-BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH-

)))

)

))

)

)

IN THE MATTER OF APPLICATION OF ROCKY MOUNTAIN POWER TO ESTABLISH EXPORT CREDITS FOR CUSTOMER GENERATED ELECTRICITY

DOCKET NO. 17-035-61 Exhibit No. DPU 1.0 DIR Phase II

For the Division of Public Utilities Department of Commerce State of Utah

Direct Testimony of

ROBERT A. DAVIS

March 3, 2020

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	PURPOSE OF TESTIMONY	2
III.	RECOMMENDATION	3
IV.	DOCKET BACKGROUND	4
V.	LOAD RESEARCH STUDY CONCLUSIONS	6
VI.	EXPORT CREDIT RATE	27
VII.	SUMMARY	38
VIII.	APPENDIX A – LOAD RESEARCH GRAPHS	41

1		I. INTRODUCTION
2	Q:	Please state your name and occupation.
3	A:	My name is Robert A. Davis. I am employed as a Utility Technical Consultant at the
4		Utah Department of Commerce-Division of Public Utilities ("Division").
5	Q:	What is your business address?
6	A:	My business address is 160 East 300 South, Heber Wells Building-4th Floor, Salt Lake
7		City, Utah, 84111.
8	Q:	On whose behalf are you testifying?
9	A:	The Division.
10	Q:	Do you have any exhibits that you would like to add to the record?
11	A:	Yes. DPU Exhibit 1.1_Davis Dir_PH II_Residential and Non-Residential Compiled
12		Graphs CONF_3-3-20, and DPU Exhibit 1.2_Davis Dir_PH II_S&P Global Market
13		Pricing_3-3-20.
14	Q:	Does the Division have any other witnesses for this proceeding?
15	A:	Yes. Dr. Abdinasir Abdulle discusses Rocky Mountain Power's (RMP) avoided cost
16		method and assumptions for determination of the proposed rates in his testimony.
17	Q:	Please summarize your educational and professional experience.
18	A:	I earned a Master's Degree in Business Administration with Master's Certificates in
19		Finance and Economics from Westminster College in May of 2005. I have attended the

20		NARUC Rate School, MSU/IPU Advanced Regulatory Studies Program, and
21		Depreciation Fundamentals by the Society of Depreciation Professionals. I am a member
22		of the LBNL/WIEB Technical Advisory Committee for Utility Rate Design, a member of
23		the NREL DER-PV Ratepayer Impact Tool Advisory Committee, and have attended
24		several regulatory seminars and conferences. I have been employed by the Division since
25		May of 2012.
26	Q:	Please describe your current position responsibilities.
27	A:	I am a Utility Technical Consultant. My responsibilities include financial, economic, and
28		accounting analysis of regulated utility matters with an emphasis towards renewable
29		energy and storage.
30	Q:	Have you previously testified before this Commission?
31	A:	Yes. I have testified before the Public Service Commission of Utah ("Commission") on
32		several occasions.
33		II. PURPOSE OF TESTIMONY
34	Q:	What is the purpose of your testimony in Phase Two of this proceeding?
35	A:	My testimony summarizes the Division's analysis of Rocky Mountain Power's ("RMP")
36		Load Research Study ("LRS"). Secondly, I offer the Division's conclusions and
37		recommendation for Rocky Mountain Power's ("RMP") proposed Schedule 137 export
38		credit rates for customer generated electricity.
39	Q:	Can you offer a brief summary of your conclusions? 2

40	A:	Yes. The Division has analyzed the monthly interval data from RMP's LRS, which began
41		in January of 2019 and provided monthly data through December of 2019. The Division
42		focused on the Commission's Order ¹ in Phase One to determine how much and when
43		customer generation is exported to the grid. The Division's LRS analysis informs its
44		conclusions and recommendations in general support of RMP's Schedule 137 proposal to
45		establish rates for customer generation exports.
46		III. RECOMMENDATION
47		The Division generally finds RMP's proposal reasonable as it applies a method that better
48		aligns export credits to avoided costs while giving RMP an opportunity to recover fixed
49		system costs without imposing additional costs on other users. However, the Division
50		needs more time to analyze RMP's avoided cost pricing assumptions and billing impacts
51		to solar generation customers before recommending approval to the Commission. The
52		pricing assumptions for Schedule 38 in Docket No. 19-035-18, which informs Schedule
53		No. 37 that RMP relies on for this docket, are under review at the present time.
54		Furthermore, other parties may offer useful measures of costs and values that ought to be
55		considered.
56		Illustration 1 is a snapshot of the California Independent System Operator's

57

("CAISO") location marginal pricing ("LMP") for February 10, 2020.² Although this is

¹ See Phase I Report and Order, Docket No. 17-035-61, May 21, 2018, https://pscdocs.utah.gov/electric/17docs/1703561/3022941703561pIo5-21-2018.pdf. ² See PRICES tab, Locational Marginal Prices, February 10, 2020, at http://oasis.caiso.com/mrioasis/logon.do.

58only a snapshot on a single day, it provides some evidence that RMP's proposal is within59reason. These power prices appear to be similar in magnitude as RMP's proposed prices,60suggesting the value of exported generation from customers is at least near the prices61RMP proposes. I provide more explanation of market pricing comparisons later in my62testimony.

63

Illustration 1

64

65

IV. DOCKET BACKGROUND

66 Q: Can you provide a brief history of this docket?

A: Yes. On August 29, 2014, the Commission issued its Report and Order in Docket No. 13-

68 035-184 declining to implement PacifiCorp's proposed net metering facilities charge.³

69 On the same day, the Commission issued its Notice of Technical Conference opening

³ See Commission Order, Docket No. 13-035-184, August 29, 2014, pg. 71 ¶ 7, <u>https://pscdocs.utah.gov/electric/13docs/13035184/26006513035184rao.pdf</u>.

