Witness OCS – 5D

BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

) In the Matter of the Application of Rocky Mountain Power for Authority to Increase its Retail Electric Utility Service Rates in Utah and for Approval of its Proposed Electric Service Schedules and Electric Service Regulations	Docket No. 20-035-04 Phase II Direct Testimony of Ron Nelson On behalf of the Office of Consumer Services
ý)	

September 15, 2020

Table of Contents

	Page
	1
II. PURPOSE AND RECOMMENDATIONS	4
III. COST OF SERVICE STUDIES	9
A. The Influence of Economic Incentives on Cost of Service Studies	10
B. Objectives & Background	13
C. Concerns with Rocky Mountain Power's ECOSS approach	19
D. ECOSS Conclusions and Recommendations	48
E. Concerns with Rocky Mountain Power's MCOSS approach	51
	54
V. RATE DESIGN	58
A. Rate Unbundling	58
B. Residential Rate Design	73
C. C&I Interruptible Load Pilot (Schedule 35)	85
D. C&I Critical peak pricing	94
VI. ADVANCED METERING INFRASTRUCTURE (AMI)	95
A. Additional process and detail should be required before RMP's AM	project
is approved	101
B. RMP's Cost-Benefit Analysis is insufficient	114
C. Recommendations related to AMI and grid modernization investme	nts .117
VII. CONCLUSION	121

1 <u>I. INTRODUCTION</u>

2	Q.	Please state your name, business address, and occupation.
3	A.	My name is Ron Nelson. I am a Director with Strategen Consulting. My
4		business address is Suite 400, 2150 Allston Way, Berkeley, California
5		94704.
6		
7	Q.	ON WHOSE BEHALF ARE YOU TESTIFYING IN THIS PROCEEDING?
8	A.	I am testifying on behalf of the Utah Office of Consumer Services ("OCS").
9		
10	Q.	PLEASE DESCRIBE YOUR FORMAL EDUCATION AND
11		PROFESSIONAL EXPERIENCE.
12	A.	Currently, I am a Director at Strategen Consulting. The Strategen team is
13		nationally recognized for its thought leadership and deep expertise in rate
14		design, renewable program development, grid modernization, and new
15		grid technologies including distributed and centralized renewable energy,
16		energy storage, smart grid technologies, and electric vehicles. During my
17		time at Strategen, I have worked with consumer advocates, trade
18		associations, non-profits, and commissions on issues related to cost of
19		service modeling, rate design, grid modernization, distributed energy
20		resource ("DER") valuation and integration, and performance-based
21		regulation ("PBR").

20-035-04

22 Before joining Strategen in early 2018, I worked for the Minnesota 23 Attorney General's Office for almost five years, where I led the Office's 24 work on cost of service, rate design, renewable energy program design, 25 performance-based regulation, and utility business model issues. Before 26 that, I worked for two universities and the United States Geological Survey 27 as an economic researcher. I have a Master of Science from Colorado 28 State University in Agriculture and Resource Economics, and a Bachelor 29 of Arts in Environmental Economics and a Minor in Mathematics from 30 Western Washington University. 31 32 Q. HAVE YOU TESTIFIED IN SIMILAR REGULATORY PROCEEDINGS 33 PREVIOUSLY? 34 Α. Yes. I have testified in 18 proceedings in Minnesota, Pennsylvania, 35 Oklahoma, Illinois, New Hampshire, and Ohio. The issues covered in

these proceedings include marginal and embedded cost of service
studies, revenue apportionment, rate design, renewable program design,

- 38 fuel clause adjustments, formula rates, decoupling, performance-based
- 39 regulation, multi-year rate plans, performance metrics, distributed energy
- 40 resource (DER) interconnection, DER compensation, DER integration,
- 41 and smart inverter specifications.
- 42 I have also assisted with testimonies and regulatory analysis in
 43 Hawai'i, Washington D.C., Maryland, Minnesota, Massachusetts,

	OCS-	5D Nelson	20-035-04	Page 3 of 124
44		California, North Carolina, a	and the Federal Energy Regulate	ory
45		Commission ("FERC"). The	issues covered in these procee	dings include
46		electric vehicle rate design	and infrastructure, wholesale ma	arket tariff
47		design, cost-benefit analysis	s, community-based solar progr	ams, rate
48		design, cost and rate unbur	dling, integrated resource planr	ning, energy
49		storage integration, and DE	R interconnection.	
50		A summary of my res	sume is attached as Exhibit OC	S 5.1D.
51				
52	Q.	DO YOU HAVE OTHER RE	ELEVANT EXPERIENCE RELA	TED TO
53		EVALUATING DO YOU HA	VE OTHER RELEVANT EXPE	RIENCE
54		RELATED TO EVALUATIN	IG RMP'S PROPOSALS IN TH	IS CASE?
55	A.	Yes. I am currently serving	as the Hawai'i Public Utilities Co	ommission
56		("Hawai'i Commission") sub	ject matter expert and technical	advisor for its
57		advanced rate design, Dock	et No. 2019-0323. This docket	is examining
58		alterations and improvemer	ts to residential, low and moder	rate income,
59		commercial and industrial, e	electric vehicle, and other tariff r	ate designs.
60		Among other things, I am a	dvising the Hawai'i Commission	on cost and
61		rate unbundling, which is ar	n important issue in this case. A	dditionally, I am
62		advising the Hawai'i Comm	ssion on how to develop custor	ner class tariffs
63		for charging of utility service	es, while efficiently compensatin	g DERs
64		through other distinct tariff of	or programs.	

	OCS-	5D Nelson	20-035-04	Page 4 of 124
66	Q.	HAVE YOU PREVIOUSLY PROVIDED TESTIMONY BEFORE THE		
67		UTAH PUBLIC SERVICE	COMMISSION ("PSC")?	
68	Α.	No.		
69		II. PURPOSE AND RECOM	MMENDATIONS	
70	Q.	WHAT IS THE PURPOSE	OF YOUR TESTIMONY?	
71	A.	The purpose of my testimo	ny is to evaluate and review Ro	cky Mountain
72		Power's ("RMP") applicatio	n for a rate increase in the State	e of Utah and to
73		make recommendations in	the areas of embedded cost of	service, rate
74		design, and advanced mete	ering infrastructure ("AMI") busir	iess case.
75				
76	Q.	PLEASE PROVIDE A DES	CRIPTION OF THE EXHIBITS	AND
77		WORKPAPERS RELATED	TO YOUR DIRECT TESTIMO	NY.
78	Α.	In addition to my resume, I	have attached the following exh	nibits and
79		workpapers:		
80		• Exhibit OCS 5.2D consi	sts of responses to data reques	ts referenced in
81		this testimony and the a	ttached exhibits.	
82		• Workpaper OCS 5.1D ir	ncludes summaries of each of th	ne modified
83		Embedded Cost of Serv	rice Study ("ECOSS") models ا ا	present.
84		• Workpaper OCS 5.2D c	ompares RMP's unbundled rate	e components to
85		cost-based rate compor	nents estimated within RMP's E	COSS.

	OCS	-5D Nelson	20-035-04	Page 5 of 124
86		• Workpaper	OCS 5.3D is a bill impact analysis	of RMP's proposed
87		residential r	rates.	
88		• Workpaper	OCS 5.4D includes my analysis of	RMP's AMI costs and
89		benefits.		
90				
91	Q.	PLEASE PRO	VIDE A HIGH-LEVEL SUMMARY	OF YOUR ANALYSIS
92			IENDATIONS REGARDING RMP	'S PROPOSED ECOSS.
93	A.	RMP's propose	ed ECOSS relies on numerous trac	litional assumptions and
94		methodologies	that do not reflect the current pow	er system transition. As
95		the penetration	s of renewable energy and advance	ced technologies, such as
96		advanced grid	functionality and AMI, become con	nmon, the ECOSS needs
97		to be updated	with more appropriate and modern	assumptions and
98		methods. RMP	's proposed ECOSS has failed to o	do so.
99		To the e	extent that the PSC relies on an EC	COSS for revenue
100		apportionment	and rate design in this case, I reco	ommend that the PSC
101		rely on a modif	ied ECOSS that is more reflective	of the modern power
102		system. Specif	ically, I recommend modifications t	o the (1) classification
103		and allocation	of production and transmission cos	ots, (2)
104		subfunctionaliz	ation of the primary and secondary	/ distribution, and (3)
105		functionalizatio	n of meters.	
106		Lastly, I	strongly urge the PSC to reject RM	/IP's proposed
107		subfunctionaliz	ation of production and transmission	on costs into fixed and

	OCS-	5D Nelson	20-035-04	Page 6 of 124		
108		variable costs. RMP's propo	sed subfunctionalization is, in fa	act, not a		
109		subfunctionalization step be	subfunctionalization step because it has no impact on class cost			
110		allocation. Instead, RMP's p	roposed subfunctionalization of	fixed and		
111		variable cost is an attempt to	o inject a rate design step into th	ne ECOSS.		
112		The practical implication is t	nat RMP designs rates based o	n information		
113		that is not derived from the E	ECOSS and is therefore not cos	t-based.		
114		Approving such a methodolo	ogy would go against decades c	f ratemaking		
115		precedent, not only in Utah I	out in the entire United States.			
116						
117	Q.	PLEASE PROVIDE A HIGH	-LEVEL SUMMARY OF YOUR	ANALYSIS		
118		AND RECOMMENDATION	S REGARDING RMP'S RESIDI	ENTIAL RATE		
119		DESIGN PROPOSALS.				
120	A.	RMP proposes to separate t	he residential class into single a	and multi-		
121		family tariffs and recommend	ds rate designs for each. RMP's			
122		recommended rate designs				
123			result in inequitable bill impacts	with 70		
		percent of customers with lo	wer consumption (less than 1,0	with 70 00 kWh)		
124		percent of customers with lo realizing rate increases of or	ver 9 percent, while 30 percent	with 70 00 kWh) of higher		
124 125		percent of customers with lo realizing rate increases of or consumption customers (ab	ver consumption (less than 1,0 ver 9 percent, while 30 percent ove 1,000 kWh) receive over a	with 70 00 kWh) of higher 10 percent rate		
124 125 126		percent of customers with lo realizing rate increases of or consumption customers (ab decrease during the summe	result in inequitable bill impacts wer consumption (less than 1,0 ver 9 percent, while 30 percent ove 1,000 kWh) receive over a r months. To help address these	with 70 00 kWh) of higher 10 percent rate e significant bill		
124 125 126 127		percent of customers with lo realizing rate increases of or consumption customers (ab decrease during the summe impacts, I recommend that t	result in inequitable bill impacts wer consumption (less than 1,0 ver 9 percent, while 30 percent ove 1,000 kWh) receive over a r months. To help address these he single-family customer charg	with 70 00 kWh) of higher 10 percent rate e significant bill le be		

20-035-04

129 I agree with RMP's proposal to create a multi-family tariff and its
130 proposed customer charge of \$6. However, I make recommendation for
131 how RMP could improve upon the new multi-family residential offering in
132 its next rate case.
133
134 Q. PLEASE PROVIDE A HIGH-LEVEL SUMMARY OF YOUR ANALYSIS
135 AND RECOMMENDATIONS REGARDING RMP'S PROPOSED C&I

136 **RATE DESIGN**.

137 A. I provide analysis of RMP's proposed interruptible tariff, Schedule 35,

pilot. Utility administered pilots should have a clear objective, evaluation

139 process (i.e., performance target and/or metric), reporting requirements,

and plan for what happen after the pilot (e.g., scale or revise the

141 offerings). Most importantly, every pilot should clearly identify the benefits

142 it will create for ratepayers. RMP's Schedule 35 pilot does not have many,

- 143 if any, of these important components. In Section V.C, I provide
- 144 recommendations to improve RMP's proposed schedule 35 pilot and
- recommend the PSC require that RMP develop a more effective pricingpilot in the future.
- 147

148 Q. PLEASE PROVIDE A HIGH-LEVEL SUMMARY OF YOUR ANALYSIS 149 AND RECOMMENDATIONS REGARDING RMP'S PROPOSED AMI 150 PROJECT.

20-035-04

Page 8 of 124

151	Α.	RMP's proposed AMI project includes spending similar to what other
152		utilities and regulators have referred to as grid modernization investments.
153		While RMP is requesting cost recovery associated with key grid
154		modernization investments, its proposed AMI project is myopically focused
155		on providing meter reading cost reduction benefits. By narrowly focusing
156		the AMI project on meter reading savings, RMP is foregoing any
157		discussion or development of a comprehensive and transparent grid
158		modernization strategy that better leverages demand-side resources,
159		allows the utility and third-parties to provide new energy services, and
160		improves load flexibility. RMP's AMI project is solely focused on how grid
161		modernization investments can provide utility and shareholder benefits as
162		opposed to leveraging grid modernization to provide cost-effective,
163		customer-centric solutions for ratepayers.
164		Unsurprisingly, RMP's own cost-benefit analysis ("CBA") indicates
165		that the AMI project is not cost effective. ¹ RMP's AMI project would
166		eliminate full-time employees and create negative net benefits for
167		ratepayers, while increasing profitability for RMP and its shareholders. The
168		AMI project is clearly unreasonable and should be forcefully rejected by
169		the PSC.

¹ RMP's CBA omits important assumptions, such as carrying charges and the evaluation period. Reasonable inputs for these assumptions result in net negative benefits.

	OCS-	5D Nelson	20-035-04	Page 9 of 124
170		Should RMP requ	uest AMI or grid modern	ization related cost
171		recovery in the future, I	recommend the followin	ıg:
172 173 174 175 176 177 178 179 180		 provide clear y be in future Al require RMP t updated CBA related, cost r consider a del any AMI progr 	guidance to RMP on the MI or grid modernization to file an advanced rate the next time it files for ecovery; and, mand response target c ram that gets approved.	e substance that needs to n cost recovery requests; design roadmap and AMI, or grid modernization or requirement as part of
181	-			
182	Q.	HOW IS THE REMAINE	DER OF YOUR TESTIM	ONY ORGANIZED?
183	Α.	In the next section, I dis	cuss and analyze RMP'	s cost studies. In Section
184		IV, I discuss revenue ap	portionment. In Section	V, I provide analysis and
185		recommendations relate	ed to rate design. In Sec	tion VI, I analyze RMP's
186		AMI project, In Section	/II, I conclude my testin	nony and provide a
187		summary of my recomm	endations.	
188				
189		III. COST OF SERVICE	STUDIES	
190	Q.	WHAT IS THE PURPOS	SE OF THIS SECTION	OF YOUR TESTIMONY?
191	A.	I highlight the deficiencie	es of RMP's embedded	cost of service study
192		(ECOSS) methods. Spe	cifically, I provide analy	sis on RMP's proposed
193		production and transmis	sion subfunctionalizatio	n, distribution
194		subfunctionalization, the	e classification and alloc	ation of production costs,

	OCS-	5D Nelson	20-035-04	Page 10 of 124
195		and advanced metering infr	astructure ("AMI") functionaliza	ation. I also
196		briefly review RMP's margir	nal cost of service study ("MCC	DSS").
197				
198	Q.	HOW IS THIS SECTION O	F YOUR TESTIMONY ORGAN	NIZED?
199	A.	Before I begin discussing th	e methods utilized by RMP wit	thin the ECOSS,
200		I provide a discussion of the	e economic incentives that can	influence
201		decision-making within the	ECOSS modeling process. The	en, in Section
202		III.B, I provide background	on how to conduct a ECOSS a	nd the
203		associated objectives. In Se	ection III.C, I provide my analys	sis of RMP's
204		proposed ECOSS and reco	mmend numerous modificatior	ns to their study.
205		In Section III.D, I provide m	y conclusions and recommend	ation on the
206		ECOSS. Finally, in Section	III.E, I provide my analysis of I	RMP's proposed
207		Marginal Cost of Service St	udy ("MCOSS").	
208				
209		A. The Influence of E	conomic Incentives on Cost o	f Service Studies
210	Q.	BEFORE YOU DISCUSS T	HE DETAILS OF THE COSS,	PLEASE
211		EXPLAIN HOW ECONOMI	C INCENTIVES MAY INFLUE	NCE COST
212		STUDIES.		
213	A.	When evaluating cost studio	es, and the rate designs they ir	nform, decision-
214		makers should consider how	w the economic incentives of fo	or-profit investor-
215		owned utilities ("IOUs") can	impact assumptions within util	ity-sponsored
216		cost of service studies.		

20-035-04

In a perfect world, corporate profit maximization would align with
the objectives of those corporations' customers. However, that is not the
case for IOUs. It is important for decision-makers to understand how IOUs'
economic incentives may not align with public policy goals and ratepayer
interests, so that decision-makers can evaluate cost of service modeling
and rate design proposals more effectively.

223

224 Q. PLEASE PROVIDE EXAMPLES OF WHERE A UTILITY'S ECONOMIC

225 INCENTIVES MAY NOT ALIGN WITH POLICY GOALS OR

226 **RATEPAYER INTERESTS.**

A. There are two interrelated issues that can impact the utilities' perspectivewhen conducting cost studies.

229 First, the price elasticity, or sensitivity, of demand for electricity 230 differs across customer groups. The elasticity of demand measures how 231 much a consumer changes their electricity consumption given a change in 232 its price. Because large customers have more elastic demand than 233 residents, large customers will decrease their demand for electricity more 234 than residents following an equivalent price change, all else constant. This 235 relationship means that utilities can benefit financially from shifting costs 236 from large to residential customers. This presents the utility with an

	OCS-	5D Nelson	20-035-04	Page 12 of 124
237		incentive to shift subjective	cost allocations (and there are	many in cost
238		studies) to classes with less	s elastic demand by increasing	their rates. ²
239		Second, third-party s	ervices act as substitutes for u	tility services.
240		Traditionally, electric utilities	s have had few competitors (e.	g. other utilities
241		or natural gas as a fuel alte	rnative) and never have utilities	s faced
242		competition on the distributi	on system. Currently, technolo	gical
243		improvements, such as sola	ar plus storage, are providing s	ervice
244		opportunities that compete	with those provided by the utili	ty. The presence
245		of this competition impacts	utility incentives in many ways,	potentially
246		prompting them to take acti	ons to make their services mor	e cost
247		competitive through otherwi	ise inefficient rate design chan	ges.
248				
249	Q.	HOW DO THE ECONOMIC	INCENTIVES OF A UTILITY	IMPACT COST
250		STUDIES IN PRACTICE?		
251	A.	The utility perspective is lar	gely informed by its economic	incentives. For
252		this reason, when subjective	e determinations are made witl	nin a cost of
050		acrica study or rate decign	utilities are likely to make as	umptions that

- service study or rate design, utilities are likely to make assumptions that
- 254 benefit their bottom line as would any for-profit business in a similar
- 255 position. This can be especially problematic in cost studies and rate
- 256 design because each process involves numerous subjective assumptions.

² See generally James C. Bonbright, Albert L. Danielsen, & David Kamerschen, Principles of Public Utility Rates (2d ed. 1988).

258	Q.	WHY ARE YOU HIGHLIGHTING THESE PERVERSE ECONOMIC
259		INCENTIVES FOR DECISION-MAKERS?
260	A.	My goal is to ensure that decision-makers understand the economic
261		incentives that influence the perspectives a utility presents in regulatory
262		proceedings and when it constructs cost of service models. My goal is not,
263		however, to demonize the utility, which is simply responding to the
264		regulatory framework and the resulting economic incentives in which RMP
265		operates.
266		
267		B. Objectives & Background
268		i. Traditional Embedded Cost of Service Study Methodology
269	Q.	WHAT IS THE PURPOSE OF AN ECOSS?
270	A.	The purpose of an ECOSS, or a class cost of service study ("COSS") as
271		referred to by RMP, is to categorize costs into bundled cost categories to
272		inform rate design, and to decipher, with as much detail and accuracy as
273		possible, which customer class caused the utility's various embedded
274		costs to inform class revenue apportionment.
275		
276	Q.	HOW IS A TRADITIONAL ECOSS PERFORMED?
277	A.	An ECOSS has three steps:
278		1. Functionalize costs into various categories.

