will be installed:
 - (4) – 230 kV circuit breaker
 - (8) – 230 kV switches
 - (4) – 230 kV motor operated switches
 - (1) – control house
 - (1) – battery bank and charger
 - (12) – 230 kV surge arrestors
 - (9) – 230 kV CCVT
 - (1) – 230 kV SSVT
 - (1) – GE D20 RTU
 - (1) – Distribution transformer (station service)
 - (1) – Line termination (POI to Aeolus)
 - (1) – Router

- The interchange metering will be designed bidirectional and rated for the total net generation of the Project. The Transmission Provider will specify and order all interconnection revenue metering, including the instrument transformers, metering panels, junction box and secondary metering wire. The primary metering transformers shall be combination 230kV, 1000/5, CT/VT extended range for high accuracy metering.

- The metering design package will include two revenue quality meters, test switch, with DNP real-time digital data terminated at a metering interposition block. One meter will be designated a primary SCADA meter and a second meter will be used designated as backup with metering DNP data delivered to the alternate control center. The metering data will include bidirectional KWH KVARH, revenue quantities including instantaneous PF, MW, MVAR, and MVA, including per phase voltage and amps data.

- Loop the Aeolus-Shirley Basin 230kV transmission line through the new Q0707 POI substation. The new POI substation is assumed to be directly adjacent to the existing transmission line. The construction of this new segment of transmission line will be horizontal two- and three-pole wood structures with 1272 ACSR conductor and 3/8” EHS and fiber optic shield wire.

- The fiber on the line from Shirley Basin to Aeolus needs to be cut into for the new POI substation. Mirrored bit circuits are required between Aeolus, the POI and Shirley Basin substations. Fiber is to be installed on the line from the POI substation to the Q0707 tie line substation with ADSS underground fiber to the collector substation.
Substation network routers will be installed at the POI, tie line, and collector substations.
- Install network routers.
- An Ethernet connection is required for retail sales and generation accounting via the MV-90 translation system.
- Listed below is the data that will be supplied by the Shirley Basin substation.
 - Analogs:
 - Net Generation real power
 - Net Generator reactive power
 - Interchange metering kWH
 - A phase 230 kV transmission voltage
 - B phase 230 kV transmission voltage
 - C phase 230 kV transmission voltage
- From Tie Substation Adjacent to Q0707 POI.
 - Status:
 - 230 kV breaker

6.4 Other
The following outlines the design, procurement, construction, installation, and ownership of equipment past the POI.

6.4.1 Interconnection Customer to be Responsible For
- Obtain all necessary permits, rights of way and easements required for the construction at Aeolus substation and the transmission line between Aeolus and POI substations.

6.4.2 Transmission Provider to be Responsible For
- Construct a new nine-mile 230 kV line between Aeolus substation and the Q0707 POI substation. Construction is to be of horizontal configuration on two- and three-pole wood structures. Conductor is to be a 2-1272 ACSR double bundle (two conductors per phase). Two 3/8" EHS shield wires will also be included.
- At Aeolus substation add the following equipment:
 - (2) – 230kV circuit breakers
 - (4) – 230kV switches
 - (1) – 230kV motor operated switch
 - (3) – 230kV CCVTs
 - (3) – 230kV surge arresters
 - (1) – Line termination (POI to Aeolus)
- Install OPGW fiber on the new line from the Q0707 POI to Aeolus for back-up communications.
- Replace the existing line relays at Shirley Basin substation.
 - The two 230 kV lines between the Q707 POI substation and the proposed Aeolus substation will be protected with line differential scheme using optical fiber.
The line between the Q707 POI substation and Shirley Basin substation will also be protected with line differential scheme using optical fiber. The existing line relays at Shirley Basin will be replaced to match this requirement.

7.0 COST ESTIMATE (+/- 20%)

The following estimate represents only scopes of work that will be performed by the Transmission Provider. Costs for any work being performed by the Interconnection Customer are not included.