70	Docket No. 14-035-114. ⁴ On September 29, 2017, the Commission issued its order
71	approving the parties' settlement stipulation for Docket No. 14-035-114. ⁵ The record for
72	Docket No. 14-035-114 is voluminous and will not be repeated here. ⁶ The settlement
73	terms grandfathered current net metering customers (Schedule 135) as of November 15,
74	2017 until December 31, 2036 and established Schedule No. 136. The Schedule 136
75	Transition Customer Program commenced on November 15, 2017, and offers an interim
76	rate to customers that install solar until such time that a rate is determined at the
77	conclusion of this docket. ⁷
78	The settlement terms required RMP to file an application with the Commission
78 79	The settlement terms required RMP to file an application with the Commission requesting a docket to determine an export credit rate for customer generation. On
79	requesting a docket to determine an export credit rate for customer generation. On
79 80	requesting a docket to determine an export credit rate for customer generation. On December 4, 2017, the Commission issued its Notice of Scheduling Conference opening
79 80 81	requesting a docket to determine an export credit rate for customer generation. On December 4, 2017, the Commission issued its Notice of Scheduling Conference opening Docket No. 17-035-61. The parties agreed to bifurcate the docket into two phases during

⁴ See Commission Notice of Technical Conference, August 29, 2014,

https://pscdocs.utah.gov/electric/14docs/14035114/26007114035114notc.pdf.

⁵ See Commission Order Approving Settlement Stipulation, Docket No. 14-035-114, September 29, 2017, <u>https://pscdocs.utah.gov/electric/14docs/14035114/29703614035114oass9-29-2017.pdf</u>.
⁶ See <u>https://psc.utah.gov/2016/06/20/docket-no-14-035-114-2/</u>.

⁷Current net metered customers under Schedule 135 remain on the Net Metering Program (i.e., kWh for kWh) until the end of 2036. Transition Customers under Schedule 136 are grandfathered until 2032. New customers and grandfathered customers at the conclusion of their respective grandfathered periods, will receive compensation at the new export credit rate.

⁸ Commission Phase I and Phase II Scheduling Orders, December 12, 2107 and January 16, 2018, respectively, <u>https://pscdocs.utah.gov/electric/17docs/1703561/2984151703561posoanohanoptsc12-12-2017.pdf</u>, and <u>https://pscdocs.utah.gov/electric/17docs/1703561/2991841703561ptsonopwhanoh1-16-2018.pdf</u>.

V. LOAD RESEARCH STUDY CONCLUSIONS 85 Can you summarize the Load Research Study plan? 86 **Q**: Yes. Distributed generation technology operated by most private generation customers is 87 A: primarily solar photovoltaic ("PV"). The proposed LRS for this docket exclusively 88 studies PV generation. Like other distributed generation technologies, PV has its own 89 characteristics. PV typically starts producing energy in the morning as the sun begins to 90 rise, peaks mid-day, and ramps down in the early evening hours as the sun sets. PV 91 generation is variable with weather, heat, orientation, and terrestrial attributes. The 92 93 effects of these attributes ultimately determine the overall output and timing of customer owned PV generation throughout the day. 94 The LRS provides raw 15-minute delivery, production, and export interval data 95 for every day over twelve months from samples of Utah residential and non-residential 96 solar customers. This data represents how much energy the sample customers are 97 98 consuming from the grid, producing from their own generation, and exporting back to the grid. From the data, the customers' hypothetical load profiles without generation can be 99 mathematically derived. 100

101

Q: Can you describe the LRS design method?

Yes. The scope of work for the LRS calls for the design of a sample including residentialand non-residential solar customers to determine when and how much energy is exported

104	to the grid ⁹ over a one-year time horizon regardless of weather, orientation, or other
105	attributes associated with customer generation.

106RMP randomly selected customers from Schedule 135 and Schedule 136107following a four-stratification schema based on name plate capacity and installed108generation meters. RMP selected the entire Schedule 136 population for deliveries and109exports.

These stratified production meters, along with profile meters that capture 110 deliveries and exports, have provided data in 15-minute intervals over every day for 111 twelve months beginning January 2019. All Schedule 136 Transition Program customers 112 have profile meters that provide delivery and export data in 15-minute intervals captured 113 over the same period. RMP's LRS design has a precision of +/- 10 percent at the 95 114 percent confidence level, which exceeds industry standards.¹⁰ The Division concludes 115 that the LRS data provides valuable data that describes how much and when exported 116 energy is pushed to the grid to help inform the design of a reasonable export credit rate. 117 118 **O**: Did the Commission approve RMP's LRS plan?

⁹ See RMP, Response to Joint Petition for Review or Rehearing, July 5, 2018, pg. 6, Section B, "*In determining just and reasonable rates for exported electricity, the plain language of Utah Code Ann. § 54-15-105.1(1) limits the scope of the consideration to actual costs incurred and benefits accrued by the Company and its other customers,*" https://pscdocs.utah.gov/electric/17docs/1703561/303310RMPRespIntPetRevRehear7-5-2018.pdf.

¹⁰ The Public Utilities Regulatory Policy Act (PURPA) defines a minimum *Accuracy Level* of +/- 10 percent at the 90 percent confidence level. 1992 Code of Federal Regulations (CFR), Title 18, Chapter 1, Subchapter K, Part 290.403, Subpart B.