OCS-5D N	lelson
----------	--------

20-035-04

- 2792. Classify costs as related to energy/commodity, demand/capacity, or280customers.
- 2813. Allocate costs to the various customer classes using allocators
- 282 related to energy, demand/capacity, or customer characteristics.
- 283 The principles of cost causation and beneficiary pays are used throughout
- the ECOSS to determine the most appropriate functionalization,
- 285 classification, and allocation of costs. Cost causation dictates that the user
- 286 who incurred, or caused, a cost must pay for it. Conversely, beneficiary
- 287 pays dictates that all of those who benefit from an investment must pay for
- 288 its costs in other words, "costs follow benefits."³ Incorporating the
- 289 beneficiary pays principle at the retail level is a more modern concept, but
- is reflected in some traditional cost classification and allocation
- approaches.
- 292

293 Q. HOW ARE COSTS FUNCTIONALIZED?

- A. Public utilities are required to maintain records in accordance with the
- 295 Uniform System of Accounts as designated by the Federal Energy
- 296 Regulatory Commission (FERC). These accounts divide costs by various

³ See Transmission Planning and Cost Allocation by Transmission Owning and Operating Public Utilities, FERC Order 1000, Docket No. RM10-23-000, at 358 (July 21, 2011), available at <u>https://www.ferc.gov/whats-new/comm-meet/2011/072111/E-6.pdf</u>. See Also Lazar, J., Chernick, P., Marcus, W., and LeBel, M. (Ed.). (2020, January). *Electric cost allocation for a new era: A manual,* at 18. Montpelier, VT: Regulatory Assistance Project. (hereinafter "RAP Manual")

	OCS-	5D Nelson	20-035-04	Page 15 of 124
297		cost functions, such as gene	eration, transmission, and distr	ibution. The
298		purpose of functionalizing c	osts is to aid in determining wh	ich customers
299		are jointly or solely responsi	ble for various costs.	
300		Many utilities also su	bfunctionalize costs, which ofte	en aligns with
301		different voltage levels. For	example, distribution costs car	ı be
302		subfunctionalized into prima	rry and secondary voltages. Th	e purpose of
303		subfunctionalization is to ref	lect cost causation or beneficia	aries more
304		granularly.		
305				
306	Q.	HOW ARE COSTS THEN C	CLASSIFIED?	
307	Α.	Cost causation is used to cl	assify whether each cost is a c	commodity-,
308		demand-, or customer-relate	ed cost. Energy costs relate to	a customer
309		class' energy usage, measu	ired in kilowatt-hours (kWh). C	apacity costs
310		relate to a customer class' o	contribution to peak demand wi	thin the system,
311		measured in kilowatts (kW).	Finally, customer costs are the	ose required to
312		provide service to customer	s, regardless of whether the cu	ustomers
313		consume electricity. Specific	cally, the National Association	of Regulatory
314		Utility Consumers Electric M	lanual (NARUC Electric Manua	al) defines
315		customer costs as "costs that	at are directly related to the nu	mber of
316		customers served."4 In othe	r words, the utility incurs custo	mer costs based

⁴ National Association of Regulatory Utility Commissioners, Electric Utility Cost Allocation Manual, January, 20 (1992). (hereinafter "NARUC Manual")

	OCS-	5D Nelson	20-035-04	Page 16 of 124
317		on the number of customers	on its system, rather than bas	ed on the
318		amount of energy they const	ume or when they consume it.	
319				
320	Q.	HOW ARE COSTS ALLOCA	ATED ONCE THEY HAVE BE	EN
321		CLASSIFIED?		
322	A.	Costs are allocated to custor	mer classes based on each cla	ass' contribution
323		to each classified cost. For e	example, if RMP spends the sa	me amount of
324		time and money on each cus	stomer location, regardless of o	class, then it is
325		appropriate to allocate that c	cost based on the number of cu	ustomer
326		locations. This result stems f	from the fact that the number c	f customer
327		locations, rather than custon	ners' electricity consumption, c	auses costs to
328		be incurred.		
329				
330	Q.	HOW SHOULD AN ECOSS	ANALYSIS BE USED IN A R	ATE CASE?
331	A.	Parties and the PSC should	exercise caution when using a	n ECOSS
332		model to inform revenue app	portionment or rates, as it is an	inherently
333		imprecise tool. Every cost a	nalyst makes numerous subjee	ctive
334		determinations that will dram	natically impact the results of th	ne study. In my
335		testimony, I suggest several	reasonable alternative approa	ches to the

- 336 methods that RMP has chosen and demonstrate their impact on the
- 337 results. Ultimately, the ECOSS I recommend is better supported by
- economic theory and power system engineering. While I acknowledge that

	OCS-	5D Nelson	20-035-04	Page 17 of 124
339		no ECOSS is perfect, I expl	ain the reasons that certain ap	proaches are
340		more reasonable and should	d therefore be considered by th	ie PSC when
341		determining revenue apport	ionment and rate design.	
342				
343		ii. ECOSS in a chang	ing power system	
344	Q.	ARE THERE ANY CURREN	NT INDUSTRY TRENDS IMPA	CTING
345		TRADITIONAL METHODS	USED WITHIN THE ECOSS?	
346	Α.	Yes. Technology and cost re	esponsibility are changing rapio	dly to meet
347		evolving market demands a	nd to further state policy goals.	For example,
348		PacifiCorp's recent all-source	ce request for proposals⁵ and it	s participation
349		in the Western Energy Imba	llance Market ("EIM") ⁶ signal a	change in
350		resource makeup and a mor	vement toward shared grid ser	vices, each
351		leading to much higher integ	gration of distributed and large-	scale
352		renewable energies.		
353		Technological advance	ces are impacting the services	provided on the
354		power grid and how they are	e created, which requires a cos	st analyst to re-
355		evaluate cost allocation issu	ues that may previously have b	een considered
356		settled. For example, the ind	crease in variable resources or	n RMP's system
357		makes the timing of grid ser	vices and the availability of grid	d flexibility

⁵ PacifiCorp's 2020 All-Source Request for Proposals. <u>https://www.pacificorp.com/suppliers/rfps/all-source-rfp.html</u>.
⁶ "About". Western Energy Imbalance Market. <u>https://www.westerneim.com/Pages/About/default.aspx</u>.

	OCS-	5D Nelson	20-035-04	Page 18 of 124
358		increasingly important. Mod	ern ECOSS and rate design ne	ed to adapt to
359		reflect this changing value b	y creating and improving temp	oral cost
360		allocations. Doing so may ir	crease time-varying volumetric	cost recovery
361		by classifying larger portions	s of costs as energy related wh	iich will
362		incentivize load flexibility.		
363				
364	Q.	PLEASE PROVIDE ANOTH	IER EXAMPLE OF HOW TRA	DITIONAL
365		COST CAUSATION HAS C	HANGED DUE TO TECHNOL	OGICAL
366		ADVANCES.		
367	A.	Investment in advanced me	tering infrastructure ("AMI") ser	ves as an
368		illustrative example. Traditio	nal analog meters simply reco	rded customer
369		consumption, serving only the	he individual customer using th	e meter, and
370		therefore were classified as	a customer cost. AMI, howeve	r, enables
371		information transfer and act	ion to reduce line losses and lo	wer peak
372		demand, in turn yielding ger	neration, transmission, and dist	ribution system
373		benefits. Customers across	those system levels should pa	y for these
374		services, rather than only th	e customer who hosts the met	er. This is a
375		dramatic departure from the	traditionally understood cost r	esponsibility for
376		meters. I discuss this issue	in more detail later in my testin	iony.
377				
378	Q.	WHAT DOES THE AMI EX	AMPLE HIGHLIGHT ABOUT	ГНЕ
379		PRINCIPLE OF COST CAL	ISATION?	

	OCS-	5D Nelson	20-	035-04	Page 19 of 124
380	A.	Over relia	nce on a traditional int	erpretation of the cos	t causation principle
381		may not r	esult in equitable cost	functionalization, clas	sification, and
382		allocation	. In the AMI example, t	raditional cost causat	tion would indicate
383		that the c	ustomer who needs a i	neter incurs the mete	er cost and therefore
384		should pa	y for all of it. However,	the principle of "bene	eficiary pays" better
385		accommo	dates the nuances of <i>i</i>	AMI benefits and cost	s explained above.
386		This prine	iple supplements cost	causation by recogni	zing that those who
387		benefit fro	om the cost are not alw	ays those who cause	it. Costs should be
388		assigned	to all beneficiaries.		
389					
390		C.	Concerns with Rocky	Mountain Power's EC	OSS approach
391	Q.	WHAT D	O YOU DISCUSS IN T	HIS SECTION AND V	NHY IS IT
392		IMPORT	ANT?		
393	Α.	l discuss	RMP's methods for fur	nctionalizing, classifyi	ng, and allocating
394		electric s	/stem costs. For each	ECOSS step, I discus	s my concerns with
395		RMP's E	COSS approach. Speci	fically, I discuss the f	ollowing topics:
396		•	Subfunctionalization c	f production and tran	smission costs
397		•	Subfunctionalization c	f distribution costs	
398		•	Classification of produ	iction and transmissio	on costs
399		•	Functionalization of A	MI	
400		For each	of the above topics, I r	ecommend modificati	ons to RMP's
401		ECOSS.			

	OCS-	5D Nelson	20-035-04	Page 20 of 124
402				
403		i. Subfunction	alization of production and	transmission costs
404	Q.	HOW DOES RMP F	UNCTIONALIZE COSTS?	
405	A.	RMP functionalizes	system costs into five categ	ories: production (or
406		generation), transmi	ssion, distribution, retail, an	d miscellaneous.
407				
408	Q.	HAS RMP MADE A	NY CHANGES TO ITS FUR	OCTIONALIZATION
409		APPROACH?		
410	A.	Yes. RMP has adde	d a new subfunctionalizatio	n step that breaks the
411		production and trans	mission functions each into	o four additional categories,
412		for a total of eight ca	tegories:	
413		Demand-Rela	ited - Fixed	
414		Energy-Relate	ed - Fixed	
415		Demand-Rela	ited - Variable	
416		Energy-Relate	ed - Variable	
417				
418	Q.	HOW DOES RMP S	UBFUNCTIONALIZE PRO	DUCTION AND
419		TRANSMISSION CO	OST CATEGORIES?	
420	A.	RMP "split" production	on and transmission costs i	nto "Fixed and Variable
421		costs" in order to hel	p "facilitate the unbundling	of rates." ⁷

⁷ Meredith Direct at 4.

20-035-04

423	Q.	IS THE SUBFUNCTIONALIZATION OF PRODUCTION AND
424		TRANSMISSION COSTS INTO FIXED AND VARIABLE COSTS AN
425		ACCEPTED ECOSS METHOD?
426	Α.	No. It is not supported by any cost manual that I am aware of nor has any
427		state commission approved or utility proposed this form of
428		subfunctionalization—it is unprecedented. The reason that it is not
429		supported by a cost manual or any other industry reference is because
430		RMP is not subfunctionalizing costs.
431		Traditional subfunctionalization is most frequently used to
432		differentiate costs by voltage levels to reflect cost causation more
433		granularly. ⁸ RMP's proposal does not reflect cost causation – or even
434		claim to – which undermines the very purpose of functionalization.
435		
436	Q.	DOES RMP DEFINE ITS "FIXED" AND "VARIABLE"
437		SUBFUNCTIONALIZED CATEGORIES?
438	Α.	RMP explains that variable supply includes the costs in its Energy
439		Balancing Account, and that fixed supply includes the production function
440		except net variable power costs. ⁹ The EBA is a rider, which has no

⁸ Lawrence Vogt (2013). Electricity Pricing: Engineering Principles and Methodologies. For example, the subfunctionalization of primary and secondary distribution. Another example is initial functionalization of production, transmission, distribution, and retail.

⁹ Meredith Direct at 17.

20-035-04

Page 22 of 124

economic definition and can change over time. RMP does not specify
everything that the EBA includes, nor does it provide any analytical
methodology for including costs in the EBA. Therefore, there is no general
definition of the terms fixed and variable, nor is an economic or accounting
definition offer by the Company.

The fixed and variable subfunctions represent entire categories of costs without an analytical definition. Significant costs that are reasonably considered variable could be omitted from the EBA rider. Without a clear analytical methodology, they cannot be investigated to see whether they are accurately accounted for.

451 The issue of injecting subjectively categorized fixed and variable 452 costs into the ECOSS demonstrates why subfunctionalization is most 453 frequently based on power system engineering and not rate design-454 power system characteristics are objective while rate design objectives 455 are not.¹⁰ It is clear when a customer takes service at transmission or 456 secondary voltage. It is not clear, what costs are fixed and variable 457 because it is a subjective and unclear definition that is unrelated to power 458 system engineering.

¹⁰ Exceptions to traditional methods of subfunctionalizing costs are emerging due to the transition toward a more modern and technologically advanced power system. These exceptions, however, are driven largely by substitution effects created through advanced technologies, not an analyst's desire to influence rate design outcomes.

460 Q. WHAT ARE THE PRIMARY SHORTCOMINGS OF RMP'S

461 SUBFUNCTIONALIZATION OF PRODUCTION AND TRANSMISSION?

- 462 A. There are multiple shortcomings associated with RMP's proposal to463 subfunctionalize production and transmission costs.
- First, RMP's subfunctionalization approach has no impact on the results of the ECOSS. RMP's proposed subfunctionalization does not impact total class cost allocation nor does it affect classification or allocation. This fact, again, demonstrates that it is not a subfunctionization approach—every other subfunctionalization step in the ECOSS impacts class cost allocation. For this reason, the additional subfunctionalization step only adds confusion to the ECOSS.
- Second, RMP is proposing to insert a rate design approach into its
 ECOSS. Inserting a rate design approach clearly violates best practices
 for cost modeling and predetermines rate design decisions. Cost studies
 are supposed to inform rate design—not the other way around. Allowing
 RMP to insert rate design preferences into the ECOSS will blur the lines
 between costs and policy determinations made within the rate design
 process.

Third, RMP's subfunctionalization method creates confusing results. The practical implication of RMP's proposed change is that cost components used to inform rate design are different from those found in the ECOSS. Instead of using the energy, demand, and customer cost

20-035-04

Page 24 of 124

482 components, RMP relies on fixed and variable cost components to inform 483 rate design. The result of this approach is that RMP's method shifts 484 energy related costs into demand related costs, and demand related costs 485 into fixed charges. This aligns with RMP's economic incentive to collect 486 more revenues through demand and customer charges. However, 487 informing rate design based on the subfunctionalized cost components 488 contradicts the results of the ECOSS which has been the basis of rate 489 design for decades in states.¹¹ No commission in the United States has 490 used the approach recommended by RMP in this proceeding to inform 491 rates. 492 Lastly, using RMP's subfunctionalized ECOSS results to inform 493 rates will lead to rates that are not based on cost. The ECOSS has 494 traditionally bundled rates into the categories of energy, demand, and 495 customer related to costs so that these cost components can be used to 496 inform energy, demand, and customer rate components. State 497 commissions have used this traditional ratemaking approach for over 100 498 years. Using RMP's subjectively subfunctionalized fixed and variable costs

499

500

¹¹ Some states rely on the results of marginal costs studies to set rates.

to inform rates, will deviate from cost-based rates.

	OCS-	5D Nelson 20-035-04 Page 25 of 124	ŀ
501	Q.	WHAT OBJECTIVE DO YOU BELIEVE RMP IS ATTEMPTING TO	
502		ACHIEVE WITH THE SUBFUCTIONALIZATION OF PRODUCTION AND	
503		TRANSMISSION INTO FIXED AND VARIABLE COSTS?	
504	Α.	RMP is attempting to work around the cost of service study to achieve its	
505		own rate design preferences.	
506			
507	Q.	WHAT IS YOUR RECOMMENDATION TO THE COMMISSION ON THIS	
508		MATTER?	
509	A.	I recommend that the Commission require RMP to remove the	
510		subfunctionalization step within the ECOSS for compliance filings in this	
511		case and in future rate cases.	
512			
513		ii. Subfunctionalization of distribution costs	
514	Q.	DOES RMP SUBFUNCTIONALIZE DISTRIBUTION COSTS?	
515	Α.	Yes. RMP splits distribution plant into primary and secondary subfunctions	,
516		for FERC accounts 364-368.	
517			
518	Q.	HOW DOES RMP DETERMINE WHICH EQUIPMENT IS PRIMARY OR	
519		SECONDARY?	
520	Α.	RMP does not explain in testimony its methodology for determining	
521		whether distribution infrastructure is primary or secondary. In Data	
522		Request OCS 8.21, RMP was asked to "provide a detailed explanation of	

20-035-04

Page 26 of 124

523	the data and method used to determine the split between secondary and
524	primary distribution for FERC accounts 364-368." In response, RMP
525	provided only a spreadsheet of a limited number of account costs
526	categorized as primary and secondary and the explanation: "these
527	percentages are based upon a 10-year average of material issues from
528	stores." ¹² Not only did RMP fail to explain its subfunctionalization
529	methodology; it failed to explain its data. ¹³ Without a transparent,
530	quantitative explanation of the costs in the spreadsheet and why they
531	were included, there is no way to know if RMP's primary/secondary split
532	calculations are accurate. RMP did not meet its burden to demonstrate
533	that its method was reasonable.

534

535 Q. WHY IS SUBFUNCTIONALIZATION OF PRIMARY AND SECONDARY

536 **DISTRIBUTION EQUIPMENT AN IMPORTANT ISSUE?**

- 537 A. The distinction between primary and secondary distribution infrastructure
- 538 is important because it could alter cost allocation, particularly for
- residential customers. If larger portions of the distribution system are
- 540 found to be secondary related, more costs are borne by the residential
- 541 class. For example, a 10 percent increase in primary classification for

¹² OCS 8.21. ¹³ OCS 16.21.

	OCS-	5D Nelson	20-035-04	Page 27 of 124
542		FERC accounts 365, 366, a	nd 367 (overhead conductors a	and
543		underground conductors and	d conduits) reduces RMP's est	imated revenue
544		deficiency for the residential	class from 12.78 percent to 12	2.12 percent. ¹⁴
545		Because RMP did not meet	its burden to demonstrate the	split of
546		secondary and primary distr	ibution, I include the 10 percer	it adjustment as
547		a sensitivity within my recon	nmended model.	
548				
549	Q.	WHAT DO YOU RECOMME	END THAT THE PSC DO ON ⁻	THIS ISSUE?
550	A.	The PSC should require RM	IP to provide additional informa	ation on the
551		methodology and the inputs	used to justify the split betwee	n secondary
552		and primary. This informatio	n should include:	
553		1. the data set from which I	RMP sampled;	
554		2. a description of the data	and how it is tracked; and	
555		3. the criteria RMP uses to	select costs from the original c	lata set.
556				
557		iii. Classification of pr	oduction and transmission cos	ts
558	Q.	HOW DOES RMP CLASSIF	Y PRODUCTION COSTS?	
559	A.	RMP classifies production p	lant and non-fuel expenses as	75 percent
560		demand-related and 25 perc	cent energy-related. Fuel costs	are classified
561		as 100 percent energy relate	ed.	

¹⁴ Workpaper OCS 5.1D.

562

563 Q. WHAT ARE THE IMPLICATIONS OF CLASSIFYING COSTS THIS 564 WAY?

- 565 Α. There are two implications. First, from a cost allocation perspective, a 566 higher portion of energy costs are allocated to large energy consuming 567 customer classes (i.e., industrial customers), while demand costs are 568 allocated to customer classes will lower load factors and spiker demand 569 (e.g., residential class). Second, from a rate design perspective, for larger 570 customer classes with demand charges, classifying production costs as 571 demand-related means collecting those costs through a demand charge, 572 while classifying as energy-related means collecting through a volumetric 573 rate.
- 574

575 Q. DO YOU HAVE CONCERNS WITH RMP'S CLASSIFICATION OF

- 576 **PRODUCTION COSTS?**
- 577 A. Yes. I am concerned with the fact that this allocation approach treats all
 578 production resources the same. Regardless of whether the plant is a solar
 579 facility, gas turbine, or coal generator, RMP will classify it as 75 percent
 580 demand and 25 percent energy.
- 581

582Q.WHY IS IT PROBLEMATIC TO TREAT ALL PRODUCTION COSTS THE583SAME WAY?

20-035-04

Page 29 of 124

584 Α. Treating all production costs in a uniform way fails to acknowledge that 585 investment in different resources reflects specific needs on the power 586 system. Those specific needs indicate whether the plant costs are energy-587 or capacity-related. For example, peaker plants are generally built to meet 588 capacity reliability need while baseload is built to meet energy need. 589 Renewable resources are generally built to meet energy need and 590 displace the need for other fuel sources – and they do not necessarily 591 provide firm capacity during peak grid demand. RMP therefore should not 592 classify production costs uniformly without evaluating the specific mix of 593 production plant resources on its system.

594

595 Q. IS RMP'S CLASSIFICATION METHOD RESPONSIVE TO THE

596 CHANGING POWER SYSTEM TRENDS?

597A.No. RMP's blunt and high-level 75 percent demand and 25 percent energy598(75/25) approach fails to reflect modern changes in the utility's generation599resource mix. The 75/25 ratio likely classifies far fewer costs as energy-

600 related than other, more reasonable, methods would.