Energy Resource

Interconnection – Direct Assignment Facilities

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q0707 collector substation – Add control house, metering, communications, SCADA</td>
<td>$1,207,000</td>
</tr>
<tr>
<td>Q0707 tie line substation – Add relaying and communications</td>
<td>$279,000</td>
</tr>
<tr>
<td>Q0707 POI switching station – Add metering</td>
<td>$340,000</td>
</tr>
</tbody>
</table>

Sub-total Direct Assignment Costs

$1,826,000

Interconnection – Network Upgrade Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q0707 POI switching station – Add new 230 kV ring bus</td>
<td>$11,302,000</td>
</tr>
<tr>
<td>Q0707 POI switching station to Aeolus substation – Build nine-mile 230 kV line</td>
<td>$5,374,000</td>
</tr>
<tr>
<td>Q0707 to Aeolus substation – Add fiber to transmission line</td>
<td>$450,000</td>
</tr>
<tr>
<td>Aeolus substation – Add one 230 kV terminal and bay</td>
<td>$3,097,000</td>
</tr>
<tr>
<td>230 kV Aeolus to Shirley Basin – Loop to Q0707 POI collector substation</td>
<td>$804,000</td>
</tr>
<tr>
<td>Shirley Basin substation – Replace line relays</td>
<td>$266,000</td>
</tr>
</tbody>
</table>

Sub-total Network Upgrade Costs

$21,293,000

Total Cost – ER Interconnection Service – Interconnection Only

$23,119,000

Any distribution line modifications identified in this report will require a field visit analysis in order to obtain a more thorough understanding of the specific requirements. The estimate provided above for this work could change substantially based on the results of this analysis. Until this field analysis is performed the Transmission Provider must develop the project.
schedule using conservative assumptions. The Interconnection Customer may request that the Transmission Provider perform this field analysis, at the Interconnection Customer's expense, prior to the execution of an Interconnection Agreement in order to obtain more cost and schedule certainty.

Note: Costs for any excavation, duct installation and easements shall be borne by the Interconnection Customer and are not included in this estimate. This estimate is as accurate as possibly given the level of detailed study that has been completed to date and approximates the costs incurred by Transmission Provider to interconnect this Generator Facility to Transmission Provider's electrical distribution or transmission system. The Interconnection Customer will be responsible for all actual costs, regardless of the estimated costs communicated to or approved by the Interconnection Customer.
8.0 Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execute Interconnection Agreement</td>
<td>April 28, 2017</td>
</tr>
<tr>
<td>Provision of Financial Security</td>
<td>May 2, 2023</td>
</tr>
<tr>
<td>Interconnection Customer Design Information Provided</td>
<td>June 27, 2023</td>
</tr>
<tr>
<td>*Transmission Provider Engineering & Procurement Commences</td>
<td>August 7, 2023</td>
</tr>
<tr>
<td>**Energy Imbalance Market Modeling Data Submittal</td>
<td>August 7, 2023</td>
</tr>
<tr>
<td>Transmission Provider Engineering Design Complete</td>
<td>February 27, 2024</td>
</tr>
<tr>
<td>Interconnection Customer Property/Permits/ROW Procured</td>
<td>February 6, 2024</td>
</tr>
<tr>
<td>Construction Begins</td>
<td>May 1, 2024</td>
</tr>
<tr>
<td>Interconnection Customer’s Facilities Receive Backfeed Power</td>
<td>January 31, 2025</td>
</tr>
<tr>
<td>Initial Synchronization/Generation Testing</td>
<td>February 28, 2025</td>
</tr>
<tr>
<td>Commercial Operation</td>
<td>March 28, 2025</td>
</tr>
</tbody>
</table>

*As applicable and determined by the Transmission Provider, within 60 days of the Interconnection Customer’s authorization for the Transmission Provider to begin engineering, the Interconnection Customer shall provide a detailed short circuit model of its generation system. This model must be constructed using the ASPEN One-Line short circuit simulation program and contain all individual electrical components of the Interconnection Customer’s generation system.

**Any design modifications to the Interconnection Customer’s Generating Facility after this date requiring updates to the Transmission Provider’s network model will result in a minimum of 3 months added to all future milestones including Commercial Operation.