119	A:	Yes. The Commission approved the load research study ("LRS") plan in its Phase One
120		Report and Order of this docket. RMP's original design was contested in Phase One by
121		some of the parties. The Commission ordered RMP to revise its study, which RMP did, to
122		meet certain criteria. ¹¹
123		The Commission ordered RMP to select new samples from residential and
124		commercial customers that either give each member of the class an equal chance of being
125		selected, or each member of the separate strata an equal chance of being selected.
126		Second, the Commission ordered RMP to increase the sample size to accommodate the
127		separate study of residential and commercial customers. Finally, the Commission ordered
128		RMP to collect export, import, and production data from the existing 36 Schedule 135
129		customers participating in the LRS. ¹²
130	Q:	How did RMP report the results of the LRS?
131	A:	RMP compiled the LRS raw data into five separate files: (1) LRS New Sample
132		Residential; (2) LRS New Sample Non Residential; (3) Original 36 NEM; (4) Schedule
133		136 Residential and Non-Residential Exports; and (5) Schedule 136 Residential and Non-
134		Residential Deliveries. The LRS New Sample and Original 36 NEM (Net Metering) for
135		residential and non-residential are sampled through strata while the Schedule 136

 ¹¹ See Commission Phase I Order, Docket No. 17-035-61, May 21, 2018, pg. 19-20.
 <u>https://pscdocs.utah.gov/electric/17docs/1703561/3022941703561pIo5-21-2018.pdf</u>.
 ¹² See RMP, Response to Joint Petition for Review or Rehearing, July 5, 2018, pg. 7, Section B, 1-2, https://pscdocs.utah.gov/electric/17docs/1703561/3022941703561pIo5-21-2018.pdf.

136	residential and non-residential delivery and export data represents the full population of
137	customers.

138

Q: Did the LRS provide robust results?

A: Yes. The LRS design called for a sample size of forty-five residential and sixty nonresidential customers to participate in the study, plus the original thirty-six NEM
customers.

142Over the study period, raw data at the designed sample size, or very near the143designed sample size, was collected from residential and non-residential LRS customers.144Export and delivery data was collected for the full population of residential and non-145residential taking service under Schedule 136 over the study period. The full population146data provided and samples of 15-minute interval data, respectively, by the end147of the study period.

148 Q: Did you f

Did you find any errors in the raw data?

A: Yes. Over the course of the study period, I noticed two reoccurring problems. First, some
IDs (meters) missed readings at various intervals on random days throughout each month
of the study. There was no pattern in which meter, intervals, or days failed to produce
readings. Random interval data was missing from the delivery, export, or production
registers, and sometimes all three. Second, data from the delivery and export registers of
an ID might be available but without production data. Conversely, data might also be
present for production but not export or delivery.

156	Q:	How did you address the issue of missing data?
157	A:	I used Excel functions to match customer IDs for deliveries, exports, and production for
158		the entire sample set. In the case where data appeared for deliveries and exports but not
159		production, I removed the deliveries and exports so delivery, export, and production data
160		were valid for each customer. I used the same technique when production data was
161		available but no deliveries or exports. The missing data intervals were relatively
162		infrequent and did not appear to have any significant effect on the results.
163	Q:	Is it your opinion that the study provides pertinent detail even with the missing
164		data?
165	A:	Yes. Over the course of the study period, the plotted data provides load shapes that
166		demonstrate when the solar is producing in relation to System and Utah load shapes as
167		illustrated later in my testimony.
168	Q:	Please provide a summary of the Division conclusions of the LRS?
169	A:	The Division recognizes the data from the LRS might produce numerous results
170		depending on how it is analyzed. The Division's analysis centers around two areas of
171		study. First, we analyzed the raw data to produce graphs for all the sample sets for each
172		month to illustrate the timing and quantity of exports. The Division's graphs illustrate
173		delivery, production, and full requirement based on RMP's full requirement formula over
174		15-minute intervals for every day of each of the twelve months in the study. Full
175		requirement is determined mathematically from the delivery, export, and production data
176		by the following formula:

177	Full Requirement = Deliveries + (Production less Exports) ¹³
178	The Division's graphs also illustrate the timing of the total sample exports of customer
179	generation in relation to Utah peak load and System peak load. The Division has not
180	drawn any conclusions at the time of this filing in its analysis of the relationship between
181	Schedule 136 deliveries for residential and non-residential customers.
182	Second, the Division's analysis explores the variability of export generation
183	effects on the system over the study period. Although inconclusive at the time of this
184	filing, the data shows an increase in variability to the grid as a result of customer
185	generation export during certain times of the year. It makes sense that RMP needs to
186	design its system around this variability to maintain reliability. It is a reasonable
187	assumption that additional variability has the potential to wear out certain distribution
188	equipment ¹⁴ at a faster rate than otherwise would occur. The Division cannot quantify
189	how the variability impacts the system at this time but brings up the point as an issue
190	needing further research to study how customer generation exports might affect the
191	system and its reliability, and potentially result in a cost to all ratepayers at some point in
192	time. ¹⁵

193Another way to analyze the variability issue, mainly the wear-and-tear on the194system, is how the system responds should the solar production go away for whatever

 ¹³ RMP, Direct testimony of Kenneth Lee Elder Jr, February 15, 2018, Figure 1, line 146, page 7.
 ¹⁴ For example: regulators, transformer taps, etc. The wear-and-tear is difficult to estimate with any accuracy because the equipment in question is designed to operate for sometimes 50-70 years or thousands of cycles.
 ¹⁵ The Division has not requested any studies from RMP regarding wear-and-tear on its distribution system at this time.