- 601 Additionally, as technology advances and the power system
- 602 requires more flexibility, temporal costs become increasing important. For
- 603 this reason, classifying and allocating production costs based on temporal
- 604 characteristics may be more efficient and equitable. For example,
- 605 temporal cost allocation acknowledges that, with high-levels of renewable

20-035-04

606		energy on the grid, load profiles are more important than load factors. This
607		is demonstrated through the growing issue of addressing peaks and low-
608		load conditions during shoulder months as opposed to the traditional focus
609		of meeting peak in summer months in grids with high renewables. As with
610		many more traditional cost allocation approaches, temporal cost allocation
611		would likely lead to higher portion of production being classified and/or
612		allocated as energy-related and result in improved cost components for
613		rate design purposes.
614		
615	Q.	WHAT JUSTIFICATION DOES RMP PROVIDE FOR THE 75/25

- 616 CLASSIFICATION APPROACH?
- A. RMP explains that "the methodology used in this study for the
- 618 classification and allocation of generation and transmission costs is
- 619 consistent with the 2010 Protocol inter-jurisdictional allocation method
- 620 recently approved by the Utah Public Service Commission."¹⁵
- 621

622 Q. HAVE PARTIES PROPOSED ALTERNATE PRODUCTION

623 CLASSIFICATION METHODOLOGIES BEFORE?

- A. Yes. In numerous previous rate cases, parties proposed alternate
- 625 classification or allocation methods for generation and/or transmission.

¹⁵ Exhibit RMP_(RMM-3) at 7.

OCS-5D Nelson 20-035-04 Page 31 of 124 626 Those parties acknowledged that it was not necessary to maintain 627 consistency between interjurisdictional and class methods, particularly 628 since the interjurisdictional method results from a multistate compromise. 629 630 Q. HAS THE PSC PROVIDED GUIDANCE ON THE STANDARD OF 631 **REVIEW FOR ADVOCATING ALTERNATE PRODUCTION** 632 CLASSIFCIATIONS? 633 Α. Yes. The PSC previously denied request to deviate from the 75/25 634 classification and stated: "Any party who would like to propose an 635 alternative to the approved methods must provide analysis to demonstrate 636 the proposed method is also appropriate and viable at the 637 interjurisdictional level. This analysis must include a level of detail to 638 determine the impacts to Utah and other states in the PacifiCorp system of a proposed change in classification and allocation methods."¹⁶ 639 640 641 DO YOU PROVIDE ANALYSIS AT THE INTER-JURISCTIONAL LEVEL Q. 642 AND REGARDING IMPACT ON OTHER STATES? 643 Α. No. My understanding is that the inter-jurisdictional allocation method 644 within the 2020 Protocol is moving away from dynamic allocations toward 645 fixed allocations. According the RMP:

¹⁶ Phase I Order on Revenue Requirement and Cost of Service using June 2010 Forecast Test Period. Rocky Mountain Power 2009 General Rate Case. Docket No. 09-035-23 at 123.

	OCS-	5D Nelson	20-035-04	Page 32 of 124
646 647 648 649 650 651 652		the 20 propos ultima comm with fi specifi	020 Protocol represents a fundament ses to address inter-jurisdictional co te goal of moving away from dynamic on generation resource portfolio to a o xed allocation factors for generation ic resource portfolios. ¹⁷	ntal shift in how RMP est allocation, with the allocation factors and a cost-allocation protocol n resources and state
653		This f	undamental change would appear	to obviate the necessity for
654		such analysi	s because, among other reasons, l	RMP is moving to a state-
655		specific cost	allocation approach. I am not an e	xpert on the inter-
656		jurisdictional	allocation method nor am I involve	ed in the ongoing
657		discussions	and analysis. However, it seems a	pparent that as the system
658		evolves into	a new allocation method, it would l	be a good time to re-
659		evaluate the	allocations within this jurisdiction to	o reflect the energy
660		transition cu	rrently underway.	
661				
662	Q.	DO ALL TH	E OTHER STATES IN PACIFICOF	RP'S JURISDICTION USE
663		THE SAME	CLASSIFICATION APPROACH?	
664	A.	No. In respo	nse to Data Request OCS 8.3, RM	P indicated that the 75/25
665		approach is	not used in California or Oregon.	

¹⁷ See Docket No. 19-035-42, Order Approving 2020 Protocol at 7, issued April 15, 2020. "According to RMP,"

	OCS-	5D Nelson	20-035-04	Page 33 of 124
667	Q.	ARE YOU AWARE OF OTH	IER COMMISSIONS THAT AL	.SO UTILIZE
668		DIFFERENT CLASSIFICAT	ION APPROACHES FOR JU	RISDICTION
669		AND RETAIL PURPOSES?		
670	A.	Yes. One example is the Mir	nnesota Public Utilities Commi	ssion.
671				
672	Q.	WHY IS IT IMPORTANT TO PROPERLY CLASSIFY PRODUCTION		
673		COSTS?		
674	A.	Accurate cost classification i	s important because the produ	iction function
675		accounts for approximately 4	10 percent of RMP's rate base	and 66 percent
676		of total operating expenses.	¹⁸ Correctly classifying these si	ignificant costs
677		as demand or energy is an e	equity issue, because it affects	how costs are
678		allocated among customer c	lasses.	
679				
680	Q.	CAN YOU DEMONSTRATE	THAT HIGHER DEMAND-RE	LATED
681		CLASSIFICATION IMPOSE	S MORE COSTS ON RESIDE	NTIAL
682		CUSTOMERS?		
683	A.	Yes. I modified RMP's ECO	SS model to reflect a 40 perce	nt demand and
684		60 percent energy ("40/60")	classification of production and	transmission.
685		The 40/60 split better balance	es the demand and energy rel	ated
686		characteristics of RMP's cur	rent and future system. For ex	ample, RMP

¹⁸ COS UT GRC 2020.

	OCS-5D Nelson	20-035-04	Page 34 of 124
687	has significant h	ydro and renewable generations	that are not appropriately
688	considered 75 pe	ercent demand related. Even RN	IP's baseload plants,
689	such as coal fac	ilities, would be inappropriate to	classify at the 75 percent
690	demand related	level. The 40/60 split better refle	cts cost causation and is,
691	therefore, more i	reasonable.	
692	The 40/60) split changes class cost allocati	ion significantly. The cost
693	responsibility for	the residential class fell from the	e initial cost-based rate
694	increase of 12.78	8 percent to 8.31 percent, or ove	r approximately 35
695	percent. While g	eneral service over 1 MW and ge	eneral service with high
696	voltage cost-bas	e rate increase responsibility we	nt up by 3 percent and 6
697	percent, respect	ively. ¹⁹	

698

Schedule No.	Description	RMP Proposed ECOSS	40/60 ECOSS Results	Cost Allocation Change
1	Residential	12.78%	8.31%	-4.47%
6	General Service - Large	-2.57%	-2.49%	0.08%
8	General Service - Over 1 MW	-0.59%	2.57%	3.16%
7,11,12	Street & Area Lighting	-22.28%	-14.75%	7.53%
9	General Service - High Voltage	7.16%	13.48%	6.32%
10	Irrigation	5.65%	11.03%	5.37%
15	Traffic Signals	-4.64%	-0.56%	4.08%
15	Outdoor Lighting	-31.54%	-15.53%	16.01%
23	General Service - Small	-4.53%	-5.06%	-0.54%
SpC	Customer 1	15.38%	22.70%	7.32%
SpC	Customer 2	0.23%	23.25%	23.03%

699 Table 1: ECOSS Results with 40/60 Production and Transmission Classification

¹⁹ Workpaper OCS 5.1D.
	OCS-	5D Nelson	20)-035-04	Р	age 35 of 124
[Total Utah Jurisdict	ion	5.05%	5.05%	N/A
700						
701	Q.	TABLE 1 ALSO INC	CLUDES A	N ALTERATIC	IN TO THE	
702		CLASSIFICATION	OF TRANS	MISSION. WH	Y IS IT REASC	NABLE TO
703		CLASSIFY LARGE	AMOUNT	S OF TRANSM	IISSION AS EN	IERGY?
704	Α.	Transmission syster	ms do not c	only serve to m	eet peak demai	nd with
705		reserve capacity. Tr	ansmissior	n systems in fac	ct serve to lowe	r energy
706		costs in several way	rs – and the	erefore should	be proportional	y classified
707		as energy-related: 1) they mov	e large amount	ts of power from	ı remote
708		baseload or renewable generation, trading off expensive transmission				
709		costs against the high operating cost of power plants sited closer to a load				
710		center; 2) transmission systems are designed to allow large energy				
711		transfers between neighboring utilities; 3)) transmission systems are				
712		designed to minimiz	e energy lo	osses over long	periods of high	ו load (ex:
713		using high voltage ir	nfrastructur	e), rather than	just for short pe	riods of peak
714		demand. ²⁰				
715		RMP's transr	nission sys	tem reflects ma	any of the abov	e energy
716		related design attrib	utes. RMP	's transmission	connects its loa	ad centers to
717		remote coal plants in	n Wyoming	, Arizona, and	Colorado, and I	hydro assets
718		in the Northwest. A	significant	amount of the o	costly, high-volt	age

²⁰ RAP Manual at 138.

	OCS-	5D Nelson	20-035-04	Page 36 of 124
719		infrastructure serves to con	nect consumers with this remo	te and
720		inexpensive baseload gene	ration. ²¹ Therefore, it is reason	able to include
721		transmission in the above s	ensitivity analysis of 40 percen	t demand and
722		60 percent energy classifica	ation for RMP's production and	transmission
723		functions.		
724				
725	Q.	HOW DO YOU RECOMME	ND THAT RMP MORE ACCU	RATELY AND
726		EQUITABLY CLASSIFY PI	RODUCTION PLANT?	
727	A.	There are several classifica	tion approaches presented in i	ndustry
728		literature that would more s	pecifically and accurately class	ify RMP's
729		production costs to align wit	h its planning needs and data.	More
730		reasonable approaches incl	ude the equivalent peaker met	hod and
731		methods that classify costs	based on time-differentiated co	ost causation,
732		such as probability of dispat	tch. ²²	
733		The probability of dis	patch model is superior to mos	st, if not all,
734		approaches because it allow	vs for time-differentiated cost a	llocation. It
735		involves building a utility's lo	oad curve and matching the co	st of the units
736		that run in each hour to the	kWh use of each customer cla	ss in each hour.

 ²¹ RAP Manual at 138-139.
 ²² RAP Manual at 19.

	OCS-	5D Nelson	20-035-04	Page 37 of 124
737		Costs can be recovered thro	ough demand and energy char	ges that reflect
738	the resources under the hourly load curve. ²³			
739		Like any ECOSS app	roach, the probability of dispat	ch method
740		requires a cost analyst to ma	ake various decisions and ther	efore their
741		execution must still be deen	ned reasonable.	
742				
743	Q.	DID YOU CALCULATE AN	Y ALTERNATIVE ALLOCATIO	ON
744		METHODOLOGIES?		
745	Α.	No. Given the Commission's	s previous rulings, the resource	es were not
746		expended to conduct these	analyses.	
747				
748	Q.	HOW DO YOU RECOMMEN	ND THAT THE PSC TREAT P	RODUCTION
749		AND TRANSMISSION CLA	SSIFICATION?	
750	Α.	In this case, the PSC should	I consider the alternative ECO	SS results,
751		presented in Section III.D, w	hen informing the appropriate	revenue
752		apportionment between cus	tomer classes and rate designs	S.
753		The PSC should requ	ire RMP to provide an alternat	tive ECOSS that
754		utilizes the probability of dis	patch approach discussed abo	ve.
755				

²³ NARUC Manual at 62.

	OCS-	5D Nelson	20-035-04	Page 38 of 124
756		iv. Classification and	allocation of distribution costs	
757	Q.	HOW DOES RMP CLASSIF	Y DISTRIBUTION SYSTEM C	OSTS?
758	A.	Distribution function costs a	re considered demand-related,	except for
759		meters and services, which	are considered customer-relate	ed. This is
760		referred to as the basic cust	omer approach for classificatio	n of the
761		distribution system. I suppor	t the use of this classification a	ipproach.
762				
763		v. Functionalization o	f AMI costs	
764	Q.	WHAT DO YOU DISCUSS	IN THIS SECTION?	
765	A.	I discuss the functionalizatio	n, classification, and allocation	of advanced
766		metering infrastructure (AMI) and recommend an alternate	
767		functionalization for RMP's	AMI equipment. Before I discus	s AMI
768		functionalization, I need to e	explain how traditional meters h	ave traditionally
769		been classified and allocate	d in cost of service studies and	explain why
770		traditional thinking should no	o longer apply to advanced me	ters.
771				
772	Q.	HOW HAVE METERS TRA	DITIONALLY BEEN CLASSIF	IED WITHIN
773		COST OF SERVICE STUD	ES?	
774	A.	According to the NARUC Ele	ectric Manual, the costs of met	ers, or FERC
775		account 370, "are generally	classified on a customer basis	. However, they

	OCS-	5D Nelson	20-035-04	Page 39 of 124
776		may also be classified using	a demand component to show	v that larger-
777		usage customers require mo	ore expensive metering equipm	1ent." ²⁴
778				
779	Q.	WHY ARE LARGE-USAGE	CUSTOMERS' METERS MO	RE
780		EXPENSIVE?		
781	A.	Large customers' meters are	e more expensive for many rea	isons, but
782		generally larger-usage custo	omers' meters have additional t	functionalities
783		enabled when compared to	residential meters.	
784				
785	Q.	WHAT WERE THE DIFFER	ENCES IN FUNCTIONALITY?	?
786	A.	At the time the NARUC Elec	ctric Manual was written—over	two-and-a-half
787		decades ago-most residen	tial and small business custom	iers had "dumb
788		meters." Dumb meters only	measured energy use and req	uired meter
789		readers to drive to the physi	cal location of the meter to obt	ain a reading.
790		On the other hand, large-us	age customers had meters tha	t measured
791		demand-related requiremen	ts and sometimes recorded en	ergy
792		consumption on time interva	als such as every 15 minutes (a	as opposed to
793		residential energy measurer	ment that had just one aggrega	ite reading
794		every month).		
795				

²⁴ NARUC Manual at 97.

20-035-04

796 Q. WHAT IS THE REASONING BEHIND THE TWO RECOMMENDED

797 CLASSIFICATIONS IN THE NARUC ELECTRIC MANUAL?

- A. The functionality of the meters drove the cost causation. Large customers
- 799 were on more advanced rate designs that required additional metering
- 800 functionality such as measuring demand. The additional metering
- 801 functionality increased the expense of the meter.
- 802

803 Q. WHY DOES CLASSIFYING METERS AS DEMAND RELATED ALIGN

804 WITH COST CAUSATION?

- A. Meters that can measure demand, or more granular interval data, can be
- 806 used to mitigate demand-related costs through price signals. For example,
- 807 large customer classes often have demand charges and TOU rates.
- 808 Demand charges incent customers to have higher load factors in order to
- reduce the costs caused to the power system, while TOU rates encourage
- 810 load shifting. For this reason, the NARUC Electric Manual finds it
- 811 reasonable to classify meters as demand because of the enhanced
- 812 functionality associated with advanced metering.
- 813

814 Q. HOW DOES RMP CLASSIFY METERS?

815 A. RMP classifies meters as customer related.²⁵

²⁵ Meredith Direct at 7.

816

817 Q. IS RMP PROPOSING CHANGES TO ITS METERING IN THIS CASE?

- 818 A. Yes. RMP has proposed the Utah AMI project, which will begin to roll out
- AMI throughout its Utah service territory.
- 820

821 Q. ARE THE COSTS OF RMP'S AMI DIRECTLY CAUSED BY THE

822 NUMBER OF CUSTOMERS?

- A. No. A large portion of the cost of AMI should be to avoid future productionand transmission related investments.
- 825

826 Q. WHAT TYPE OF ENHANCED FUNCTIONALITY DOES THE AMI HAVE 827 COMPARED TO STANDARD METERS?

- A. Compared to standard meters, AMI has enhanced functionality related to
- both energy and demand. For example, RMP's AMI could enable it to offer
- advanced time-based customer rates. Time-based rates can encourage
- load shifting, which reduces energy costs, and load flexibility, which can
- reduce peak load and therefore demand costs. Each of these
- functionalities can decrease the need for future generation and
- transmission investments, which are together 100 percent energy and
- capacity related.

836

837 Q. HOW DO YOU RECOMMEND RMP TREAT AMI IN THE ECOSS?

838	Α.	Because RMP's AMI capabilities can create benefits by avoiding energy-
839		and demand-related costs across multiple electric system functions,
840		changing the functionalization of meters would better reflect cost
841		causation and the beneficiary pay principles. I recommend that RMP
842		functionalize metering costs as 1/3 production, 1/3 transmission, and 1/3
843		distribution.

20-035-04

844

845 Q. WHY IS IT REASONABLE TO FUNCTIONALIZE AMI AS PARTIALLY

846 **PRODUCTION AND TRANSMISSION?**

OCS-5D Nelson

847 Α. The practical implication of functionalizing AMI as production and 848 transmission is that AMI costs are then classified and allocated the same 849 as production and transmission assets and are correspondingly allocated 850 to customer classes. Assigning AMI costs as though they are production 851 and transmission assets is reasonable because AMI is an advanced 852 technology that can act as a substitute for production and transmission 853 investments. For example, AMI should be used to increase the amount of 854 demand response on RMP's system, which should necessarily lead to a 855 reduction in production and transmission investments. These avoided 856 investments would have been allocated the same way I am suggesting 857 AMI be allocated---through the production and transmission functions. 858 Said more simply, the customers that benefit from the AMI investments—

	OCS-	5D Nelson	20-035-04	Page 43 of 124
859		through decreased producti	on and transmission investmer	nts—should
860		equitably share in the cost of	of AMI.	
861				
862	Q.	HOW DOES MODIFYING T	THE FUNCTIONALIZATION O	F AMI CHANGE
863		THE ECOSS RESULTS?		
864	A.	Table 2, below, displays the	e results of modifying the function	onalization of
865		AMI. In general, the modifie	d functionalization results in sli	ghtly lower cost
866		allocations to less energy a	nd demand intensive customer	s and vice
867		versa.		
868		Table 2: ECOS	S Results with AMI Costs ²⁶	

Schedule No.	Description	OCS Percentage Change from Current Revenues	RMP Percentage Change
1	Residential	12.46%	12.78%
6	General Service - Large	-2.35%	-2.57%
8	General Service - Over 1 MW	-0.29%	-0.59%
7,11,12	Street & Area Lighting	-22.18%	-22.28%
9	General Service - High Voltage	7.52%	7.16%
10	Irrigation	5.56%	5.65%
15	Traffic Signals	-6.26%	-4.64%
15	Outdoor Lighting	-31.64%	-31.54%
23	General Service - Small	-4.80%	-4.53%
SpC	Customer 1	15.81%	15.38%
SpC	Customer 2	0.55%	0.23%
	Total Utah Jurisdiction	5.05%	5.05%

869

870 Q. HOW DID YOU ACHIEVE THIS CHANGE?

²⁶ Workpaper OCS 5.1D.

	OCS-	5D Nelson	20-035-04	Page 44 of 124
871	A.	I removed two thirds of RMI	^D 's meter costs from the distrib	ution function
872		and divided it amongst the p	production and transmission fu	nctions instead.
873		It is important to note	e that the functionalization appr	oach that I
874		recommend is an actual fun	ctionalization step, as opposed	d to the
875		subfunctionalization approa	ch proffered by RMP. The tabl	e above
876		demonstrates that re-function	onalizing AMI has an impact or	ı class cost
877		allocation as any functionali	zation or subfunctionalization	step should.
878				
879	Q.	DO YOU HAVE REFEREN	CES TO SUPPORT YOUR	

880 **RECOMMENDATION?**

A. Yes. I have already described how the NARUC Electric Manual supports

882 classifying advanced meters differently than dumb meters. The Rocky

883 Mountain Institute and Regulatory Assistance Project (RAP) have also

- 884 previously acknowledged that AMI reduces energy and demand costs.²⁷
- 885 Most recently, RAP's cost allocation manual expressed that the cost of
- AMI systems are "largely justified by services other than billing" and listed
- several metering benefits beyond measuring customer usage. Therefore,

²⁷ "In some situations, a portion of AMI (and other smart-grid infrastructure) costs may be appropriately recovered through energy or demand charges." See Rocky Mountain Institute, A Review of Alternative Rate Designs: Industry Experience with Time-Based and Demand Charge Rates for Mass-Market Customers, 54 (2016).