Please note, the current proposed schedule for requirements of higher queued projects does not support the Interconnection Customer’s requested Commercial Operation Date of November 1, 2024.

9.0 Participation By Affected Systems

Transmission Provider has identified the following affected systems: None.

10.0 Appendices

Appendix 1: Higher Priority Requests
Appendix 2: Property Requirements
10.1 Appendix 1: Higher Priority Request

All active higher priority transmission service and/or generator interconnection requests will be considered in this study and are identified below. If any of these requests are withdrawn, the Transmission Provider reserves the right to restudy this request, as the results and conclusions contained within this study could significantly change.

Transmission/Generation Interconnection Queue Requests considered:

Q0199 (200 MW) – ER
Q0200 (100 MW) – ER
Q0201 (100 MW) – ER
Q0290 (252 MW) – ER
Q0306/335 (80 MW) – NR
Q0375 (230 MW) – ER
Q0409 (320 MW) – NR
Q0542 (240 MW) – NR
Q0706 (250 MW) – ER/NR
10.2 Appendix 2: Property Requirements

Property Requirements for Point of Interconnection Substation

Requirements for rights of way easements
Rights of way easements will be acquired by the Interconnection Customer in the Transmission Provider’s name for the construction, reconstruction, operation, maintenance, repair, replacement and removal of Transmission Provider’s Interconnection Facilities that will be owned and operated by PacifiCorp. Interconnection Customer will acquire all necessary permits for the project and will obtain rights of way easements for the project on Transmission Provider’s easement form.

Real Property Requirements for Point of Interconnection Substation
Real property for a point of interconnection substation will be acquired by an Interconnection Customer to accommodate the Interconnection Customer’s project. The real property must be acceptable to Transmission Provider. Interconnection Customer will acquire fee ownership for interconnection substation unless Transmission Provider determines that other than fee ownership is acceptable; however, the form and instrument of such rights will be at Transmission Provider’s sole discretion. Any land rights that Interconnection Customer is planning to retain as part of a fee property conveyance will be identified in advance to Transmission Provider and are subject to the Transmission Provider’s approval.

The Interconnection Customer must obtain all permits required by all relevant jurisdictions for the planned use including but not limited to conditional use permits, Certificates of Public Convenience and Necessity, California Environmental Quality Act, as well as all construction permits for the project.

Interconnection Customer will not be reimbursed through network upgrades for more than the market value of the property.

As a minimum, real property must be environmentally, physically, and operationally acceptable to Transmission Provider. The real property shall be a permitted or permittable use in all zoning districts. The Interconnection Customer shall provide Transmission Provider with a title report and shall transfer property without any material defects of title or other encumbrances that are not acceptable to Transmission Provider. Property lines shall be surveyed and show all encumbrances, encroachments, and roads.

Examples of potentially unacceptable environmental, physical, or operational conditions could include but are not limited to:

1. Environmental: known contamination of site; evidence of environmental contamination by any dangerous, hazardous or toxic materials as defined by any governmental agency; violation of building, health, safety, environmental, fire, land use, zoning or other such regulation; violation of ordinances or statutes of any governmental entities having jurisdiction over the property; underground or above ground storage tanks in area; known remediation sites on property; ongoing mitigation activities or monitoring activities; asbestos; lead-based paint, etc. A
phase I environmental study is required for land being acquired in fee by the Transmission Provider unless waived by Transmission Provider.

2. Physical: inadequate site drainage; proximity to flood zone; erosion issues; wetland overlays; threatened and endangered species; archeological or culturally sensitive areas; inadequate sub-surface elements, etc. Transmission Provider may require Interconnection Customer to procure various studies and surveys as determined necessary by Transmission Provider.

Operational: inadequate access for Transmission Provider’s equipment and vehicles; existing structures on land that require removal prior to building of substation; ongoing maintenance for landscaping or extensive landscape requirements; ongoing homeowner’s or other requirements or restrictions (e.g., Covenants, Codes and Restrictions, deed restrictions, etc.) on property which are not acceptable to the Transmission Provider.