195		reason over a short time on feeders with higher solar penetrations. The Division's
196		illustrations for Schedule 136 residential and non-residential, full population, exports
197		demonstrate this assertion.
198	Q:	Do you have any exhibits to illustrate your claims?
199	A:	Yes. The following exhibits illustrate the variability, timing, and quantity of exports for

June and January of the study period. For brevity, I chose a full sample set for the month of June during peak solar production times and a single residential sample for January for illustrative purposes. Sample sets for all the months during the study period including temperature and precipitation totals, System and Utah load information, and other export data, can be found in confidential Appendix A at the end of my testimony.¹⁶

Illustration 2, LRS New Sample Residential, offers the profile for June, 2019. 205 June illustrates the timing, amount, and variability that the system sees during one of the 206 207 summer months in kilowatts ("kW"). The data used to compile the graph is the mean of the daily average (the interval data for each meter is averaged daily and then the days of 208 the month averaged to arrive at the average export, deliveries, and production for all 209 meters at each interval for the month). Full requirement is determined using the above 210 formula for each interval and is compiled in the same manner by finding the mean of the 211 daily average for deliveries, plus the net of exports less production. The third standard 212 deviation is determined from the daily averages for each interval. The third standard 213

¹⁶ See 17-035-61_DPU Exhibit 1.1_Davis Dir_PH II_Residential and Non-Residential Compiled Graphs CONF_3-3-20.

¹⁷ Appendix A contains temperature and precipitation for each month of the study. See <u>https://www.weather.gov/slc/CliPlot</u>.

226	the variability and will draw its conclusions in the next round of testimony. Although
227	distribution equipment is designed to meet load under such variable conditions, the
228	addition of weather related or other solar induced variability attributes likely cause
229	additional wear-and-tear on system components. I discuss this in more detail later in my
230	testimony.
231	Illustration 3 shows the total exports for the month of June by hour of the day.
232	This graph illustrates the sum of the daily sum exports (the interval data for each meter is
233	summed daily and then the days summed to arrive at the total export for all meters at
234	each interval for the month). The sum of the daily sum portrays a better representation of
235	what the system impact is for the interval timing and amount of exports from the LRS
236	Schedule 136 residential customer sample.

237

- Illustrations 4 through 7 illustrate the delivery, export, production, and total
 export profiles for the LRS Schedule 136 Non-Residential, and Original 36 NEM
- samples, respectively, for June, 2019.
- 242

Illustration 4

Illustration 5

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

245 **Illustration 6** 246

244

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

Illustration 7

249

250	Graphing the exports for the Schedule 136 residential and non-residential full
251	population in a similar way is challenging due to the amount of data. The residential data,
252	as of December, comprises over lines of 15-minute interval data. The non-
253	residential produces just over lines of data. The Division uses a different method to
254	illustrate the export amount and timing due to the large amount of data compared to the
255	prior illustrations by plotting the exports by daily time points. The analysis first finds the
256	mean of the daily average as before but then plots those time points for each day of the
257	month. Illustrations 8 through 11 illustrate the residential and non-residential time points
258	and total exports, respectively.

Illustration 8

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

260 **Illustration 9** 261

262

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

263

Illustration 10

267		The significance of Illustrations 8-11 is that the system has to respond accordingly
268		in a timely manner should the solar generation drop off and return for whatever reason to
269		keep the grid reliable.
270	Q:	Have you prepared graphs that illustrate the relationship of the samples to Utah
271		and System load?
272	A:	Yes. Illustration 12 plots the System and Utah load, evening peaks, and the total sample
273		exports from the LRS for June, 2019.
274		Illustration 12

276	Illustrations 13 and 14 show load shapes for residential customers and the
277	relationship of exports to System and Utah load with the addition of morning peaks for
278	January, 2019.

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

284	A:	Yes. RMP does not track customer generation total exports on an hourly basis as depicted
285		in Illustrations 13 and 14. RMP's response to Division Data Request 7.1 ¹⁸ provides data
286		on a monthly basis for total exports in Utah for the period of January 2019 through
287		December 2019 shown in Table 15.
288		Table 15

289

290	Q:	Please explain the difference between the exported amounts shown in Illustrations
291		13, 14, and those in Table 15?

Illustrations 13 and 14 show total exports on an interval basis for the LRS whereas Table 292 A:

15 shows monthly exports for all solar generation in Utah. The System and Utah peak 293

- load data¹⁹ in Illustrations 13 and 14 are sorted to depict the max load hour for all days in 294
- 295

the given month. The Utah total LRS exports is the sum of the daily sums for each

¹⁸ RMP response to Division Data Request 7.1, Attachment DPU 7.1, February 10, 2020.

¹⁹ RMP response to Division Data Request 6.1 and 6.2, Attachment DPU 6.1-1 CONF

interval and then converted to an hourly total by taking the max of the four intervalsduring each hour over the 24 hour period.

298 Q: What conclusions can you draw from your analysis of the LRS data?

- The Division concludes that the current level of customer solar generation exports 299 A:) offset little if any of the System or Utah morning and evening 300 (roughly peak load at any time of the year. The graphs illustrate that solar reduces deliveries 301 during the non-peak daytime hours and pushes excess generation to the grid as virtual 302 303 storage where it is ultimately used as bill credits on solar customers' bills for both 135 and 136 customers. At the current penetration levels and timing of customer generation 304 compared to Utah coincident load and System load of roughly and 305 ²⁰ respectively, demonstrates that customer generation provides limited benefits 306
- 307 during peak periods.
- However, the amount and timing of customer generation may prove to be useful in smaller, real-time balancing applications rather than consistent load for which otherwise planned purchases or generation can be avoided.

311 Q: What other observations have you made from your LRS analysis that raises 312 Division concerns?

A: The bi-directional flow of customer generation raises questions about the wear-and-tear
on the system to reliably meet load. PacifiCorp's integrated resource plan ("IRP") studies

²⁰ RMP response to Division Data Request DPU 6.1-1 5th Supplemental CONF.