[&]quot;[The] additional cost of smart [also known as AMI] meters is justified by many benefits beyond the simple measurement of usage . . . and this additional cost is not properly considered customer related." See Regulatory Assistance Project. Smart Rate Design for a Smart Future, Appendix A at A-4.

	OCS-	5D Nelson	20-035-04	Page 45 of 124
888		"[AMI] costs must be allocat	ed over a wider range of activi	ties, either by
889		functionalizing part of the co	osts to generation, distribution a	and so on or
890		reflecting those functions in	classification or the allocation	factor." ²⁸ While
891		the functionalization that I re	ecommend is subjective to a de	egree, it better
892		reflects the nature of this mo	odern investment.	
893				
894	Q.	IS THERE NON-METER EC	QUIPMENT AS PART OF RMF	P'S AMI
895		ROLLOUT?		
896	A.	Yes. RMP's AMI project incl	udes information technology ir	nfrastructure for
897		data collection and processi	ng.	
898				
899	Q.	HOW ARE THESE COSTS	LIKELY CLASSIFIED?	
900	A.	Customer accounts expense	es such as meter reading are f	unctionalized as
901		retail and allocated using cu	stomer factors.	
902				
903	Q.	HOW DO YOU RECOMME	ND THAT AMI IT COSTS BE	CLASSIFIED?
904	A.	Given that these technologie	es enable the same broad func	tionality and
905		electric system benefits as a	advanced meters, I recommend	d that they be
906		similarly functionalized as 1	/3 production, 1/3 transmission	, and 1/3
907		distribution. However, I did r	not incorporate this modificatio	n into an

²⁸ RAP Manual at 157.

	OCS-	5D Nelson	20-035-04	Page 46 of 124
908		alternative ECOSS due to the	ne complexity of re-coding RMF	^D 's model.
909		Therefore, I recommend that	t the Commission require RMF	o to make this
910		change in its next rate case		
911				
912	Q.	HOW DOES YOUR ECOSS	SAMI RECOMMENDATIONS	ALIGN WITH
913		YOUR LATER SECTIONS	ABOUT AMI?	
914	Α.	In section VI., I discuss AMI	utilization and programs. I con	clude there that
915		RMP should not include AM	Il costs in this rate case. Howe	ver, given that
916		RMP has proposed to includ	de its AMI costs, I have addres	sed the ECOSS
917		treatment of AMI costs to er	nsure comprehensive treatmen	t of AMI issues.
918				
919		vi. Other concerns: C	OVID-related impacts	
920	Q.	DO YOU BELIEVE THAT C	OVID-19 HAS IMPACTED RM	IP'S COST OF
921		SERVICE?		
922	Α.	Yes. COVID-19 has signific	antly impacted nearly all aspec	ts of life around
923		the country, including the lo	ad profiles of electricity consun	ners. Load
924		profiles are a primary input i	into the ECOSS because they	represent each
925		class' contribution to cost ca	ausation within the model. Whil	e I acknowledge
926		that the timing of RMP's filir	ng was too early to have a full p	icture of the
927		impact, the fact that the EC	OSS does not reflect COVID's	impact on
928		customer loads strongly ind	icates that the study is inaccura	ate.
929				

20-035-04

930 Q. WILL COVID IMPACTS MEANINGFULLY IMPACT CUSTOMER CLASS 931 LOAD PROFILES?

- 932 Α. Yes. In addition to the immediate effects of quarantining and sheltering in 933 place, COVID-19 has widespread economic ramifications that will alter 934 consumption behavior. These economic consequences will likely have a 935 significant impact that varies both within and between customer classes. 936 For example, commercial electricity usage in Utah dropped 13 percent in 937 April and 11 percent in May due to the economic impacts of COVID-19.²⁹ 938 These significant changes in load would impact the ECOSS were inputs to 939 be updated.
- 940

941 Q. HAS RMP UPDATED ITS SALES AND LOAD DATA SINCE THE

942 PANDEMIC BEGAN?

- 943 A. No.
- 944

945 Q. WHY IS THIS ISSUE IMPORTANT?

- 946 A. When the ECOSS fails to reflect current grid circumstances, it likely does
- 947 not allocate costs accurately. For this reason, it may not be reasonable to
- 948 make significant revenue apportionment and rate design changes based

²⁹ Michael D. Vanden Berg. "Energy News: Impacts of the COVID-19 Pandemic on Utah's Energy Industry." The Utah Geological Survey. August 25, 2020. <u>https://geology.utah.gov/mappub/survey-notes/energy-news/energy-news-impacts-of-the-covid-19-pandemic-on-utahsenergy-industry/.</u>

	OCS-	5D Nelson	20-035-04	Page 48 of 124
949		heavily on an ECOSS with the	his severe of a shortcoming, es	specially
950		considering the circumstanc	es ratepayers are currently fac	ing.
951				
952	Q.	ARE THERE OTHER COST	DRIVERS THAT COULD BE	AFFECTED
953		BY COVID?		
954	Α.	In addition to utility sales and	d load shapes, COVID will likel	y affect fuel
955		costs, capital costs, labor co	sts, and uncollectible accounts	s, among other
956		things.		
957				
958	Q.	HOW DO YOU RECOMMEN	ND THAT THE PSC ADDRES	S COVID COST
959		OF SERVICE IMPACTS?		
960	A.	The PSC should consider th	e fact that COVID-19 has likely	y made the
961		results of the ECOSS unrelia	able and inaccurate. For that re	eason, in this
962		rate case the PSC should pr	ioritize minimizing changes in	revenue
963		apportionment and rate desi	gn. Gradualism will help ensur	e sound
964		revenue apportionment and	rate design principles during th	nis period of
965		great instability and uncertai	nty.	
966				
967		D. ECOSS Conclusio	ns and Recommendations	
968	Q.	WHAT IS YOUR IMPRESSI	ON OF RMP'S PROPOSED E	COSS?
969	A.	RMP's proposed ECOSS do	es not reflect the technology th	nat is currently
970		being placed on the power s	ystem, such as renewable ene	ergy and AMI.

	OCS-	5D Nelson	20-035-04	Page 49 of 124			
971		Not updating the methods used within the ECOSS to reflect modern cost					
972		of service principles, will lea	d to inequitable cost estimates	s and rates			
973		between and within custome	er classes.				
974		Importantly, RMP's p	roposal to subfunctionalize co	sts into fixed and			
975		variable costs is an attempt	to inject rate design principles	into a cost of			
976		service study. It will result in	rates that are not cost-based.	. This approach			
977		should be clearly and forcefully rejected by the PSC.					
978							
979	Q.	CAN YOU PLEASE PRESE	ENT THE RESULTS OF YOUF	ર			
980		ALTERNATIVE ECOSS MO	DDEL?				
981	A.	Yes. The table presents EC	OSS results with the following	alterations: (1)			
982		production and transmissior	n classified as 40 percent dem	and and 60			
983		percent energy related; (2)	a 10 percent adjustment to the				
984		subfunctionalization of prima	ary and secondary distribution	, and (3) a re-			
985		functionalization of meters.					

- 986 Table 3: OCS and RMP Final ECOSS Results³⁰

Schedule No.	Description	OCS Percentage Change from Current Revenues	RMP Percentage Change
1	Residential	7.30%	12.78%
6	General Service - Large	-1.48%	-2.57%
8	General Service - Over 1 MW	3.59%	-0.59%
7,11,12	Street & Area Lighting	-14.58%	-22.28%
9	General Service - High Voltage	13.87%	7.16%

³⁰ Workpaper OCS 5.1D.

20-035-04

10	Irrigation	12.17%	5.65%
15	Traffic Signals	-1.76%	-4.64%
15	Outdoor Lighting	-15.46%	-31.54%
23	General Service - Small	-5.69%	-4.53%
SpC	Customer 1	23.18%	15.38%
SpC	Customer 2	23.70%	0.23%
	Total Utah Jurisdiction	5.05%	5.05%

987

988

989 Q. WHAT DO YOU RECOMMEND REGARDING RMP'S PROPOSED

990 **ECOSS**?

A. I recommend that the PSC consider these issues when apportioning

revenue and designing rates. I discuss the rate design implications of
these issues in the next section. Specifically, I have recommended that
the PSC:

Require RMP to remove the ECOSS step that subfunctionalizes
 production and transmission into fixed and variable categories within
 the ECOSS.

998
998
998
999
999
data inputs for subfunctionalizing distribution costs into primary and
1000
secondary.

Consider my modified ECOSS results, presented within Section III.D,
 when informing revenue apportionment between customer classes and
 rate designs.

	OCS-	5D	Nelson	20-035-04	Page 51 of 124
1004		4.	Require RMP to provide	an alternate ECOSS utilizing t	he probability of
1005			dispatch classification m	ethod in its next rate case.	
1006		5.	Prioritize rate gradualism	n and fairness due to the impac	ct COVID has
1007			likely had on the ECOSS	model inputs and results.	
1008		6.	Metering costs should be	e functionalized to reflect the c	haracteristics of
1009			AMI. Specifically, meters	should be functionalized as 1	/3 production,
1010			1/3 transmission, and 1/3	3 distribution.	
1011					
1012			E. Concerns with Roo	cky Mountain Power's MCOSS	Sapproach
1013	Q.	W	HAT DO YOU DISCUSS	IN THIS SECTION AND WHY	IS IT
1014		IM	PORTANT?		
1015	A.	١d	liscuss RMP's Marginal C	ost of Service Study. RMP agr	eed to conduct
1016		the	e study after the 2014 rate	e case, although the results are	e only for
1017		inf	ormational purposes. It is	nonetheless important to revie	ew the MCOSS
1018		fin	dings and methodology a	s they reflect and reinforce tre	nds around
1019		RI	MP's general decision-ma	king in cost studies.	
1020					
1021	Q.	Н	OW DOES AN MCOSS D	IFFER FROM AN EMBEDDEI	COSS?
1022	A.	Ra	ather than using historic se	ervice costs to assign cost res	ponsibility
1023		an	nong customer classes, ai	n MCOSS is forward-looking.	The MCOSS
1024		de	termines the resources re	quired for RMP to produce on	e additional unit
1025		of	electricity or serve one ne	ew customer in the test year.	

	OCS	-5D Nelson	20-035-04	Page 52 of 124
1026				
1027	Q.	HAVE YOU REVIE	WED RMP'S MCOSS?	
1028	A.	Yes, I have done so	o at a high level.	
1029				
1030	Q.	DO YOU HAVE CO	NCERNS WITH RMP'S MCC	DSS?
1031	Α.	Yes, I am concerne	d with RMP's treatment of ma	rginal distribution costs,
1032		specifically RMP's o	choice to classify certain syste	m components as
1033		customer-related, a	nd the methodology used for	doing so.
1034				
1035	Q.	PLEASE EXPLAIN		
1036	Α.	RMP classifies distr	ibution cost into three compo	nents: ³¹
1037		1. demand-related	(\$/kW/year) = additional costs	s of larger transformers,
1038		substations, pole	es and conductors with suffici	ent capacity to serve the
1039		level of demand	a customer class places on th	ne system
1040		2. commitment-rela	ated (\$/customer/year) = the c	osts of transformers,
1041		poles and condu	ictors that are not determined	by the level of demand
1042		customers place	on the system	
1043		3. billing-related (\$	/customer/year) = billing and o	customer service related
1044		costs.		

³¹ Meredith Direct at 67

	OCS-	5D Nelson	20-035-04	Page 53 of 124
1045		Thus, commitment and I	oilling costs will be classified as	s customer
1046		related. While it is common	practice to consider billing cos	ts customer-
1047		related, RMP has made a s	ubjective decision to include p	ole, conductor,
1048		and transformer costs in thi	s category.	
1049				
1050	Q.	HOW DOES RMP CALCUL	ATE TRANSFORMER COM	/ITMENT
1051		COSTS?		
1052	Α.	RMP created a least square	es regression of installed cost v	versus size of
1053		RMP's commonly installed	transformers. The slope of the	regression, or
1054		the change in cost per char	ige in capacity, defines the der	mand-related
1055		costs. The intercept of the r	egression, or the cost when m	odeled capacity
1056		is zero, defines the commitr	ment costs. This method is kno	own in industry
1057		literature as the minimum-ir	ntercept or zero-intercept meth	od and relies on
1058		the idea that the customer-r	elated cost of a line transforme	er can be found
1059		by simulating a hypothetica	l no-load piece of equipment. ³²	2
1060				
1061	Q.	WHAT ARE YOUR CONCE	ERNS WITH THIS APPROACE	1?
1062	Α.	The zero-intercept approac	h is problematic for several rea	isons, including

1063 that it is abstract and unrealistic and varies dramatically based on a

³² NARUC Manual at 92.

OCS-5D Nelson		5D Nelson	20-035-04	Page 54 of 124		
1064		utility's subjectively-chosen statistical methods and equipment data. ³³ The second states and equipment data.				
1065		zero-intercept approach has	recently been rejected by Cor	nmissions in		
1066		Colorado and Illinois.34				
1067		This classification ap	proach is inconsistent with RM	P's class		
1068		COSS. In the class COSS, r	neters and services are consid	lered customer-		
1069		related and all other costs c	onsidered demand-related. ³⁵ C	Clearly, far more		
1070		than meters and services have been assigned to customer rather than				
1071		demand in the MCOSS. This	s inconsistency, along with the	unsupported		
1072		classification method, discre	edit the results of RMP's MCOS	SS.		
1073						
1074	Q.	HOW DO YOU RECOMME	ND THAT THE PSC TREAT T	HE MCOSS?		
1075	A.	I do not recommend that RM	IP's MCOSS be used to inform	n revenue		
1076		apportionment or rate desig	n.			
1077						
1078		IV. REVENUE APPORTION	IMENT			

1079 Q. HOW DID RMP APPORTION ITS REVENUE REQUIREMENT AMONG
1080 CUSTOMER CLASSES?

³³ RAP Manual at 148.

³⁴ RAP Manual at 145.

 $^{^{\}rm 35}$ Meredith Direct at 7

OCS-5D Nelson20-035-04Page 55 of 1241081A.RMP set a rate spread midpoint at 4.9 percent and then decided how far1082above or below 4.9 percent to place every customer class, approximately

1083 based on its cost of service results. RMP produced the below rate spread:

Customer Class	Proposed Rate Change
Residential	6.9%
Commercial and Industrial	
Schedule 23	1.9%
Schedule 6	3.9%
Schedule 8	3.9%
Schedule 9	4.9%
Irrigation	4.9%
Lighting Schedules	-21.4%

- 1084
- 1085
- 1086 Q. ARE THERE ANY UNIQUE CIRCUMSTANCES RELATED TO THE

1087 **REVENUE REQUIREMENT AT THIS POINT IN THE RATE CASE?**

- 1088 A. Yes. While RMP has requested an increase in revenue of approximately
- 1089 \$95 million, the OCS has recommended a decrease of approximately \$59
- 1090 million. The disparity between the two parties is significant and unusually
- 1091 large. From a revenue apportionment perspective, under the current
- 1092 circumstances, whether an analyst is allocating a rate decrease or
- 1093 increase to classes may impact the recommended approach.
- 1094

1095 Q. HOW MAY APPROACHES TO APPORTIONING REVENUE, OR RATE

- 1096 SPREAD, TO CLASSES DIFFER UNDER A RATE DECREASE AND
- 1097 INCREASE?

20-035-04

Page 56 of 124

1098 Α. There are many ways that the principles may differ when decreasing or 1099 increasing rates. I will discuss two. First, while gradualism for rate 1100 increases is always important, it may be less so when apportioning rate 1101 decreases. For example, an analyst may recommend larger decreases for 1102 classes that are significantly overpaying, such as the lighting classes and 1103 Schedule 23, but would keep revenue apportionment increases more 1104 strongly clustered around the overall increase. In application, gradual rate 1105 increases result in assigning classes with increases that do not 1106 significantly vary from the overall increase. Gradualism preserves inter-1107 class equity and acknowledges the uncertainty within every cost study. 1108 Second, the level to which an analyst relies on ECOSS results 1109 could also vary. Most times that revenue requirements are significantly 1110 revised from direct to surrebuttal testimony, the ECOSS is not updated. 1111 Not updating an ECOSS with a significantly revised revenue requirement 1112 creates a situation where revenue apportionment is based on stale and 1113 inaccurate cost information. For example, RMP's proposed ECOSS has 1114 the costs of RMP's AMI project, which has been delayed, and I 1115 recommend being rejected. The OCS has proposed numerous other 1116 similar adjustments that are not reflected in either RMP or my modified 1117 ECOSS. For this reason, as disparities from the proposed revenue to the 1118 ultimately approved revenues increase, the less useful ECOSS results 1119 become.

20-035-04

1120	Q.	ARE THERE OTHER UNIQUE CIRCUMSTANCES THAT THE PSC
1121		SHOULD CONSIDER WHEN DETERMINING REVENUE
1122		APPORTIONMENT?
1123	A.	Yes. As discussed above, the economic impacts of COVID have likely
1124		changed customer class load profiles significantly. Because customer
1125		class load profiles are critical inputs in to the ECOSS, these changes call
1126		into question the accuracy of RMP's proposed ECOSS and its usefulness
1127		for informing revenue apportionment and rate design.
1128		
1129	Q.	DURING TIMES WITH EXCESSIVE UNCERTAINTY AND POOR DATA
1130		QUALITY, HOW DO YOU RECOMMEND THAT REVENUE BE
1131		APPORTIONED TO CUSTOMER CLASSES?
1132	A.	I recommend that the PSC prioritize equity. One way to do this is to assign
1133		all classes the same directional increase or decrease in rates, while
1134		allowing the magnitude of the increase or decrease to vary amongst
1135		customer classes. Requiring that all customers shared the burden of rate
1136		increases, or in the benefits of rate decreases, is one way to support inter-
1137		class equity and reduce the potential for customer confusion. And, as
1138		discussed above, gradualism is an important principle, especially when
1139		the quality of the underlying data is suspect.
1140	Q.	WHAT IS YOUR RECOMMENDATION FOR REVENUE

1141 **APPORTIONMENT?**

	OCS-	5D Nelson	20-035-04	Page 58 of 124
1142	Α.	My recommendation is to fol	low the principles I have outlin	ed in this
1143		section. Due to the circumst	ances explained above, I will p	provide a more
1144		specific revenue apportionm	ent recommendation in surreb	outtal. That will
1145		allow me to factor into my ar	nalysis whether the revenue re	quirement
1146		differences have narrowed a	and evaluate any updated data	that RMP
1147		provides.		
1148				
11/0		V RATE DESIGN		
1143		V. RATE DEGION		
1150	Q.	WHAT IS THE PURPOSE C	OF THIS SECTION OF YOUR	TESTIMONY?
1151	Α.	I highlight the deficiencies of	f RMP's rate design methods,	specifically its
1152		unbundling approach, reside	ential rates, and C&I interruptib	e load pilot
1153				
1154		A. Rate Unbundling		
1155	Q.	PLEASE EXPLAIN WHY YO	OU ADDRESS RATE UNBUN	DLING IN THIS
1156		SECTION.		
1157	Α.	I address RMP's rate unbun	dling proposal as part of rate c	lesign because
1158		RMP has introduced its unb	undling method as a tool for al	tering
1159		ratemaking. ³⁶		
1160				
1161	Q.	WHAT IS RATE UNBUNDL	ING?	

³⁶ Meredith Direct at 17.

	OCS-	5D Nelson	20-035-04	Page 59 of 124	
1162	A.	Rate unbundling is creating a rate determinant on a customer's bill.			
1163		However, the general term '	unbundling" is used to describ	e many	
1164		processes within the cost st	udy and rate design process.		
1165					
1166	Q.	WHAT IS THE TRADITION	AL PURPOSE OF RATE UNB	UNDLING?	
1167	Α.	Rate unbundling emerged w	vith utility restructuring. Unbunc	lling was used	
1168		as a way to remove compet	itive services from bundled reg	ulated utilities,	
1169		and then facilitate competition	on between third parties by allo	owing the	
1170		service to be sold separately	у.		
1171					
1172	Q.	WHAT ARE SOME OF THE	E EMERGENT OBJECTIVES 1	THAT RATE	
1173		UNBUNDLING MAY BE US	SED TO ACHIEVE?		
1174	A.	The emergence of DERs ha	s led to theoretical proposals s	suggesting that	
1175		each service offered by a ut	ility should be separately price	d (i.e.,	
1176		unbundled). ³⁷ These unbun	dled rate structures would resu	lt in numerous	
1177		additional billing determinan	ts on customer bills in an atten	npt to price	
1178		each discrete utility service.			
1179					

³⁷ Overcast, Edwin H. Smart Rates for Smart Utilities: Creating a New Customer Paradigm with Enhanced Pricing of Utility Services. Black & Veatch.