315		customer generation (Private Generation) as a reduction to load. ²¹ While load is often
316		reduced during solar generation hours, the relationship with the grid is more complex
317		than a simple load reduction. Customer generation, even at the relatively small current
318		penetration level, is not simply a reduction of load like demand side management
319		("DSM") because it uses the system differently and should be modeled as such.
320	Q:	Please explain what you mean customer generation uses the system differently.
321	A:	Solar generation is an intermittent resource that produces during daylight hours. The
322		downside to the technology is that it can drop off and return over short periods of time, or
323		remain marginal for longer periods of time. It is a challenge to forecast when these cycles
324		might occur making its capacity contribution ²² low.
325		Whereas DSM reduces load and therefore costs over a 24/7 period throughout the
326		year, solar pushes to the grid when production exceeds usage and pulls from the grid
327		when usage exceeds production. It fluctuates throughout the 24/7 period depending on
328		other attributes.
329	Q:	Did you draw any conclusions from the LRS?

330 A: Yes. The Division analyzed the standard deviation of the mean of daily averages for all
331 the sample sets and Schedule 136 full population. Although inconclusive at this filing

²¹ PacifiCorp's 2019 Integrated Resource Plan, Volume 1, Chapter 5, Load and Resource Balance, Private Generation, pg. 107.

²² Capacity contribution is defined as "The capacity contribution of wind and solar resources, represented as a percentage of resource capacity, is a measure of the ability for these resources to reliably meet demand over time. PacifiCorp 2019 IRP, Volume 1, Chapter 7, New Resources, Wind and Solar Resources, at page 177.

332		because the Division has not completed its analysis of the standard deviation of non-solar
333		customer usage patterns, the LRS samples do show an increase in standard deviation
334		during solar production during certain times of the year, mainly the summer months. This
335		is an area the Division considers a need for further research and analysis as customer
336		generation increases.
337	Q:	If further analysis reveals that the variability is a result of solar generation, how
338		might the variability impact the system?

339 A: Electricity, by its very nature, has to have a demand for supplied generation. Customer generation is either consumed on-site or exported to the grid. Many factors, from weather 340 systems, the time-of-day, system failures, etc., can lead to solar customer delivery and 341 342 export variability throughout the day, month, and year. In real time, solar customers might be pulling from the grid and within an instant exporting to the grid for whatever 343 reason. Of course, such instant changes might be localized to a few customers or spread 344 345 more broadly. The distribution system and fleet generation resources have to be available and adjust accordingly to keep the system reliable. This likely leads to additional wear-346 and-tear. 347

348 Q: Is it your opinion that this variability is currently an issue on RMP's system?

349 A: I have no evidence at the time of this filing to indicate if there are system issues at the
350 current penetration level because of customer generation. The Commission may choose
351 to direct RMP to study this issue and file its conclusions in the future.

352 Q: Is the Division concerned with reliability issues at the current penetration levels?

Not at the current penetration levels. However, if customer generation penetration levels 353 A: increase, it is intuitive that the distribution system components will likely have to make 354 355 adjustments more frequently to maintain system reliability. This means that system components might wear out faster than normal, leading to increased costs to all rate 356 payers. 357

The National Renewable Energy Laboratory studies distributed generation to gain 358 an understanding of bi-directional power flows on traditional distribution systems. When 359 360 power is injected into the electric system, the voltage at the location increases such that high penetrations of Distributed Generation Photo Voltaic ("DGPV") might raise the 361 voltage beyond the acceptable range, requiring the addition of voltage-regulating 362 equipment. On a circuit with no DGPV present, the voltage along the feeder decreases as 363 distance from the substation increases. The voltage at the distribution substation is 364 normally kept high, and tap-changing transformers and/or switched capacitor banks are 365 used to further compensate for the voltage drop.²³ 366 Can you summarize your conclusions from the Division's analysis of the LRS? **Q**: 367 Yes. All things considered, customer solar generation at the current penetration level 368 A: offers little if any offset to system generation costs, especially at the peak times of the 369 day. Additionally, customer solar generation seems to inject an unknown amount of 370 variability to the system, at least at certain times of the year. The LRS conclusions

²³ National Renewable Energy Laboratory, Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System, September 2014, Appendix B. DGPV Impacts on Distribution Systems-Voltage Control, pg. 65-66, https://www.nrel.gov/docs/fy14osti/62447.pdf.

372		provide evidence of how much and when customer generation hits the grid as ordered by
373		the Commission. The next step is to use that evidence to inform the design of a
374		reasonable export credit rate.
375		VI. EXPORT CREDIT RATE
376	Q:	Has the Division calculated a rate for export credits?
377	A:	No. The Division supports an avoided cost method that aligns system costs and benefits
378		to the timing and quantity of customer generation exports that are sent to the grid. The
379		necessary inputs and modeling needed to determine such a rate requires a collaborative
380		effort between RMP and parties. However, RMP's proposal does appear to be in the
381		range of the rough magnitude of the value customer generation exports provide the
382		system, based on our review of some market data.
383 384	Q:	Have you reviewed RMP's proposed Schedule No. 137 rate structure for customer generation export credit?
385	A:	Yes. RMP is proposing a new tariff, Schedule 137, which offers a variable export rate to
386		behind-the-meter ("BTM") generation customers based on the time of day and
387		winter/summer seasons including an adjustment for line losses and integration costs.
388		RMP proposes that Schedule 137 become effective January 1, 2021. RMP also proposes
389		a \$150 non-refundable application fee and a \$160 customer generation meter fee.
390	Q:	Does the Division agree that RMP's proposed Schedule 137 is reasonable and in the
391		public interest?

392	A:	The Division generally supports RMP's approach to proposed Schedule 137 and export
393		credit pricing at this time. The Division's conclusions from the LRS illustrate that
394		customers with BTM generation use the system differently. More to the point, the LRS
395		shows that customer generation exports or offsetting of deliveries have minimal impact
396		during System or Utah peak load periods at any time of the year. At the time of this
397		filing, the Division has not fully vetted all of RMP's proposal as discussed later in my
398		testimony, especially with regard to contemporaneous market prices for similar volumes
399		of energy at similar times. It does appear to be close to the value of the generation
400		provided; it is fairly clear that it is nearer an actual value than the existing transition rate.
401		RMP's proposed rate schedule incents customer generators to use their own
401 402		RMP's proposed rate schedule incents customer generators to use their own generation during times of the day that benefit them by offsetting higher delivered energy
402		generation during times of the day that benefit them by offsetting higher delivered energy
402 403		generation during times of the day that benefit them by offsetting higher delivered energy rates versus export rates, while providing system cost avoidance that RMP would
402 403 404		generation during times of the day that benefit them by offsetting higher delivered energy rates versus export rates, while providing system cost avoidance that RMP would otherwise incur to meet load. RMP's proposed rate schedule also rewards customer
402 403 404 405		generation during times of the day that benefit them by offsetting higher delivered energy rates versus export rates, while providing system cost avoidance that RMP would otherwise incur to meet load. RMP's proposed rate schedule also rewards customer generators at a higher rate when their exports likely avoid higher peak load costs in the

409 Q: Does RMP's rate schedule eliminate the virtual storage issue associated with net
410 billing schemes?

411 A: Virtual storage is necessary for net billing schemes to work. Customer generation exports
412 are recorded as credits during daytime hours over the course of a month when residential

413 loads are low. The utility uses the exports to meet load and potentially curtail its own414 fleet generation.

The exports, as illustrated by the graphs, occur during the time of day when the utility's costs to produce energy are lower compared to the costs to produce energy at peak times. Thus, there is a discrepancy between pricing of when the utility receives exports and the energy it delivers.

When residential and non-residential customers use their solar production during daytime hours to meet their loads, the virtual storage issue subsides, and customer bills reflect the offset of delivered energy costs on a more unitary basis. Illustration 16 depicts Schedule 136 residential full-population deliveries for the month of June. The deliveries approach zero during the peak solar production time of the day. The Division's analysis of the timing relationship between customer production, consumption, and export versus deliveries is not conclusive at this time.

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

Illustration 16

428	Q:	Can you discuss the variance between the current rate and RMP's proposed rate
429		design?
430	A:	Yes. The current rates under Schedule 136 ²⁴ range between \$0.092 for residential and
431		\$0.034 for Schedule 6 customers. These rates are the result of a stipulation between
432		parties in Docket No. 14-035-114. If approved, the proposed rates treat all customer
433		exports in a similar manner. The value of different customer exports to the system seems
434		unlikely to vary much. The overall proposed rate ²⁵ is \$0.015261, an eighty-three percent
435		reduction for residential customers.

²⁴ See <u>https://www.rockymountainpower.net/content/dam/pcorp/documents/en/rockymountainpower/rates-regulation/utah/rates/136</u> Transition Program for Customer Generators.pdf.

²⁵ RMP, Meredith Direct Testimony, Docket No. 17-035-61, Exhibit RMP (RMM-1), Sheet No. 137.3, June-September, \$0.026293 per kWh for all On-Peak, \$0.017080 per kWh for all Off-Peak, October-May, \$0.02409 per kWh for all On-Peak, \$0.013247 per kWh for all Off-Peak.

436	Although such a large reduction might be cause for invoking gradualism
437	principles in ordinary circumstances, the stipulation in Docket No. 14-035-114
438	established a structure providing gradualism for customers with self-generation before the
439	effectiveness of the rate to be determined here. In other words, no actual customer is
440	likely to experience the immediate and dramatic reduction in compensation rates the
441	eighty-three percent reduction would otherwise suggest.
442	The current docket was opened to explore an export credit rate and method that
443	more accurately reflects the costs and benefits of customer generation. The Division
444	understands that transitioning from a billing scheme that credits kWh for kWh to
445	something that correlates to avoided system costs is bound to produce different results.
446	However, the Division supports a rate that better reflects avoided system costs, which
447	vary by the time of day.
448	Net metering billing schemes that credit kWh for kWh also create the problem of
449	solar customers perhaps not paying a reasonable share of fixed system costs (virtual
450	storage)the cause of this entire six-year process. Ultimately, if not addressed, those
454	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +

451 costs would be shifted to other rate payers during a general rate case. RMP's proposed
452 rate design mitigates this cost shifting problem by delivering at a rate that includes fixed
453 system costs while crediting at a rate that allows RMP to retain revenues to offset system
454 costs.