20-035-04

1180 Q. DOES THE METHOD OR PURPOSE OF RMP'S PROPOSED RATE

1181 UNBUNDLING ALIGN WITH TRADITIONAL OR EMERGENT

1182 APPROACHES TO RATE UNBUNDLING?

- 1183 A. No. In fact, RMP's unbundling methodology is unprecedented and illogical.
- 1184 Specifically, in a vertically integrated regulatory framework, an unbundled
- 1185 ECOSS component should map directly to an unbundled rate
- 1186 component.³⁸ However, RMP's rate components contradict the cost
- allocations produced by its own ECOSS resulting in rates that are not
- 1188 cost-based. This suggests that the purpose of RMP's subfunctionalization
- in the ECOSS, and RMP's ultimate rate unbundling, are both attempts to
- justify a fabricated rate design.
- 1191 I strongly disagree with RMP's production and transmission
- subfunctionalization and unbundled rate design approach. The remainder
- of this section explains, in depth, the many theoretical and practical
- 1194 shortcomings of RMP's unbundling approach.
- 1195
- i. Company's Proposal and Justification

1197 Q. PLEASE DESCRIBE RMP'S UNBUNDLING PROPOSAL.

- 1198 A. As previously described, RMP has proposed to subfunctionalize the
- 1199 production and transmission functions into the categories demand and

³⁸ There may be circumstances, such as with ancillary service quantification, that direct mappings would be arguable.

	OCS-	5D Nelson	20-035-04	Page 61 of 124
1200		energy and then again into '	fixed" and "variable" in its ECC	OSS. RMP then
1201		translates these new ECOS	S cost categories into three ra	te design
1202		categories: ³⁹		
1203		• <u>Delivery</u> (includes the	e distribution, retail, and misce	llaneous
1204		functions and most o	f the transmission function)	
1205		• Fixed supply (include	s the production function exclu	uding net
1206		variable power costs	which are in the Energy Balan	cing Account
1207		("EBA"), which includ	es the cost of fuel, wholesale t	transactions,
1208		and production tax cr	edits)	
1209		• Variable supply (inclu	ides the costs in the EBA, whi	ch includes net
1210		variable power costs	and production tax credits)	
1211		RMP then transforms those	categories into three rate com	ponents:
1212		basic charge		
1213		• demand charge		
1214		• energy charge.		
1215		Delivery costs are recovered	d through monthly customer ch	narges and kW
1216		charges; fixed supply costs	are recovered through deman	d and energy
1217		rates; and variable supply c	osts are recovered through en	ergy charges.
1218				
1219	Q.	WHY HAS RMP PROPOSE	D RATE UNBUNDLING?	

³⁹ Meredith Direct at 17.

	OCS-	5D Nelson	20-035-04	Page 62 of 124	
1220	Α.	RMP justifies its rate unbundling proposal as providing "greater			
1221		transparency between cost	of service and rate design" and	d "making it	
1222		easier for regulators and sta	akeholders to better analyze ar	nd understand	
1223		the different aspects of utilit	y costs." ⁴⁰		
1224					
1225	Q.	DID YOU FIND THAT THE	RATE UNBUNDLING APPRO	ACH	
1226		ACHIEVED RMP'S CLAIM	ED OBJECTIVES?		
1227	Α.	No. The rate unbundling ap	proaches does not achieve the	intended	
1228		objectives. The unbundling	proposal convolutes the transla	ation from	
1229		ECOSS to rate design. It is	utterly unclear from testimony	– and requires a	
1230		great deal of scrutiny of RM	P's pricing model, which takes	time that	
1231		regulators do not always ha	ve available – to ascertain how	v RMP goes	
1232		from its new "delivery" subfu	unction to its basic customer ch	arge, or from its	
1233		"fixed supply" and "variable	supply" to volumetric rates. RN	/IP's rate	
1234		unbundling does not improv	e transparency and creates an	unclear	
1235		relationship between the EC	COSS and rate design.		
1236					
1237	Q.	HAS RMP'S PROPOSED L	JNBUNDLING CONCEPT BEE	EN USED	

1238 **BEFORE?**

⁴⁰ Meredith Direct at 17.

	OCS-	5D Nelson	20-035-04	Page 63 of 124		
1239	A.	No. The use of three rate design categories (delivery, fixed supply, and				
1240		variable supply) is not utilized in any of RMP's other jurisdictions. ⁴¹				
1241		Additionally, RMP cannot na	ame any other electric utility in	the United		
1242		States that uses this unbune	dling concept. ⁴² Nor can RMP	cite any		
1243		publications that recommen	d the subfunctionalization that	RMP has		
1244		proposed.43				
1245						
1246	Q.	DOES RMP CLAIM THAT	T HAS UNBUNDLED ITS RAT	TES BEFORE?		
1247	A.	Yes. RMP's direct testimon	y says "The Company unbundle	es its rates in		
1248		Oregon, Wyoming, and Cal	fornia" ⁴⁴ when it introduces the	eunbundling		
1249		proposal, just eight lines be	fore describing the three unbur	ndled		
1250		categories: delivery, variabl	e supply, and fixed supply.			
1251		However, when aske	d in discovery about the specif	ic unbundling in		
1252		these three states, RMP res	sponded that: "The Company d	oes not		
1253		unbundle its rates in Orego	n, Wyoming, and California into	the same three		
1254		categories it has proposed t	or Utah." ⁴⁵ For this reason, I fo	ound RMP's		
1255		testimony on the unbundling	g practices used in other states	be misleading.		
1256						

⁴¹ OCS 8.6

- ⁴² OCS 8.7
- ⁴³ OCS 8.1
- ⁴⁴ Meredith Direct at 17.
- ⁴⁵ OCS 8.6.

	OCS	-5D Nelson	20-035-04	Page 64 of 124
1257		ii. Theoretical Premis	e	
1258	Q.	DOES RMP JUSTIFY ITS F	IXED AND VARIABLE SUPP	νLY
1259		DISTINCTION FOR RATE	DESIGN?	
1260	Α.	No. As explained earlier in s	section 3.C.i, RMP does not tra	ansparently
1261		define "fixed" or "variable" fr	om an economics, or any othe	er, perspective.
1262		RMP similarly fails to provid	e an analytical basis for its rat	e components
1263		that are based on fixed and	variable supply.	
1264				
1265	Q.	DOES DISTINGUISHING B	ETWEEN FIXED AND VARIA	BLE COSTS
1266		PROVIDE USEFUL INFOR	MATION FOR RATE DESIGN	l?
1267	Α.	No. RMP's theoretical prem	ise for unbundling – categorizi	ng between
1268		fixed and variable costs – is	subjective and misconstrues	cost
1269		subfunctionalization. The fix	ed versus variable distinction	is an antiquated
1270		approach that often treats fu	el and other short-term costs	as variable (to
1271		be collected through kWh cl	narges) and other investments	as fixed (to be
1272		collected based on demand	or number of customers). Inde	eed, this is how
1273		RMP applies the concept to	rate design. ⁴⁶ Not only does t	his approach
1274		mischaracterize investment	decisions in the modern powe	er system, but it
1275		also over-emphasizes short	-term costs.	
1276				

⁴⁶ "Cost causation principles would support recovery of generation fixed costs through demand rates". See Meredith Direct at 19.

1277 Q. HOW DOES THE FIXED VERSUS VARIABLE APPROACH

1278 MISCHARACTERIZE INVESTMENT DECISIONS IN THE MODERN

1279 **POWER SYSTEM?**

- A. In the modern power system, traditional fixed and variable costs no longer
 serve set purposes and will not reflect cost causation if categorized as
 such for rate design. For example, wind and solar facilities would
- 1283 traditionally be considered fixed investments with very little variable cost.
- 1284 Informing rate design through the fixed and variable paradigm may lead to
- 1285 recovering wind and solar resources completely through system demand
- 1286 charges. However, utilities often invest in wind and solar to avoid fuel
- 1287 costs, which are traditionally considered variable.
- When using the fixed versus variable paradigm, RMP relies on this outdated binary distinction to identify the type of cost and then lets that determination decide why the money was spent, rather than deciding – and charging customers accordingly – based on the way the investment was actually used.
- 1293

1294 Q. HOW DOES THE FIXED VERSUS VARIABLE APPROACH OVER-

1295 EMPHASIZE SHORT-TERM COSTS?

A. Assigning only a narrow set of fuel and power costs to variable supply
restricts the costs used to inform rate design to short time period. This
approach disregards the fact that a number of so-called "fixed" costs can

20-035-04

Page 66 of 124

in fact vary over a multi-year time horizon and can, over that time, be
affected by energy consumption – therefore qualifying as energy-related.
Imposing such a strict fixed and variable time horizon ignores the
economic reality that all costs vary in the long run. Indeed, utilities plan
their investments on a multi-year time horizon. Therefore, broadly calling
non-fuel investments "fixed" misrepresents the realities of modern system
planning.

1306 Finally, and most importantly, using the fixed versus variable 1307 approach to inform rate design does not maximize benefits for ratepayers. 1308 The fixed versus variable approach is a backward-looking rate design 1309 approach. Basing forward-looking rates, on a backward-looking cost 1310 approach, has important unintended consequences. The primary 1311 consequence is that it will not lead to cost-minimization as the resulting 1312 rate design incents customer consumption with a low volumetric rate 1313 component, all else constant. The increased consumption can lead to 1314 increase capital expenditures at all levels of the power system and 1315 therefore increase future rates for ratepayers.

- 1316
- 1317 iii. Practical Implications
- 1318 Q. WHAT ARE THE PRACTICAL IMPLICATIONS OF RMP'S
- 1319 UNBUNDLING PROPOSAL?
- 1320 A. I will highlight three implications of RMP's unbundling proposal:

	OCS-	5D No	elson	20-035-04	Page 67 of 124
1321		1.	It allows RMP to deviat	e from ECOSS results when	designing rates;
1322		2.	It shifts energy charges	s to demand charges; and	
1323		3.	Designing rate with the	goal of influencing renewab	le energy
1324			programs is likely to lea	ad unintended consequences	S.
1325					
1326	Q.	нои	V DOES UNBUNDLING	ENABLE RMP TO WORK	AROUND THE
1327		COS	S?		
1328	Α.	The	rate unbundling propos	al allows RMP to deviate fror	n the 75/25
1329		dem	and and energy classific	cation of production and tran	smission costs
1330		withi	n the ECOSS. By subfu	nctionalizing the production	and transmission
1331		func	tions into fixed and varia	able demand and energy – s	e <i>parately</i> from the
1332		class	sification that assigns ea	ach function 75 percent dema	and and 25
1333		perc	ent to energy– RMP is a	able to sidestep the predeter	mined
1334		clas	sification ratio when trar	nslating its COSS into rate de	signs.
1335			RMP uses the costs f	rom its unbundled categories	s "delivery", "fixed
1336		supp	bly", and "variable supply	y" to set rates, rather than its	classified energy
1337		and	demand costs. ⁴⁷ By "un	bundling" fixed and variable	costs, RMP
1338		effeo	ctively gives itself an alte	ernate framework for categor	izing costs as
1339		relat	ed to energy or demand	l when designing rates. In fa	ct, RMP has
1340		expl	icitly stated that "what th	e Company considers to be	variable supply

⁴⁷ UT Pricing Model GRC2020.xls

	OCS-	5D Nelson	20-035-04	Page 68 of 124
1341		costs is not the same as wh	at it considers to be energy-rel	ated." ⁴⁸
1342		Therefore, although RMP fo	rmally classifies production an	d transmission
1343		costs according to jurisdiction	onal protocol, it uses unbundlin	g to carefully
1344		avoid translating that part of	the COSS results into rates. F	RMP's rate
1345		unbundling proposal subver	ts decades of regulatory prece	dent. ⁴⁹
1346				
1347	Q.	ARE THERE OTHER WAY	S THAT THE PROPOSED RA	TE
1348		UNBUNDLING ALLOWS R	MP TO WORK AROUND THE	COSS?
1349	Α.	Yes. RMP's rate unbundling	allows it to deviate from the d	istribution
1350		classification in the COSS.	Although the COSS indicates t	hat the only
1351		distribution infrastructure that	at should be considered custor	mer-related is
1352		meters and services, the bra	and new, unbundled "delivery"	category
1353		includes the entire distribution	on function. ⁵⁰ This allows RMP	to pick and
1354		choose more distribution co	mponents to include in basic c	ustomer charge
1355		in rate design, which RMP h	has done for the residential cla	ss. These
1356		examples demonstrate that,	instead of increasing transpar	ency, RMP's

⁴⁸ OCS 8.8.

⁴⁹ To be clear, RMP is changing a ratemaking precedent where results from a cost of service study are used to inform rate designs. RMP's attempt to alter the ratemaking process with rate unbundling relies on a work around to the 75/25 classification split for production and transmission, which is also a long-standing precedent. I am challenging the 75/25 split as well but do so transparently. Of the two distinct precedents, changing the ratemaking process is far more concerning because this change would be unprecedented within the United States, while classification of production and transmission.

⁵⁰ UT Pricing Model GRC2020.xls

	OCS-	5D Nelson	20-035-04	Page 69 of 124
1357		rate bundling is being cover	tly used to make significant rate	e design
1358		changes.		
1359				
1360	Q.	HOW DOES RATE UNBUN	IDLING SHIFT ENERGY CHA	RGES TO
1361		DEMAND CHARGES?		
1362	Α.	As explained earlier, RMP u	ses its rate unbundling approa	ch to collect
1363		production and transmissior	າ "variable supply" and "fixed sເ	upply" costs in
1364		rates, instead of the costs c	lassified traditionally as "energy	y" and
1365		"demand". A side-by-side co	omparison of these costs revea	ls RMP's
1366		orchestrated shift away from	n cost collection through volum	etric
1367		components.		
1368				
1369		Figure 1: Comparison of cos	st-based energy to unbundled v	variable supply

1370 rate components⁵¹

⁵¹ Workpaper OCS 5.2D.

1371

1372 The figure above demonstrates that for each customer class (including 1373 those not shown above), the production and transmission costs that RMP 1374 subfunctionalized as variable supply are significantly lower than the costs RMP classified as energy.⁵² Correspondingly, the costs subfunctionalized 1375 1376 as fixed supply are greater than the costs classified as demand. General 1377 Service distribution customers, for example, would see a 9 percent 1378 decrease from cost-based kWh rates under RMP's rate unbundling. RMP 1379 relies on variable supply costs to inform kWh its rate proposals, which 1380 reduces the kWh component below the cost basis indicated within RMP's 1381 ECOSS.

1382

⁵² The energy classification percentages do not equal exactly 25% because they may include other things such as fuel costs that are classified 100% energy.
Q.

20-035-04

WHY IS IT CONCERNING THAT UNBUNDLING SHIFTS ENERGY

1383 1384 1385 1386 1387 1388

CHARGES TO DEMAND CHARGES?

- A. There are few reasons why shifting collection from energy charges todemand charges concerns me.
- 1387First, it will increase energy consumption since price signals1388associated with incremental energy use will be much lower, all else1389constant. Increasing consumption will likely lead to increased investment
- by the utility and ultimately increase rates.
- 1391 Second, lowering kWh and increasing demand charges may lead to
- 1392less flexible load. Collecting revenues through relatively higher time-
- 1393 varying rate designs would better incent flexibility and therefore align
- better with the technologies that are going onto the grid (e.g., renewable
- 1395 energy, energy storage, and AMI).
- 1396Lastly, it changes the ratemaking process by moving away from1397cost-based rates as determined within the ECOSS. Approving RMP's1398methodology would provide RMP with a much higher degree of control1399over the design of rate components because rate components would no1400longer be informed by the ECOSS, but instead by the costs that RMP1401subjectively and opaquely determines to be fixed or variable.

1402

20-035-04

Q.	RMP NOTES THAT RATE UNBUNDLING WILL HELP WITH
	RENEWABLE ENERGY PROGRAM DESIGN. 53 HOW DO YOU
	RESPOND TO THIS IDEA?
A.	First, rates for general customer tariffs should not be designed with
	external renewable energy programs in mind. This will likely lead to
	unintended consequences. Also, RMP provides no evidence supporting
	their assertion of how rate unbundling, and more specifically its proposed
	rate unbundling design, will help with any renewable program design.
Q.	DO YOU FIND IT APPROPRIATE TO DESIGN RATES WITH THE GOAL
	OF IMPACTING COMPENSATION FOR DERS OR RENEWABLE
	ENERGY PROGRAMS?
A.	No. Rates should be designed to provide customers with an efficient price
	signal based on the services they are receiving at that time. Rates should
	not be designed with DER compensation in mind. Doing so will result in an
	over-emphasis of the utility's revenue stability and an under-emphasis of
	incenting positive behavior through price signals. This is the case with
	RMP's rate design proposals. If RMP believes that DERs are not
	compensated equitably, they should create a distinct pathway to
	compensate them, not use primary customer class tariffs.
	Q . Q . Q .

⁵³ Meredith Direct at 17.

	OCS-	5D Nelson	20-035-04	Page 73 of 124
1423				
1424		iv. Recommendation		
1425	Q.	HOW DO YOU RECOMMEN	ND THE PSC ADDRESS RMP	'S RATE
1426		UNBUNDLING PROPOSAL	.?	
1427	A.	Allowing RMP to base rates	off its rate unbundling approad	ch is a move
1428		away from cost-based rate o	lesign. This would be a signific	ant and
1429		unprecedented approach to	design rates.	
1430		I recommend that the	PSC reject RMP's rate unbun	dling proposal.
1431		In the next rate case, the PS	SC should require RMP to infor	m rate based
1432		on cost and not inform rate of	on its rate unbundling methodo	logy.
1433				
1434				
1435		B. Residential Rate D	Design	
1436	Q.	WHAT RATE CHANGES H	AS RMP PROPOSED FOR IT	S
1437		RESIDENTIAL CUSTOMER	R CLASS?	
1438	A.	RMP has proposed to assign	n different prices to multi-family	y and single-
1439		family customers for the mo	nthly customer charge. It propo	oses
1440		maintaining the existing \$6 r	monthly customer charge for th	e former
1441		customer type and raising it	to \$10 for the latter. RMP also	proposes
1442		eliminating its minimum cha	rge and the third tier of its incli	ning energy
1443		block rates while updating th	ne seasons for its remaining tie	ered blocks.
1444				

	OCS	-5D Nelson	20-035-04	Page 74 of 124
1445	Q.	WHAT IS T	HE OBJECTIVE OF YOUR TESTIM	ONY ON RESIDENTIAL
1446		RATE DES	GN?	
1447	A.	l provide an	alysis and recommendation related t	o the appropriate
1448		customer ch	narges and segmentation of the resid	lential class into single
1449		and multi-fa	mily tariffs.	
1450				
1451	Q.	DO YOU H	AVE CONCERNS WITH RMP'S PRO	OPOSED CUSTOMER
1452		CHARGE A	ND THE JUSTIFICATION USED TO	O SUPPORT IT?
1453	A.	Yes. I have	the following concerns, each of whic	h I will discuss in further
1454		detail:		
1455		1. T	he bill impacts created with RMP's p	roposed customer charge
1456		in	crease, in combination with reducing	g the number of inverted
1457		bl	ock rate ("IBR") tiers, are very signifi	cant.
1458		2. U	se of the fixed versus variable distine	ction is inappropriate for
1459		ra	ite design.	
1460		3. R	ecovering transformer costs in the c	ustomer charge is
1461		u	nreasonable.	
1462		4. W	/hile I find RMP's recommendation re	easonable to segment the
1463		re	sidential class into single and multi-	family tariffs, I discuss how
1464		tc	improve the multi-family offering.	
1465		I end with m	ly recommendations on the appropri	ate customer charges for
1466		the single a	nd multi-family residential tariffs.	