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

455		The Division concludes RMP's proposal is a better method for export
456		compensation because it is based on avoided cost theory ²⁶ where export is paid at a rate
457		that approximates a least-cost proxy generation resource that could take its place across a
458		24-hour day on any given day of the month throughout the year. Depending on where this
459		proxy resource is located, the cost to operate it is a surrogate for BTM generation because
460		other customers are not willing or expected to pay a higher cost for their energy needs
461		when they can purchase it at a lower rate. The avoided cost methodology provides an
462		opportunity for costs and benefits to be added to the basic avoided energy charge when
463		prudent.
464		RMP's proposed rate structure offers rates ²⁷ that compensate BTM generation
465		customers a credit that offsets avoided costs that RMP has control over plus line losses
466		that are avoided due to the distance between fleet generation and load. In-turn, the full
467		schedule delivery rate is such that RMP has an opportunity to recover fixed system costs.
468	Q:	Are customer generation and qualifying facility resources equivalent?
469	A:	No. Solar Qualifying facilities ("QFs") are utility scale generation resources that supply
470		power to the grid under either short-term or long-term contracts including capacity and
471		reliability standards. QFs also provide guarantees with financial penalties for failure to
472		meet delivery requirements. The utility can rely with a relatively high degree of

²⁶ See Commission Docket 03-035-14, In the Matter of the Application of PacifiCorp for Approval of an IRP Based Avoided Cost Methodology for QF Projects Larger Than 1 Mega Watt.

²⁷ Again, the Division is opining in this testimony about the structure of the rates proposed and will continue to evaluate the actual rate in light of market conditions in later rounds of testimony.

490		1.5261 cents per kWh is just and reasonable?
489	Q:	Is there any supporting evidence that RMP's proposed overall export credit rate of
488		be set differently if the export credit has different value in May than in summer months.
487		This raises the question of whether the summer rate blocks in other schedules should also
486		significant impact to the rate design but needs more time for analysis of its implications.
485		the summer months. ²⁸ The Division does not anticipate that this change bears a
484		prices are higher from 7:00 a.m. to 9:00 a.m. than between 4:00 p.m. and 6:00 p.m. as in
483		scalers for the month of May better align with the winter on-peak definition, as May
482		RMP witness, Mr. MacNeil, explains in his direct testimony that the hourly price
481		compensation structures here match the seasonal rate changes in other tariffs.
480		include May as a summer month. Generally, it would be preferable to have the
479		May in the winter months (October through May) versus current rate schedules that
478	A:	At the time of this filing, the Division has not vetted RMP's proposed changes to include
477	Q:	Is the Division concerned with the winter and summer seasons proposed by RMP?
470		than those in the interconnection agreement.
476		than those in the interconnection agreement.
475		varies in capacity across the state and does not have to meet any kind of standards other
474		plan its generation around those resources being available. BTM customer generation
473		confidence in delivery of energy from solar QF multiple years into the future and may

²⁸ RMP witness, Daniel J. MacNeil, Direct Testimony, Docket No. 17-035-61, pg. 11 at lines 219-222.

491	A:	Yes. The California Independent System Operator ("CAISO") publishes an interactive
492		day-ahead and real-time marginal pricing map covering the West. ²⁹ As noted earlier, the
493		amounts of generation coming from customer-owned generation in the relevant schedules
494		more closely resemble small, balancing-type purchases than planned purchases or
495		generation. Accordingly, a real-time marginal price is more likely to reflect the value of
496		the generation at issue in this docket. For example, the map illustrates a real time
497		marginal energy price on February 10, 2020 at hour 12-13 for PacifiCorp East of \$11.96
498		per MWh, or \$0.01196 per kWh. The nodal value of delivered energy includes energy,
499		congestion, and losses. Note that RMP uses an hourly load aggregation point ("LAP")
500		shape based on a 15-minute PacifiCorp East ("PACE") EIM load aggregation point for
501		the most recent thirty-six month period ending October 2019. ³⁰ Illustration 17 shows the
502		pricing for February 10, 2020.

 ²⁹ See California Independent System Operator ("CAISO"), <u>http://www.caiso.com/PriceMap/Pages/default.aspx</u>.
 Other sources that produce similar results are the NYISO, MISO, ISO New England, ERCOT, IESO, and AESO.
 ³⁰ RMP witness, Daniel J. MacNeil, Direct Testimony, Docket No. 17-035-61, pg. 4, lines 87-89.

for all hours and nodes beginning February 1, 2019 from S&P Global Market 506

Intelligence.³¹ 507

> ³¹ S&P Global Market Intelligence. (Membership required). 17-035-61 DPU Exhibit 1.2 Davis Dir PH II S&P Global Market Pricing_3-3-20.

https://platform.mi.spglobal.com/web/client?auth=inherit&overridecdc=1&ignoreidmcontext=1#markets/commo ditiesChart?SerType=0&Source=7&ComType=1&Period=70&Fill=Monthly&AsOf=2020-02-01&selectedseries=0|s=7|l=15358|i=435|m=0,0|s=7|l=15379|i=435|m=0,0|s=7|l=15386|i=435|m=0

511	Illustrations 17 and 18 provide evidence that RMP's proposed rates are aligned
512	with the market, which includes all generation types from fleet generation and qualifying
513	facilities. The Division plans to review market pricing from multiple sources and include
514	its conclusions in future rounds of testimony.

Q: Do you have other evidence that supports the reasonableness of RMP's proposed 515 export credit rate? 516

- A: Yes. RMP uses its Generation Regulation Initiative Decision Tool ("GRID") to model 517
- impacts from system configuration changes such as the IRP updates and avoided cost 518
- schedules to determine the rate QFs are offered for energy they export to the grid. 519