OCS-	5D Nelson	20-035-04	Page 75 of 124
	i. RMP's Proposal Cr	eates Excessive Bill Impacts fo	or Most
	Residential Custome	rs	
Q.	HOW DOES RMP'S PROP	OSED RATE DESIGN AFFEC	т
	RESIDENTIAL BILLS?		
A.	RMP's proposed rate design	n increases average summer n	nonthly bills
	under 1,000 kWh by over 9	percent and lowers bills for cor	nsumers over
	1,000 kWh by over 10 perce	ent. The bill increase affects ap	proximately 70
	percent of residential custor	ners while the decrease affects	s approximately
	30 percent. The graph below	w demonstrates the impact of F	RMP's proposal
	on monthly residential bills u	up to 2,000 kWh.	
Figu	re 2: RMP's proposed rate de	esign bill impacts by percentag	e increase and
	Q. A. Figu	 OCS-5D Nelson i. RMP's Proposal Cr Residential Custome Q. HOW DOES RMP'S PROPORE RESIDENTIAL BILLS? A. RMP's proposed rate designed under 1,000 kWh by over 9 1,000 kWh by over 10 percess percent of residential custors 30 percent. The graph belows on monthly residential bills of 	 OCS-5D Nelson 20-035-04 i. RMP's Proposal Creates Excessive Bill Impacts for Residential Customers Q. HOW DOES RMP'S PROPOSED RATE DESIGN AFFECT RESIDENTIAL BILLS? A. RMP's proposed rate design increases average summer munder 1,000 kWh by over 9 percent and lowers bills for corr 1,000 kWh by over 10 percent. The bill increase affects appercent of residential customers while the decrease affects appercent of residential customers while the decrease affects appercent. The graph below demonstrates the impact of F on monthly residential bills up to 2,000 kWh. Figure 2: RMP's proposed rate design bill impacts by percentage

1480 proportion of customers impacted⁵⁴

⁵⁴ Workpaper OCS 5.3D.

1482

1483 Due to the seasonal nature of RMP's rates, Figure 2 represents 1484 summer impacts (June-September), for simplicity. The blue, horizontal line 1485 represents the percentage change in current single-family bills and 1486 corresponds to the left y-axis. The x-axis shows average monthly summer consumption.⁵⁵ The green bars represent a cumulative distribution curve 1487 1488 that indicates the percentage of residential customers who consume at or below each kWh level throughout the summer.⁵⁶ The percentages 1489 1490 associated with the cumulative distribution are presented on the right y-

⁵⁵ The average consumption was created using data from 2019.

⁵⁶ Due to data limitations, the blue bill impact line represents single-family residential bills, while the green cumulative frequency distribution of customer bill count includes all residential customers.

20-035-04

Page 77 of 124

1491 axis. Finally, the vertical post indicates average monthly summer
1492 consumption. Importantly, approximately 60 percent of residential
1493 customers consume less than average and would experience a rate
1494 increase of over 9.5 percent.

1495 Figure 2, above, demonstrates that RMP's proposal to increase the 1496 basic customer charge, while at the same time reducing the number of 1497 IBR tiers from three to two, significantly shifts cost recovery to lower 1498 consuming residents and creates very large bill impacts for small 1499 consumers. While low consuming customers could see a 20 percent rate 1500 increase, high consumption customers (over 1,000 kWh) will realize a rate 1501 decrease of over 10 percent. Residential customers who consume under 1502 250 kWh a month (or about 12.5 percent) will experience a 20% or greater 1503 increase in their average monthly summer bills, while 50% of residential 1504 customers will experience a 10% or higher increase in their average 1505 monthly summer bills.

1506 RMP's proposal creates inequitable bill impacts within the 1507 residential class by assigning significant rate increases to low use 1508 customers (which constitutes 70 percent of residential customers) and 1509 assigning significant rate decreases to high consumption users.

1510

OCS-	5D Nelson	20-035-04	Page 78 of 124
	ii. Fixed versus Varia	able Costs	
Q.	HOW DOES RMP USE TH	E FIXED VERSUS V	ARIABLE DISTINCTION
	IN RATE DESIGN?		
A.	As with its unbundling prop	osal, RMP uses the ic	lea of fixed costs in
	residential rate design, exp	laining that the "reside	ential basic charge should
	include the fixed costs asso	ociated with customer	service, billing, and the
	local infrastructure"57		
Q.	WHAT IS YOUR CONCER	N WITH RMP'S DIST	INCTION OF "FIXED
	COSTS"?		
Α.	As explained earlier, the co	ncept is outdated and	l does not align with how
	the power system is moder	nizing. By assuming t	hat costs are fixed and
	therefore need to be recover	ered through a fixed c	harge, RMP is implicitly
	assuming that once installe	d equipment will not r	need to be replaced due
	to capacity overload. This a	assumption is unsuppo	orted and likely untrue for
	some of the equipment dee	med fixed, such as tra	ansformers.
	iii. Line Transformers	s are Not Customer-S	pecific Costs
Q.	WHAT ARE YOUR CONCI	ERNS WITH INCLUD	ING TRANSFORMERS
	IN THE CUSTOMER CHAP	RGE?	
	осs- Q . Q . А.	OCS-5D Nelson ii. Fixed versus Varia Q. HOW DOES RMP USE TH IN RATE DESIGN? A. As with its unbundling prop residential rate design, exp include the fixed costs asso local infrastructure" ⁵⁷ Q. WHAT IS YOUR CONCER COSTS"? A. As explained earlier, the co the power system is moder therefore need to be recover assuming that once installer to capacity overload. This asso some of the equipment deer iii. Line Transformers Q. WHAT ARE YOUR CONCER IN THE CUSTOMER CHAR	 OCS-5D Nelson 20-035-04 ii. Fixed versus Variable Costs Q. HOW DOES RMP USE THE FIXED VERSUS VALUE IN RATE DESIGN? A. As with its unbundling proposal, RMP uses the idresidential rate design, explaining that the "resider include the fixed costs associated with customer local infrastructure

⁵⁷ Meredith Direct at 19.

	OCS-	5D Nelson	20-035-04	Page 79 of 124
1531	A.	Only customer-specific costs	s should be collected through a	a customer
1532		charge, which line transform	ers are not. Customer-specific	costs are
1533		unaffected by demand and e	energy use and are equitable to	o collect through
1534		a fixed charge.		
1535				
1536	Q.	WHY DOES RMP INCLUDE	E TRANSFORMERS IN ITS BA	ASIC
1537		CUSTOMER CHARGE?		
1538	Α.	RMP claims that it is approp	riate to include line transforme	rs in the
1539		monthly customer service ch	narge for a few reasons. RMP t	first supports its
1540		position by arguing that the	cost of line transformers is una	ffected by
1541		changes in customer energy	v usage, saying that "a custome	er's
1542		conservation effortswill no	t lower the Company's cost of	line
1543		transformers."58		
1544				
1545	Q.	DO YOU FIND THIS ARGU	MENT TO HOLD TRUE?	
1546	Α.	No. The Regulatory Assistar	nce Project points out that tran	sformer usage
1547		correlates to the lifetime (an	d therefore the cost) of the equ	ipment:
1548 1549 1550 1551 1552		A transformer that is a year and lightly loa more until the enclos subjected to the same overloads in each yea	very heavily loaded for a couple ded in other hours may last 40 sure rusts away. A similar tra e annual peaks, but also to mar ar, may burn out in 20 years. ⁵⁹	e of hours) years or ansformer ny smaller

 ⁵⁸ Meredith Direct at 21.
 ⁵⁹ RAP Manual at 148.

 OCS-5D Nelson
 20-035-04
 Page 80 of 124

Since the frequency of transformer replacement is linked to its customers'
load shapes, line transformer cost can be closely related to customer
demand. Contrary to RMP's claims, conservation efforts could indeed
lower costs if that conservation were targeted at reducing local distribution
peaks. Conservation efforts could also increase the number of customers
that can be served on one transformer.

1559

1560 Q. COULD LOAD SHAPE BECOME EVEN MORE COST-CAUSATIVE

1561 INTO THE FUTURE?

A. Yes. If EV adoption takes place as RMP predicts, it is likely to lead to
more severe transformer overload in the future as EV customers likely
charge their vehicles during the existing residential peak. This trend will
make individual customers' load shape even more impactful on
transformer costs. If the cost of line transformers is applied equally on a

- 1567 per-customer basis, rather than based on the impact of individual demand
- 1568 during distribution peaks, there will be a significant equity issue as other
- 1569 customers cross-subsidize those EV customers.

1570

1571 Q. WHY ELSE DOES RMP INCLUDE TRANSFORMERS IN ITS

1572 CUSTOMER CHARGE?

1573 A. RMP also argues that line transformers should be included in the basic1574 customer charge because the cost of a transformer does not increase

20-035-04

1575proportionally to customer size. RMP explains that transformers come in1576capacities of 10, 25, and 50 KVA but that the installed cost difference1577between the latter two sizes is only 7 percent. Those economies of scale1578evidently suggest that installed cost is "not driven entirely by size."601579However, when the incremental capacity of a transformer jumps from 251580to 50 KVA, the cost of a new one is also certainly "not driven entirely by"1581incremental customer count, either.

1582 RMP additionally argues that line transformers should be included 1583 in the basic customer charge because that charge should include "the 1584 local infrastructure that is located geographically close to the customer and is dedicated to serving one or a small number of customers"⁶¹ It could 1585 1586 be reasonable to assign transformers to the customer charge if the equipment were utilized by only one customer, but RMP's average line 1587 1588 transformer serves 6.48 customers. Even single-family transformers serve 1589 an average 5.63 customers.⁶² This infrastructure is clearly not specific to 1590 an individual customer in the majority of cases.

1591

1592 Q. DO YOU BELIEVE LINE TRANSFORMERS SHOULD BE INCLUDED IN 1593 THE CUSTOMER CHARGE?

⁶⁰ Meredith Direct at 21.

⁶¹ Meredith Direct at 19.

⁶² Exhibit RMP___(RMM-6) - Basis for Cust Svc Chg.

OCS-5D Nelson 20-035-04 Page 82 of 124 1594 Α. No. Increasing the fixed customer charge with transformer cost is a step in 1595 the wrong direction. RMP should be focusing on moving toward time-1596 varying rates to improve efficiency and equity. Time-varying rates are 1597 more cost reflective and give customers more control over their bill. Fixed 1598 charges do the opposite. 1599 1600 WHY SHOULD ONLY CUSTOMER-SPECIFIC COSTS BE COLLECTED Q. 1601 FROM CUSTOMERS THROUGH THE CUSTOMER CHARGE? 1602 Α. Only customer-specific costs should be collected through the customer 1603 charge. The reasoning is again about equity (avoiding intra-class subsidy) 1604 and sending efficient price signal for energy efficiency and conservation. 1605 Additionally, collecting only customer-specific costs through the customer 1606 charge leaves demand related costs to be collected through time-of-use 1607 rates, which would send a better price signal to customers and therefore 1608 encourage consumption that reflects the true conditions on the electric 1609 grid. 1610 1611 Q. HOW MUCH ARE CUSTOMER-SPECIFIC COSTS FOR RESIDENTS?

1612 A. Using my ECOSS approach, the cost of meters, services, the retail
1613 function, and the miscellaneous function are \$7.90 for both single-family

	OCS-	5D Nelson	20-035-04	Page 83 of 124
1614		and multi-family customers.	⁶³ Although RMP acknowledge	s that meters
1615		and services costs "are ger	erally lower for serving multi-fa	mily dwellings,"
1616		but that they do not have th	e data to differentiate ^{.64}	
1617				
1618		iv. Multi-Family Rate	Proposal	
1619	Q.	WHAT HAS RMP PROPOS	SED FOR MULTI-FAMILY RAT	E DESIGN?
1620	A.	RMP has proposed to split	the customer service charge in	to different
1621		prices for single-family and	multi-family customers: \$10 for	[·] single-family
1622		and \$6 for multi-family. The	difference is based on the diffe	ering cost of line
1623		transformers to serve the tv	vo customer groups.	
1624				
1625	Q.	DO YOU FIND CREATING	A SEPARATE MULTI-FAMIL	Y TARIFF TO
1626		BE REASONABLE?		
1627	A.	I agree conceptually with di	stinguishing between single- ar	nd multi-family
1628		residential customers. How	ever, RMP should broaden the	cost distinction
1629		beyond the groups' line trar	nsformer costs (particularly give	en that line
1630		transformer costs should no	ot be in a basic customer charg	e in the first
1631		place, per my testimony ab	ove). RMP notes that it could o	nly analyze the
1632		difference in costs related to	o transformers, and not the cos	t differences for

 ⁶³ Exhibit RMP___(RMM-6) - Basis for Cust Svc Chg. RMP's approach leads to \$8.46 of customer-specific costs.
 ⁶⁴ Meredith Direct at 20.

	OCS-	5D Nelson	20-035-04	Page 84 of 124
1633		meters and services due to	data availability. ⁶⁵	RMP should collect more
1634		information and further the o	distinction between	the two groups.
1635				
1636	Q.	WHAT ADDITIONAL DATA	SHOULD RMP C	OLLECT?
1637	A.	RMP should begin collecting	g data on load diffe	rences and differences in
1638		infrastructure requirements	between the sub-c	lasses, such as service line
1639		and secondary distribution in	nfrastructure requi	rements. I recommend that
1640		the PSC require RMP to pro	ovide this, as well a	s other information the
1641		utility identifies as being use	eful, in its next rate	case.
1642				
1643		v. Customer Charge	Recommendation	
1644	Q.	WHAT CUSTOMER CHAR	GE DO YOU REC	OMMEND FOR THE
1645		SINGLE AND MULTI-FAMI	LY RESIDENTIAL	CLASS TARIFFS?
1646	A.	For single-family residents,	I recommend a bas	sic customer charge of \$7.
1647		For multi-family, I agree with	n RMP's recomme	ndation of \$6.
1648				
1649	Q.	WHY DO YOU RECOMMEN	ND THESE CHAR	GES?
1650	A.	Just as RMP did in its propo	osal, I used the cus	tomer-related costs to
1651		inform my customer charge	proposal. I also to	ok into consideration the bill
1652		impacts of the other propose	ed rate changes, ir	cluding RMP's elimination

⁶⁵ Meredith Direct at 20.

	OCS-	5D Nelson	20-035-04	Page 85 of 124
1653		of its highest tiered energy b	block. As I explained in the sec	tion above,
1654		these impacts include increa	ased costs for low volumetric u	sers. It would
1655		cause significant rate shock	to increase the customer char	ge in addition to
1656		the other proposed changes	. Along the same lines, I priori	tize gradualism
1657		due to the challenging econ	omic circumstances many rate	payers are
1658		facing due to COVID.		
1659				
1660	Q.	ARE THERE ADDITIONAL	REASONS THAT RMP SHOU	JLD AVOID
1661		SIGNIFICANT RATE CHAN	IGES AT THIS TIME?	
1662	A.	RMP's proposed AMI rollout	t will enable additional, potentia	ally more
1663		beneficial, rate offerings in t	he future.	
1664				
1665		C. C&I Interruptible L	oad Pilot (Schedule 35)	
1666	Q.	WHAT HAS RMP PROPOS	ED FOR ITS C&I SCHEDULE	35 PILOT
1667		("INTERRUPTIBLE TARIF	" OR "SCHEDULE 35")?	
1668	A.	The proposed pilot would er	nable large customers to reduc	e their load
1669		during periods of high marke	et prices or grid stress, in exch	ange for
1670		demand charge credits (\$1/	kW) and energy credits (\$0.20/	/kWh). The
1671		participating customers wou	Id nominate their interruptible	oad level and
1672		would have to reduce their o	consumption to that level when	ever RMP calls
1673		interruption events (ex: if a c	customer that typically consum	es 10 MW

20-035-04

1674 chose to be interruptible down to 7 MW, it would need to shed 3 MW1675 during each event).

1676RMP would call up to 100 hours of events each calendar year –1677each with a minimum one-hour duration – and would be able to call an1678event for up to three consecutive hours each day. Participating customers1679would have at least 30 minutes to reduce their load after receiving1680notice.⁶⁶ Participants would pay a \$90 monthly administrative fee and1681cover any necessary cost to upgrade their metering equipment.

1682

1683 Q. WHY HAS RMP PROPOSED THE C&I INTERRUPTIBLE LOAD PILOT?

- 1684 A. RMP explains that large customers represent the greatest per meter
- 1685 opportunity for load flexibility, i.e. bill reduction in exchange for load
- 1686 shifting to low-cost periods, and that large customers are sophisticated
- 1687 energy users who can respond to complex pricing structures.⁶⁷
- 1688

1689 Q. HOW DID RMP DETERMINE CREDIT PRICES FOR THE

1690 INTERRUPTIBLE LOAD PILOT?

- 1691 A. RMP used real-time prices from the EIM. For energy credits, it determined
- 1692 that \$0.20/kWh would be appropriate because the EIM exceeds
- 1693 \$200/MWh under 100 times a year, meaning that RMP would be

⁶⁶ Meredith Direct at 49-50.

⁶⁷ Meredith Direct at 49.

	OCS-5D Nelson	20-035-04	Page 87 of 124
1694	incentivized to call a	n event during that limited se	et of hours. For demand
1695	charge credits, RMP	again used EIM prices to de	etermine that the value of
1696	the hours exceeding	\$200/MWh equated to \$0.8	9/kW-month. RMP
1697	rounded the demand	d charge up to \$1 to make th	e savings "sufficiently
1698	attractive" to large n	on-residential customers and	d to account for capacity
1699	value that might be a	additional to the energy cred	it. ⁶⁸

1700

1701 Q. HOW DOES RMP PROPOSE TO EVALUATE THE INTERRUPTIBLE

1702 **LOAD PILOT?**

- 1703 A. RMP does not propose a specific evaluation process. RMP refers to
- 1704 potential learnings throughout its proposal.⁶⁹ However, RMP offers no
- 1705 objective criteria, metrics, reporting requirements, or any other objective

1706 framework from which to evaluate the pilot.⁷⁰

- 1707 For example, in its responses to Data Requests OCS 8.15 and
- 1708 16.17, RMP stated that it will evaluate the "cost-effectiveness of the pilot"
- but, after a request for exactly how it will measure cost-effectiveness,
- 1710 RMP failed to provide any information that could be used to measure
- 1711 program cost-effectiveness. Additionally, RMP indicated that it would

⁶⁸ Meredith Direct at 51.

⁶⁹ E.g., "(E)xperience operating the proposed pilot program can help determine an appropriate capacity value ... (and) ... even if no customers ultimately enroll in either program, the Company will learn that the pilots are not sufficiently attractive to entice participation." Meredith Direct at 51 and 58.

⁷⁰ See RMP's Response to Data Request OCS 8.15 and 16.17.

OCS-5D Nelson20-035-04Page 88 of 1241712measure the success of the program "based upon its communications with1713customers." The subjective evaluation approach suggested by RMP will1714not provide useful information and will leave the success of the program to1715be directly determined by the utility and by the customers receiving a1716discounted rate. Simply said, RMP's pilot framework does not follow best1717practices.⁷¹

1718

1719 Q. WHAT PROCESS DOES RMP PROPOSE FOR PROGRAM

1720 DEVELOPMENT AFTER THE PILOT?

- 1721 A. Like RMP's lack of evaluation criteria, the proposal also lacks clarity on
- 1722 the pilot's progression towards a scaled offering, such as a standard tariff,
- 1723 or further development of a modified offering. However, RMP seems to
- assume that the pilot will extend multiple years, saying: "after the first
- 1725 year, availability on both programs would be on a first-come, first-served
- basis."⁷² RMP anticipates requesting future program expansion
- 1727 "depending upon how well the pilots perform at providing both RMP and
- 1728 customers with meaningful value."⁷³ However, RMP provides no metric for
- 1729 what meaningful value might be, nor when that value would be measured.
- 1730

⁷² Meredith Direct at 58.

⁷¹ Peter Cappers and C. Anna Spurlock (2020). A handbook for designing, implementing, and evaluating successful pilots. Lawrence Berkley National Laboratory. Prepared for the Office of Electricity Delivery and Energy Reliability.

⁷³ Meredith Direct at 58.

20-035-04

1731 Q. WHAT ARE YOUR HIGH-LEVEL CONCERNS WITH RMP'S

1732 PROPOSED SCHEDULE 35?

A. My primary concern is that the load on Schedule 35 will not provide
meaningful value to ratepayers through the deferral or replacement of
utility resources or utilization of the interruptible load (i.e., the likelihood
that interruption will be called is incredibly low and economic curtailment is
not required). This concern suggests that in practice Schedule 35 may
simply be a rate decrease for large customers as opposed to a useful
demand response resource.

1740 A secondary concern is the fact that RMP is piloting an interruptible 1741 load tariff – a tariff type and technology that has existed for decades.⁷⁴ 1742 Pilots should test new technologies, business models, and pricing 1743 constructs. Pilots are often unnecessary when a solution has been proven 1744 by numerous other utilities. While this tariff and pricing structure may be 1745 new to RMP (although even that is unclear), the concept is not. For this 1746 reason, RMP should have a clear plan for integrating and scaling the tariff 1747 to provide value to ratepayers – but RMP does not. This reinforces my 1748 concern that Schedule 35 is merely a rate discount and not a serious 1749 service offering.

⁷⁴ E.g., Interruptible tariffs are present in California and many MISO states, including Minnesota.