520		Schedule 37, Avoided Cost Purchases from Qualifying Facilities, is well vetted, has been
521		in place for several years, and is peer reviewed on a quarterly basis. The assumptions that
522		inform the GRID model consist of load shapes, the official forward price curve, current
523		IRP results, and recent changes to executed contracts. ³² Division witness, Dr. Abdulle,
524		discusses avoided cost methods and RMP's inputs in his direct testimony.
525		The Division concludes RMP's proposal utilizes a method that better reflects the
526		actual costs and benefits to determine a reasonable rate for customer generated exports. It
527		makes sense that energy exported to the grid from customer generation offsets energy, at
528		least to some degree, produced by fleet resources, QFs, or front office transactions
529		("FOTs") with associated line losses and integrations costs. As customer generation
530		penetration increases, ancillary services, such as frequency and VAR correction, might
531		become valuable thus increasing the export credit.
532	Q:	Does the Division find RMP's proposal to charge \$150 for an application fee and
533		\$160 for a customer generation metering fee reasonable and in the public interest?
534	A:	Yes. The Division is reviewing RMP's analysis for both fees at the time of this filing.
535		Based on its findings thus far, the Division believes these charges are reasonable. For
536		distributed generation customers, modern metering is essential. RMP's proposal will help
537		in that endeavor. Advanced metering (AMI meters) have better functionality and aid in
538		future cases by providing better data that describes how the system performs with
539		distributed generation. In order to accurately set rates for these customers, the public

³² RMP witness, Daniel J. MacNeil, Direct Testimony, Docket No. 17-035-61, pgs. 5-6, lines 96-125.

540		interest requires more sophisticated metering equipment, of the type covered by the
541		proposed charge.
542	Q:	Does the Division find RMP's proposal to make Schedule 137, if approved, effective
543		January 1, 2021?
544	A:	Yes. When a more accurate rate is ascertained, it should be used. The Division
545		understands that customers who have contracts in place on December 31, 2020 will have
546		twelve months to interconnect and six additional months for large non-residential
547		customers if needed. Then, they will have years under the more advantageous rate
548		structures in place currently. New customers have no right to expect a rate that is not
549		cost-based to continue as they join the system.
550		VII. SUMMARY
551	Q:	Will you summarize your analysis and findings for Phase Two of this docket and
552		offer your recommendations?
553	A:	Yes. The intent of customer generation is to give customers an opportunity to generate
554		enough energy to offset their energy needs throughout the year. Customer generation is
555		not comparable to a qualifying facility. The fact that solar generation is dependent upon
556		sunlight makes it a non-dispatchable generation resource. During times of production,
557		energy is consumed on site or exported to the grid as a credit. This credit offsets the
558		customer's bill either as a kWh adjustment (Schedule 135) or kWh converted to a dollar
559		amount (Schedule 136) throughout the year. The Division's analysis of the LRS data
560		clearly shows that solar customers use the system differently than non-solar customers.

561	My testimony discusses the Division's analysis of the LRS and general support of		
562	RMP's proposed Schedule 137 customer generation compensation rates at this time. The		
563	LRS produced a voluminous amount of raw data that can be analyzed in any one of		
564	numerous ways depending on what the researcher is interested in learning. The		
565	Division's analysis centered on how much and when customer generation impacts the		
566	grid. During its analysis, the Division noticed a higher level of variability during certain		
567	months of the year. The variability raises questions about the impacts this may have on		
568	the system and a call for further research as BTM solar generation penetration levels		
569	increase.		
570	RMP books the export credits as net power costs ("NPC") in its energy balancing		
570 571	RMP books the export credits as net power costs ("NPC") in its energy balancing account ("EBA"). ³³ EBA charges are added to all customer bills as a rider and not		
571	account ("EBA"). ³³ EBA charges are added to all customer bills as a rider and not		
571 572	account ("EBA"). ³³ EBA charges are added to all customer bills as a rider and not avoidable if the customer has BTM generation. It is prudent to ensure the export credit		
571 572 573	account ("EBA"). ³³ EBA charges are added to all customer bills as a rider and not avoidable if the customer has BTM generation. It is prudent to ensure the export credit addition to NPC reflects actual costs.		
571 572 573 574	account ("EBA"). ³³ EBA charges are added to all customer bills as a rider and not avoidable if the customer has BTM generation. It is prudent to ensure the export credit addition to NPC reflects actual costs. The Division has not fully vetted RMP's proposed Schedule 137 at the time of		

³³ See Docket No. 14-035-114, Stipulation, August 28, 2017, pg. 11, ¶ 32. https://pscdocs.utah.gov/electric/14docs/14035114/296270RMPSettleStip8-28-2017.pdf.

578		fixed system costs. However, the Division needs time to analyze RMP's and other
579		proposals in greater detail before recommending its approval to the Commission.
580	Q:	Does this conclude your direct testimony?
581	A:	Yes it does.
582		
583		
584		
585		
586		
587		
588		
589		
590		
591		
592		
593		
594		
595		
596		
597		
598		

599	APPENDIX A
600	Compiled LRS Graphs for Residential and Non-Residential Samples
601	CONFIDENTIAL – Subject to Utah Public Service Commission Rules R746-1 602 and 603
602	
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

617

SYSTEM and UTAH LOAD to SAMPLE EXPORTS

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

619

LRS NEW SAMPLE RESIDENTIAL

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

621

LRS NEW SAMPLE RESIDENTIAL EXPORT TOTALS

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

623

LRS NEW SAMPLE NON-RESIDENTIAL

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

625

LRS NEW SAMPLE NON-RESIDENTIAL EXPORT TOTALS

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

627

628

LRS ORIGINAL 36 NEM

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

629

LRS ORIGINAL 36 NEM EXPORT TOTALS

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

631

LRS STUDY SCH 136 RESIDENTIAL

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

633

LRS STUDY SCH 136 TOTAL EXPORTS

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

635

LRS STUDY SCH 136 NON-RESIDENTIAL

636

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

637

LRS STUDY SCH 136 NON-RESIDENTIAL TOTAL EXPORTS

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

639

TEMPERATURES for SALT LAKE CITY

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

PRECIPITATION for SALT LAKE CITY

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

643

644

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

646

647

Docket No. 17-035-61 Exhibit 1.0 DIR-PH II Robert A. Davis