	OCS	-5D Nelson	20-035-04	Page 90 of 124		
1750		Given these of	concerns, I recommend multip	le improvements to the		
1751		pilot specifics and framework. First, I recommend that the PSC require an				
1752		improved framework	for pilot programs moving for	rward. Second, I		
1753		recommend an adju	sted discount. Finally, I recom	nmend that the PSC		
1754		adopt multiple repor	ting requirements related to th	ne pilot.		
1755						
1756		i. RMP's pilot	framework should be improve	ed		
1757	Q.		'S PILOT FRAMEWORK BE	IMPROVED?		
1758	A.	There are many way	vs that RMP could improve its	pilot framework. I offer		
1759		the following method	ds to improve future pilots but	do not consider this a		
1760		comprehensive list o	of potentially beneficial improv	vements.		
1761		First, RMP ne	eeds to provide a clear descrip	otion of the product,		
1762		service, or offering t	hat it is testing. In testimony, I	RMP described the		
1763		interruptible tariff as	increasing load flexibility. The	ere are many types of		
1764		load flexibility and ea	ach type has a different value	to the grid. Exploring		
1765		different types of flex	xibility and their value is impo	rtant. However, testing		
1766		flexibility and value r	equires more carefully define	d services than what		

1767 RMP has provided. RMP's proposed interruptible tariff is more accurately

described as economic curtailment and emergency load balancing and

1769 frequency regulation services.⁷⁵ These forms of flexibility have a lower

⁷⁵ See RMP's Response to Data Request OCS 16.18.

1768

20-035-04

value to ratepayers than, for example, a dispatchable demand responseprogram that displaces a future capacity need.

1772 Second, the objectives of the pilot should be clearly identified and 1773 directly linked to providing ratepayer benefits. For example, RMP claims 1774 that one of the objectives of the Interruptible Tariff is to determine whether 1775 there is a capacity value associated with the tariff. However, RMP does 1776 not have a framework for determining whether the Interruptible Tariff 1777 achieves this objective. One way to demonstrate that the Interruptible 1778 Tariff provides capacity value is to incorporate the resource into RMP's 1779 integrated resource plan, similar to other utilities.⁷⁶ Clearly identified 1780 objectives with direct links to ratepayer benefits should be required for 1781 every RMP pilot moving forward.

Third, evaluation criteria – including performance targets and/or 1782 1783 metrics – should be included within each pilot proposal. In the current 1784 proposal, RMP "hopes to develop (metrics) as it gains experience with the pilot."77 Developing metrics after the pilot proposal does not follow best 1785 1786 practice and demonstrates a lack of forethought on the value that the 1787 offering will provide ratepayers. Performance targets and/or metrics are 1788 central to providing clear and actionable insights and should be required 1789 prior to approval of any pilot.

⁷⁶ E.g., Xcel Energy and Minnesota Power in Minnesota.

⁷⁷ See RMP's Response to Data Request OCS 8.15, 16.15, and 16.17.

	OCS-	-5D Nelson	20-035-04	Page 92 of 124
1790		Lastly,	I recommend that each pilot have	a plan for scaling the
1791		piloted service	e offering or, at a minimum, a desc	ription of what RMP plans
1792		to do if the pil	ot is successful. RMP has provided	l no detail on how this
1793		pilot could be	scaled or improved based on its re	sults.
1794				
1795		ii. The	interruptible discount should reflect	the service provided
1796	Q.	WHAT ARE \$	SOME OF THE SHORTCOMINGS	OF RMP'S APPROACH
1797		TO CALCUL	ATING THE ENERGY AND DEMA	ND DISCOUNTS?
1798	Α.	The primary is	ssue is that RMP derived the dema	nd discount from real-time
1799		energy prices	, not from a tangible capacity value	. Additionally, RMP's
1800		claim that the	re is a capacity value associated w	ith a product that has a
1801		maximum dur	ation of three hours lacks support.	For that reason, if the
1802		pilot is approv	red, I recommend rounding down th	ne demand-related credit
1803		to \$0.50/kW.	With that said, I may support an alt	eration or addition to the
1804		pilot that prod	uctively explored right-sizing incen	tives, if one were
1805		proposed.		
1806		l reque	st that RMP provide additional ana	lysis to complement its
1807		Exhibit RMP_	_(RMM-10) in rebuttal in order to c	ompare the \$0.50/kW and
1808		\$1/kW discou	nt levels. Specifically, I request tha	t RMP provide 10 different
1809		customer type	es with differing load shapes and lo	ad factors. As currently
1810		provided, Exh	ibit RMP(RMM-10) only evaluate	es the discount on one

	OCS	-5D Nelson	20-035-04	Page 93 of 124
1811		specific customer,	which may not be representa	tive of participating
1812		customers.		
1813				
1814		iii. The PSC	C should adopt reporting requir	rements
1815	Q.	HOW COULD TH	E PSC TAKE STEPS TOWAR	ND IMPROVING THE
1816		INTERRUPTIBLE	TARIFF PILOT FRAMEWOR	K?
1817	Α.	The PSC could ac	lopt an initial set of reporting re	equirements.
1818				
1819	Q.	WHAT REPORTI	NG REQUIREMENTS DO YO	U RECOMMEND?
1820	A.	I recommend the	following annual report require	ments:
1821		All intervals wh	nen energy prices are above \$2	200/kWh;
1822		Interruptions b	y event, customer, interval, an	d a narrative for each
1823		event describir	ng the reason for interruption;	
1824		Amount of cap	acity enrolled by month;	
1825		• For each even	t, the amount of curtailment ca	lled and the amount
1826		curtailed withir	the required timeline;	
1827		• The price of er	nergy during the top 400 15-mi	nute intervals and a
1828		narrative expla	ining why economic curtailme	nt was not called during
1829		intervals that e	xceed \$200/kWh;	
1830		Annual program	m costs; and	
1831		Annual cost sa	ving and a narrative explaining	g the methodology for
1832		estimating sav	ings.	

1833

1834	Q.	WHAT ACTIONS DO YOU RECOMMEND THE PSC TAKE ON RMP'S
1835		SCHEDULE 35 PROPOSAL?
1836	A.	I recommend that the PSC require RMP to file a compliance filing that
1837		provides the information in Section V.C.i, adopt the discount alteration of
1838		\$0.50/kW, and adopt the reporting requirements in Section V.C.iii.
1839		Additionally, I recommend that the PSC require RMP provide
1840		similar information for each future pilot.
1841		
1842		D. C&I Critical Peak Pricing
1843	Q.	WHAT IS CRITICAL PEAK PRICING?
1844	A.	A critical peak price is an event-based rate component that can be added
1845		to most, if not all, rate structures to incent flexible load during times of
1846		system stress. Characteristics of a critical peak pricing components can
1847		include a significant kWh rate (often between \$0.50/kWh and \$1/kWh), a
1848		limit on the number of events and event hours per year, and a limit to
1849		duration an event can last. For example, a critical peak pricing component
1850		could be added to RMP's Schedule 8 tariff that was \$0.75/kWh with the
1851		constraints that the utility could call 15 day ahead events that could not
1852		last longer than 5 hours.
1853		

1854 Q. WHAT IS THE PURPOSE OF CRITICAL PEAK PRICING?

	OCS-	5D Nelson	20-035-04	Page 95 of 124
1855	A.	The purpose of critical peak	pricing is to incent flexible load	d through price
1856		signals. Critical peak prices	are distinct from the pilots that	RMP is
1857		proposing because the critic	al peak pricing component is c	lesigned to
1858		collect peaking capacity cos	ts, at a minimum, to reflect tha	t system peaks
1859		cause future capacity addition	ons. RMP's pilots focus on real	-time or near-
1860		real-time pricing circumstand	ces.	
1861				
1862	Q.	HAVE OTHER UTILITIES II	MPLEMENTED CRITICAL PE	AK PRICING
1863		FOR LARGE CUSTOMERS	?	
1864	A.	Yes. There have been nume	erous pilots and some utilities h	nave included a
1865		critical peak pricing compon	ent within default large custom	er tariffs.
1866				
1867	Q.	DO YOU HAVE A RECOMM	MENDATION RELATED TO C	RITICAL PEAK
1868		PRICING?		
1869	A.	Yes. For each customer clas	ss with demand over 1 MW, the	e PSC should
1870		order RMP to evaluate a crit	ical peak pricing pilot in its ne	t rate case,
1871		since this type of program h	as a better track record of deliv	vering
1872		transparent benefits to other	ratepayers.	
1873				
1874		VI. ADVANCED METERING	BINFRASTRUCTURE (AMI)	
1875	Q.	WHAT IS THE PURPOSE C	OF THIS SECTION OF YOUR	TESTIMONY?

OCS-5D Nelson 20-035-04 Page 96 of 124 1876 Α. In this section, I provide an analysis of RMP's AMI project as discussed in 1877 the testimony of Witness Curtis B. Mansfield. In Section VI.A, I discuss the additional process and details needed for the PSC to comprehensively 1878 1879 evaluate the reasonableness of RMP's AMI project proposal. In Section 1880 VI.B, I analyze and comment on RMP's cost-benefit analysis ("CBA"). 1881 Finally, in Section VI.C, I provide my recommendations related to RMP's 1882 AMI project. 1883

1884 Q. HOW DOES THIS SECTION OF YOUR TESTIMONY RELATE TO THE

1885 DIRECT TESTIMONY OF OCS WITNESS DONNA RAMAS?

- 1886 A. Ms. Ramas recommended that the costs of the AMI project not be
- 1887 included within the test year, based on the project not being used and
- 1888 useful during the test year. I recommend that the AMI project proposal be
- 1889 rejected based on the analysis within this section. Therefore, my
- 1890 conclusion to reject the AMI project is consistent with, but distinct from,
- 1891 Ms. Ramas's recommendation.
- 1892

1893 Q. PLEASE SUMMARIZE RMP'S AMI PROJECT PROPOSAL.

1894 A. RMP's Utah AMI Project would construct an AMI field area network which
 1895 would enable remote reading of 790,000 existing AMR meters, and on-site
 1896 replacement of approximately 175,000 existing meters to Itron smart

	OCS-	5D Nelson	20-035-04	Page 97 of 124
1897		meters. The effort would full	y automate and retrieve hourly	meter reading
1898		data each day. ⁷⁸		
1899				
1900	Q.	WHAT IS THE TIMELINE F	OR THE AMI PROJECT?	
1901	Α.	The AMI project was initially	going to be completed by the	end of 2022.
1902		Due to COVID RMP has del	ayed the start of the AMI proje	ct until the end
1903		of 2022. ⁷⁹		
1904				
1905	Q.	WHAT ARE THE SPECIFIC	INVESTMENTS THAT RMP	IS INCLUDING
1906		WITHIN THE AMI PROJEC	Τ?	
1907	Α.	RMP proposes to invest in n	nultiple grid modernization ass	ets within the
1908		AMI project including (1) a fi	eld area network ("FAN"), a me	eter data
1909		management system ("MDN	IS"), (3) website alterations, (4) an outage
1910		detection system, and (5) Al	MI.	
1911				
1912	Q.	WHAT ARE THE PRIMARY	OBJECTIVES OF RMP'S AN	II PROJECT?
1913	A.	RMP is attempting to improv	ve outage management, enable	e RMP to
1914		remotely connect and discor	nnect electric service, lower op	erating costs
1915		(i.e., reducing manual meter	ing reading operations), provid	le customers

⁷⁸ Mansfield Direct at 24.
⁷⁹ See RMP's Response to Data Request OCS 11.1.

	OCS-	5D Nelson	20-035-04	Page 98 of 124
1916		with some additional consur	nption data, and lay a foundation	on for future
1917		smart grid investments, inclu	uding "customer facing energy	efficiency
1918		applications and rate design	."80	
1919				
1920	Q.	HOW IS RMP ROLLING OU	JT AMI TO CUSTOMERS?	
1921	A.	RMP claims that it is utilizing	g a controlled rollout of AMI, alo	ong with the
1922		installation of a FAN, to imp	rove cost-effectiveness. The F	AN would read
1923		existing AMR meters, and a	llow RMP to depreciate the add	ditional existing
1924		meters before replacing the	m. ⁸¹ RMP did not include any a	analysis of
1925		alternative rollout scenarios.		
1926				
1927	Q.	WHAT IS YOUR OPINION	OF RMP'S AMI PROJECT PR	OPOSAL?
1928	A.	RMP has failed to develop a	business case for its AMI proj	ect that
1929		demonstrates benefits will b	e created for ratepayers. Most	importantly, the
1930		AMI project is not cost-effec	tive—RMP's own cost-benefit a	analysis shows
1931		negative net benefits. It is u	nclear why RMP is in a rush to	rollout AMI in
1932		an untraditional manner whe	en the approach will not provide	e positive net
1933		benefits to its customers and	d the current automatic meter r	eading (AMR)
1934		meters have 10 to 15 years	before they will be fully deprec	iated.

 ⁸⁰ Mansfield Direct at 25.
 ⁸¹ Mansfield Direct at 29

20-035-04

Page 99 of 124

1935 RMP has framed the proposed AMI investment as a project that will 1936 provide meter reading savings and some additional data to its customers. 1937 However, AMI and the other complementary investments are key 1938 investments for grid modernization. By narrowly focusing the AMI project 1939 on meter reading savings, RMP is foregoing any discussion or 1940 development of a comprehensive and transparent grid modernization 1941 strategy that better leverages demand-side resources, allows the utility 1942 and third-parties to provide new energy services, and improves load 1943 flexibility. RMP's AMI project is solely focused on how grid modernization 1944 investments can provide utility and shareholder benefits as opposed to 1945 leveraging grid modernization to provide cost-effective, customer-centric 1946 solutions for ratepayers. Moreover, by embracing such a narrow and 1947 short-sighted approach to its proposed AMI project – and, by extension, 1948 grid modernization more broadly – RMP's grid modernization investments 1949 place unreasonable risk and financial burden on customers with almost 1950 assuredly no opportunity for customers to realize quantitative or qualitative 1951 benefits.

Many states have dedicated entire proceedings to ensure that utility
strategies for grid modernization are in-line with state policies and
regulatory goals and that they provide tangible benefits to ratepayers.
Articulating a comprehensive and cohesive strategy is critical because grid
modernization investments are significant, technologically complex, and

	OCS-5D Nelson	20-035-04	Page 100 of 124
1957	need to be se	equenced such that risks are minimi	zed and benefits are
1958	maximized fo	r ratepayers. ⁸² For example, while I	RMP proposes to invest
1959	millions in AM	/I and an MDMS, it would not be ab	le to offer advanced rate
1960	designs for n	ost customers because it has not ir	nvested in or updated its
1961	customer ser	vice system. ⁸³ This example demon	strates that "AMI is a
1962	highly technic	cal investment that requires integrat	ion with other utility
1963	systems and	its value depends on how it is imple	emented and utilized." ⁸⁴
1964	The o	verall goal of the PSC should be to e	ensure RMP is deploying
1965	modern grid	nvestments pursuant to an appropri	iate priority and
1966	sequence, ar	nd at an optimal pace to ensure that	these strategic
1967	investments:		
1968	•	cost-effectively maximize planning	and asset flexibility;
1969	•	minimize the risk of redundancy an	d obsolescence;
1970	•	deliver customer benefits; and	
1971	•	enable more efficient DER and ren	ewable energy
1972		integration. ⁸⁵	

⁸² See "What do regulators want most from grid modernization proposals? A compelling business case." Authored by Rhode Island Public Utilities Commissioner Abigail Anthony. Published September 9, 2020. Available at: <u>https://www.utilitydive.com/news/what-doregulators-want-most-from-grid-modernization-proposals-a-compellin/584845/</u>

⁸³ See RMP's Response to OCS Data Request 18.4

⁸⁴ AMI In Review, Office of Electricity US Department of Energy (2020). Available at: <u>https://www.smartgrid.gov/voices_of_experience</u>

⁸⁵ Hawai'i PUC Docket No. 2016-0087.

	OCS	-5D Nelson	20-035-04	Page 101 of 124
1973		The information that RMF	Provided in its filing a	and through discovery is
1974		wholly inadequate for the	PSC to determine the	e reasonableness of the
1975		proposed AMI project inv	estments. In fact, the i	nformation provided by
1976		RMP <i>is</i> adequate for the	PSC to determine that	t its proposed AMI project
1977		investments are unreason	nable.	
1978	Q.	WHAT DO YOU DISCUS	S IN THE REMAINDE	ER OF THIS SECTION?
1979	A.	The remainder of this sec	tion focuses on the pr	ocess and components
1980		that are missing from RM	P's AMI project, and h	now the information that
1981		was provided should be in	mproved before the P	SC approves any similar
1982		proposals. I begin with a	review of RMP's CBA	
1983				
1984		A. Additional proc	ess and detail should	be required before RMP's
1985		AMI project is a	approved	
1986	Q.	WHAT KEY STEPS DID	RMP OMIT WITH ITS	AMI PROJECT
1987		PROPOSAL?		
1988	A.	Most importantly, RMP's	AMI project does not o	create net benefits. It's
1989		unclear why RMP would	propose a project of th	is magnitude while not
1990		creating benefits for ratep	ayers. One of the prin	nary reasons the AMI
1991		project is not cost-effectiv	e is that RMP myopic	ally focused the project to
1992		create meter reading ben	efits. RMP's AMI proje	ect is ill-conceived and
1993		does not begin to address	s the multitude of issue	es involved with an AMI
1994		rollout.		

20-035-04

1995 RMP's AMI project will increase customer rates for ratepayers-1996 creating negative net benefits—while benefiting shareholders with 1997 increases in rate base and lower operational costs by eliminating full-time 1998 jobs. While I acknowledge that RMP's AMI project was developed pre-1999 COVID, eliminating employees with a project that creates negative net 2000 benefits is clearly unreasonable, doing so during a global pandemic is 2001 unacceptable. 2002 Q. DID RMP INCLUDE ANY INFORMATION THAT IT GATHERED FROM 2003 STAKEHOLDERS OR CUSTOMERS TO HELP INFORM THE AMI

2004 **PROJECT?**

2005 Α. RMP does not appear to have conducted significant, or any, stakeholder 2006 and customer outreach to determine what direct customer benefits are 2007 desired and potentially cost-effective. According to a recent report from 2008 the US Department of Energy, this is a critical misstep when deploying 2009 AMI; "Not surprisingly, commissions, advocates, and other parties 2010 emphasize() that they want to know how the consumer – not just the utility 2011 - will benefit directly and recognized that intangible benefits can be a 2012 significant factor for an AMI business case."⁸⁶ Direct customer benefits,

⁸⁶ AMI In Review, Office of Electricity US Department of Energy (2020). Available at: <u>https://www.smartgrid.gov/voices_of_experience</u>

	OCS-	5D Nelson	20-035-04	Page 103 of 124
2013		along with intangible benefit	s, were not only left out of RN	/IP's testimony on
2014		the AMI project, they seem t	o have been largely disregare	ded. ⁸⁷
2015				
2016	Q.	WHAT TYPES OF DIRECT	AND INTANGIBLE CUSTON	MER BENEFITS
2017		SHOULD BE CONSIDERED	O WHEN DEPLOYING AMI A	ND OTHER
2018		GRID MODERNIZATION IN	VESTMENTS?	
2019	A.	There are entire publications	s addressing the new product	s and services,
2020		operational improvements, a	and analytics that can be crea	ited with AMI. ⁸⁸ I
2021		will touch briefly on (1) adva	nced rate design, (2) data ac	cess, (3)
2022		planning and operational im	provements, and (4) DER inte	egration.
2023				
2024		i. Advanced Rate Des	sign Roadmap	
2025	Q.	WHAT INFORMATION DID	RMP PROVIDE RELATED	O ADVANCED
2026		RATE DESIGN?		
2027	A.	RMP mentions that the AMI	project will "position" RMP to	establish new
2028		rate structures utilizing "the	new granular level of data an	d customer
2029		transparency."89 In discover	y, RMP acknowledges that th	e AMI project will
2030		not allow RMP to implement	advanced rate designs, nor	do they have a

⁸⁷ See RMP's Response to Data Request OCS 18.16.
⁸⁸ "Voice of Experience | Leveraging AMI Networks and Data". U.S. Department of Energy. March 15, 2019.

https://www.smartgrid.gov/document/VOE_Leveraging_AMI_Networks_Data ⁸⁹ Mansfield Direct at 30.

	OCS-	5D Nelson	20-035-04	Page 104 of 124
2031		plan or timeline for doing so	o. I found RMP's testimony on	this issue to be
2032		misleading at best and disir	ngenuous at worst.	
2033				
2034	Q.	WHY SHOULD DYNAMIC	RATE OFFERINGS ACCOM	PANY AMI
2035		DEPLOYMENT?		
2036	A.	Advanced metering technol	ogy enables energy interval d	ata, load
2037		forecasting, and two-way co	ommunication between the uti	lity and end-
2038		users. These are critical fur	nctionalities for developing rate	e designs that
2039		allow customers to manage	their energy use more effecti	vely and respond
2040		to price signals, thereby alig	gning their behavior with grid ı	needs. The full
2041		value of AMI investment is	realized only when customers	can do so.
2042				
2043	Q.	HOW DO YOU RECOMME	ND THAT THE PSC DIRECT	RMP TO
2044		ENSURE THIS VALUE?		
2045	A.	The PSC should direct RMF	P to develop a succinct Advar	iced Rate Design
2046		Roadmap that describes ho	w and when RMP will leverage	je the
2047		technological capabilities of	advanced meters to create b	eneficial rate
2048		structures that serve both c	ustomer and grid needs.	
2049				
2050	Q.	WHAT WOULD AN ADVA	NCED RATE DESIGN ROAD	MAP INCLUDE?
2051	A.	It should briefly describe RM	MP's plans to offer advanced	rate designs and
2052		programs – including time-v	varying rates and demand res	ponse – with

20-035-04

Page 105 of 124

2053 considerations for low-income customer participation. It should outline 2054 enrollment mechanisms for convenient customer participation, 2055 implementation plans including customer education and outreach, and 2056 evaluation plans for monitoring, verifying, and improving advanced rate 2057 design effectiveness.

2058 Additionally, RMP should include a description and cost estimate of 2059 the technological investments and upgrades that will be required to enable 2060 the different types of advanced rate designs. For example, RMP may 2061 already have the technology available to implement critical peak pricing for 2062 large customer but not the technology to implement peak-time rebates. 2063 This type of information is useful because it suggests the critical peak 2064 pricing could be cost-effectively implemented in the near term, while a 2065 similar rate design, peak-time rebates, would cost more and take longer to 2066 implement.

2067

2068 Q. HAVE OTHER STATE COMMISSIONS REQUIRED THAT UTILITIES

2069 FILE SIMILAR ADVANCED RATE DESIGN INFORMATION?

2070 A. This requirement and approach is very similar to that taken by the Hawai'i

2071 Commission in Docket No. 2018-0141, where it approved the Hawaiian

2072 Electric Companies' grid modernization investments, including AMI, but

2073 made a portion of cost recovery contingent upon HPUC acceptance of an

	OCS-	-5D Nelson	20-035-04	Page 106 of 124
2074		Advanced Rate	e Design Strategy. ⁹⁰ Additionally, th	he Minnesota and New
2075		Hampshire Pub	lic Utilities Commissions have ord	lered Xcel Energy and
2076		Liberty Utilities	to provide similar information. ⁹¹	
2077				
2078		ii. Data A	Access Framework	
2079	Q.	WHAT IS A DA	TA ACCESS FRAMEWORK, IN	THE AMI CONTEXT?
2080	Α.	AMI deploymer	nt produces energy usage data tha	at can enable operational
2081		benefits for utili	ties and energy savings for consu	mers. However, these
2082		achievements r	equire that the AMI data be availa	ble and usable to various
2083		parties, particu	arly the consumer. A data access	framework, as described
2084		by the New Yo	k Department of Public Service, is	a set of uniform and
2085		consistent data	access policies following the prine	ciple of useful access to
2086		useful energy-r	elated data. ⁹²	
2087				
2088	Q.	WHY IS DATA	ACCESS IMPORTANT?	
2089	Α.	Data access is	necessary for enabling conscious	consumption, grid
2090		innovation, and	policy objectives. Customers in p	articular must have easy,
2091		secure access	to their energy usage information	in order to save energy

⁹⁰In re Application for Approval to Commit Funds in Excess of \$2,500,000 for the Phase 1 Grid Modernization Project, to Defer Certain Computer Software Development Costs, Etc., Docket No. 2018-0141, Decision and Order No. 36320, at 50-53, filed March 25, 2019.

⁹¹ See MN PUC Docket No. 19-666. See Also Docket No. DE 19-064. Liberty Utilities (Granite State Electric) Corp. d/b/a Liberty Utilities. Petition for Permanent Rate Increase.

⁹² NY DPS. Department of Public Service Staff Whitepaper Regarding a Data Access Framework. CASE 20-M-0082 – In the Matter of Strategic Use of Energy Related Data. May 29, 2020.
	OCS-5D Nelson		20-035-04	Page 107 of 124		
2092		and money through persona	l actions, smart technologies,	, or energy		
2093		management service providers. The full value of AMI cannot be realized				
2094		without ensuring that custon	ners can access their energy	data and can		
2095		benefit from its use.				
2096						
2097	Q.	DOES RMP DISCUSS DAT	A ACCESS?			
2098	A.	RMP explains that customer	rs will be able to log into RMP	's website to see		
2099		graphs depicting their hourly	v, daily, weekly, and monthly o	consumption.		
2100		Customers will also be able	to interactively target a chose	n billing		
2101		threshold and receive notific	ations if they are projected to	exceed that		
2102		amount. ⁹³				
2103						
2104	Q.	SHOULD RMP'S CUSTOM	ER DATA ACCESS BE IMPF	ROVED?		
2105	A.	Yes. The data that is current	tly available and that would be	e made available		
2106		through the AMI project doe	s not provide actionable data	that is easy to		
2107		access. Customers should	certainly have access to both	present and		
2108		historic downloadable usage	e data. Critically, that data sho	ould be made		
2109		available in a standardized f	ormat such as Green Button	Connect (Green		
2110		Button).				
2111						

⁹³ Mansfield Direct at 31.

20-035-04

2112 Q. WHAT IS GREEN BUTTON?

2113 The Green Button initiative, started at the U.S. Department of Energy, Α. 2114 allows customers to download their energy data through a green button on 2115 their utility's website. Utilities voluntarily adopt this consensus industry 2116 standard, in turn enabling and incentivizing "software developers and 2117 other entrepreneurs to build innovative applications, products and services 2118 which will help consumers manage energy use."94 According to the DOE, 2119 RMP has committed to implementing Green Button; therefore, I would 2120 expect RMP to utilize the Green Button standard for its customer data 2121 access. 2122 Green Button Connect My Data (CMD) is the energy-industry 2123 standard for enabling easy access to, and secure sharing of, utility-2124 customer energy data. Utilities providing standards-based Green Button 2125 customer-consumption and billing data can provide customers new data-2126 driven services, programs, and platforms; digitally empowering customers 2127 with the ability to securely transfer their data to third-party solution 2128 providers who can further assist them in monitoring and managing energy

2129 usage.⁹⁵

⁹⁴ "Green Button". <u>https://www.energy.gov/data/green-button#:~:text=Green%20Button%20Connect%20My%20Data%20is%20a%20new%20capability%20which,in)%20customer%20consent%20and%20control.</u>

⁹⁵ Green Button Connect My Data (CMD) Standard: The Industry Standard for Securely Accessing and Sharing Energy Usage and Water Data, Green Button Alliance, available at <u>https://www.greenbuttonalliance.org/assets/docs/Collateral/2020-</u> 04%20Green%20Button%20CMD%20and%20Certification%20Data%20Sheet.pdf

20-035-04

2130 Green Button CMD is an open-data standard to unlock easy access 2131 to utility interval usage and billing data – providing easy, seamless access 2132 for software applications. Green Button CMD enables utility customers to 2133 authorize third-party solutions to quickly and securely obtain interval meter 2134 data and enables an accurate and detailed level of analysis to inform 2135 energy management decision-making – while ensuring customer data are 2136 protected and their privacy is maintained. The Green Button standard 2137 ensures data integrity and accuracy, eliminates the need for manual data 2138 entry and, for some building-energy managers, it significantly simplifies 2139 the data-collection and reporting process across multiple utilities and 2140 jurisdictions.

2141

2142 Q. WHAT ARE SOME COMPLICATIONS ASSOCIATED WITH DATA

2143 ACCESS THAT SHOULD BE ADDRESSED PRIOR TO AMI

2144 **APPROVAL?**

- 2145 A. There are several data access considerations that must be accounted for,
- 2146 including protecting information technology (IT) and data systems against
- 2147 cyber risks, safeguarding customer privacy and sensitive data, and
- 2148 preserving customers' control and consent over their energy usage data.⁹⁶

⁹⁶ NY DPS. Department of Public Service Staff Whitepaper Regarding a Data Access Framework. CASE 20-M-0082 – In the Matter of Strategic Use of Energy Related Data. May 29, 2020.

	OCS-	5D Nelson	20-035-04	Page 110 of 124
2149		In fact, RMP may alre	eady be experiencing these ty	pes of
2150		difficulties. In response to da	ata request OCS 11.1, RMP ir	ndicated that the
2151		AMI project has been delaye	ed due to "cyber security" issu	les.
2152				
2153	Q.	WHAT DATA ACCESS FEA	ATURES DO YOU BELIEVE	MUST
2154		ACCOMPANY RMP'S AMI	DEPLOYMENT?	
2155	A.	Customers and third parties	should have reasonable acce	ess to AMI data.
2156		Customers should be able to	o use Green Button Connect	My Data, which
2157		allows them to "automate the	e secure transfer (of) their ow	n energy usage
2158		data to authorized third parti	es, based on affirmative (opt-	-in) customer
2159		consent and control."97 In ac	dition to this standardized an	d vetted national
2160		format for data sharing, add	itional rules may need to be d	leveloped
2161		through a separate proceed	ing or in the next rate case to	establish robust
2162		management of cybersecuri	ty and privacy risks.	
2163				
2164	Q.	WHAT ARE YOUR RECOM	IMENDATIONS RELATED T	O DATA
2165		ACCESS?		
2166	A.	The deployment of AMI offer	rs significant operational bene	efits and the
2167		potential for significant energy	gy savings for consumers. A r	major lesson

⁹⁷ "Green Button". <u>https://www.energy.gov/data/green-button#:~:text=Green%20Button%20Connect%20My%20Data%20is%20a%20new%20capability%20which,in)%20customer%20consent%20and%20control.</u>

20-035-04

Page 111 of 124

2168	from prior state deployments of AMI is that full realization of consumer
2169	benefits from efficiency or time-shifting of usage will not occur unless
2170	consumers have convenient access to their own energy data made
2171	available by advanced meters. It is also critical that such policies are
2172	timely and consistently implemented. I would recommend that any
2173	potential future approval of an AMI investment must be informed and
2174	guided by a sound grid modernization strategy and should only be
2175	approved conditioned on ensuring that consumers receive their share of
2176	the benefits of AMI, including access to the energy data generated by their
2177	advanced meters, along with accompanying cost information.
2178	More specifically, to ensure that customers have functional, secure access
2179	to new data-enabled technologies and services to help them save energy
2180	and money, and otherwise realize value from an AMI deployment, I would
2181	recommend the PSC require of RMP the following:
2182	1. Provide consumers easy access to the best available
2183	information about their energy usage.
2184	2. Provide customers and authorized third parties with access
2185	to historic billing information in a machine-readable, automated
2186	manner.
2187	3. Provide consumers and third parties with rate information in
2188	standardized, machine-readable formats.

	OCS-	5D Nelson	20-035-04	Page 112 of 124
2189		4.	The customer authorization process should	be easy for
2190		consu	umers to use and require the least number of	f steps.
2191		5.	Provide a set of open data access standard	ds that would
2192		create	e the ability for third parties to access sets of	[:] customer energy
2193		use d	ata, either aggregated or anonymized. ⁹⁸	
2194				
2195		iii. Pla	anning and operational improvements	
2196	Q.	DO ASPEC	TS OF PLANNING AND OPERATIONAL IM	IPROVEMENTS
2197		NEED TO B	E FURTHER EXPLORED BY RMP?	
2198	A.	Yes. The ori	ginal business cases for implementing AMI t	ypically focused
2199		on the cost s	savings that could be achieved from avoided	truck rolls and
2200		the end of m	nanual meter reading. Now more than a deca	ide since smart
2201		meters hit th	e industry, utilities have learned that the valu	ue of AMI goes far
2202		beyond logg	ing energy usage. It is important to understa	nd, however, that
2203		additional va	alue streams cannot be achieved by merely i	nstalling the
2204		network and	meters; they require integration with other s	ystems and
2205		investments	in time, equipment, and resources. None of	which appear to
2206		be a part of	RMP's proposal.	
2207				

⁹⁸ See Minnesota Public Utilities Commission, Docket No. M-19-5050, "Minnesota CUB's Notice of Petition and Petition to Adopt Open Data Standards," filed August 6, 2019.

20-035-04

- 2208 Q. WHAT ARE SOME OF THE OPERATIONAL AND PLANNING
- 2209 BENEFITS THAT A UTILITY COULD REALIZE THROUGH AMI IF IT
- 2210 WERE TO AVOID AN APPROACH OF MERELY INSTALLING THE
- 2211 NETWORK AND METERS, BUT THOUGHTFULLY INTEGRATED THE
- 2212 FOUNDATIONAL AMI INVESTMENT WITH SOLUTIONS THAT ALLOW
- 2213 THE DATA TO BE ANALYZED, VISUALIZED AND PAIRED WITH
- 2214 **OTHER DATA?**
- 2215 A. The following table outlines how utilities are using AMI beyond meter
- 2216 reading:
- 2217

Activity	Uses
Monitoring and managing operating conditions	 Improved power quality Validation of voltage compliance Visualizing the data/increased system visibility Volt/Var optimization (VVO) and conservation voltage reduction (CVR) Switching analysis
Capacity planning	 Load forecasting and projected growth Equipment investments and upgrades (e.g., distribution transformers, substations transformers, etc.) Line loss studies Circuit phase load balancing
Model validation	 Validation of the primary circuit model GIS and network connectivity corrections Meter to transformer mapping/transformer load management (TLM) Phase identification and mapping
Distributed energy and resource management	 Identifying unregistered customer-owned systems Determining DER capacity Informing policy

OCS-5D Nelson	20-035-04	Page 114 of 124	
Asset monitoring and diagnostics	 Proactive maintenance Identifying over and unde Identifying bad distribution distribution capacitors Identifying hot sockets 	rloaded transformers n voltage regulators and	
Outage management	 Verifying outages through Estimating restoration tim Service order automation connect/disconnect Identifying outage location Determining cause of out Customer communication Determine fire-caused ou data Identifying which phase or 	ying outages through meter pings nating restoration times ce order automation through remote ect/disconnect ifying outage locations rmining cause of outage omer communications rmine fire-caused outage using temperature	
Measuring and verification	 Reduce/eliminate estimate Revenue protection Reliability metrics Demand response verification Demand response and locharging Enables new rate optionst prepay) 	ed reads ation/thermostat ad shifting for EV (e.g., time of use and	
Identifying unsafe working conditions	 Identifying unregistered F Identifying downed live co 	PV installations onductors	

2219		The level to which RMP will be able to achieve the operational and
2220		planning benefits is unclear. However, it is certain that RMP has not
2221		shared a plan that discusses these potential benefits and whether this
2222		functionality is or is not cost-effective for ratepayers.
2223		
2224		B. RMP's Cost-Benefit Analysis is insufficient
2225	Q.	DID RMP CONDUCT A CBA RELATED TO ITS AMI PROJECT?

20-035-04

2226	A.	Yes. RMP projects \$77.9 million in capital costs and \$4.3 million in
2227		operation and maintenance (O&M) costs, with an additional \$2.8 million
2228		annually in O&M costs following AMI implementation. A projected \$7.8
2229		million in annual savings are related to reduced meter reading costs,
2230		including driving, overtime labor, and handheld device maintenance. ⁹⁹
2231		
2232	Q.	HOW SHOULD CBAS BE USED WHEN EVALUATING GRID
2233		MODERNIZATION AND AMI INVESTMENTS?
2234	A.	CBAs are tools to evaluate many grid modernization investments, but
2235		these analyses are not suited well for evaluating all the costs and benefits
2236		associated with grid modernization. For example, the benefits of advanced
2237		rate designs and new DR programs can be difficult to accurately estimate
2238		because of the variations associated with their implementation and results.
2239		On the other hand, quantifying the costs and benefits of the operational
2240		and system benefits included within RMP's CBA is comparatively straight
2241		forward.
2242		
2243	Q.	WHAT IS YOUR HIGH-LEVEL RESPONSE TO RMP'S CBA?

A. The usefulness of RMP's CBA is extremely limited due to its sole focus on
meter reading. Foregoing this critical limitation, the CBA lacks clarity

⁹⁹ Mansfield Direct at 28-29.

20-035-04

Page 116 of 124

2246		around many important assumptions, such as the time horizon the
2247		calculation is taking place and assumed cost of capital. The CBA also
2248		omits important investments that will be needed to enable what most
2249		stakeholders would consider pivotal AMI functionality, such as TOU rate
2250		designs. Specifically, the CBA omits the "significant" overhaul that RMP's
2251		customer service system will be require before billing customers on
2252		advanced rates will be possible. The magnitude of this cost has not been
2253		provided by RMP. ¹⁰⁰
2254		
2255	Q.	EVEN WITHOUT THE COSTS ASSOCIATED WITH THE CUSTOMER
2256		SERVICE SYSTEM, DO THE BENEFITS OF THE AMI PROPOSAL
2257		OUTWEIGH ITS COSTS?
2258	Α.	No. The net present value (NPV) of the proposal is -\$25 to -\$50 million,
2259		depending on the time horizon and assumed cost of capital used in the
2260		calculation. A cost-benefit ratio should be greater than 1, but RMP's AMI
2261		project ratio is 0.8. ¹⁰¹ RMP does not acknowledge in testimony that the

2263

2264 Q. COULD AMI YIELD BENEFITS THAT RMP HAS NOT TAKEN

2265 **ADVANTAGE OF?**

¹⁰⁰ See RMP's Response to Data Request OCS 18.14.¹⁰¹ Workpaper OCS 5.4D.

	OCS	-5D Nelson	20-035-04	Page 117 of 124
2266	Α.	Yes. RMP cou	ld realize several potential value s	streams from its proposed
2267		AMI, but it has	not included plans to do so.	
2268				
2269	Q.	HOW DO YOU	J RECOMMEND THAT RMP IMP	ROVE UPON ITS COST-
2270		BENEFIT RAT	۲ΙΟ?	
2271	Α.	I recommend t	hat the PSC require RMP to deve	lop a more
2272		comprehensiv	e CBA that incorporates, to the ex	tent reasonable,
2273		operational an	d system benefits and costs as we	ell as direct customer
2274		benefits.		
2275		The ren	nainder of this section provides de	etail some of the many
2276		issues that we	re not reflected within RMP's CBA	Α.
2277				
2278		C. Reco	ommendations related to AMI and	grid modernization
2279		investm	ients	
2280	Q.	WHAT ACTIO	N DO YOU RECOMMEND THE F	PSC TAKE WITH
2281		RESPECT TO	RMP'S AMI PROJECT?	
2282	Α.	I have multiple	e recommendations related to the	AMI project.
2283		First, I r	ecommend the PSC reject RMP's	AMI project without
2284		prejudice.		
2285		Second	, I recommend that the PSC provi	de clear guidance to RMP
2286		on the substar	nce that needs to be in future AMI	or grid modernization cost
2287		recovery reque	ests.	

OCS-5D Nelson

20-035-04

2288 Third, I recommend that the PSC require RMP to file an advanced 2289 rate design roadmap and updated CBA the next time it files for AMI, or grid modernization related, cost recovery. 2290 2291 Lastly, I recommend that the PSC consider a demand response 2292 target or requirement as part of any AMI program that gets approved. 2293 Adopting a demand response requirement concomitantly with approval of 2294 AMI (at whatever date that is) demonstrates the PSC's commitment to 2295 tangible and customer facing benefits being created with grid 2296 modernization investments. The process for developing the demand 2297 response requirement could begin with approval of AMI or in RMP's next 2298 rate case. 2299 Demand response requirements are in development or have been 2300 approved in Rhode Island, Minnesota, New York, and Hawai'i.¹⁰² 2301 2302 Q. WITH RESPECT TO YOUR SECOND RECOMMENDATION, DO YOU 2303 HAVE ANY RECOMMENDATIONS FOR THE GUIDANCE THAT THE PSC SHOULD PROVIDE TO RMP WHEN FILING FOR FUTURE AMI OR 2304 2305 GRID MODERNIZATION COST RECOVERY?

¹⁰² See Rhode Island Public Utilities Commission Docket 4770, MN PUC Docket No. 17-401, NY PSC 14-M-0101, and Hawai'i PUC Docket No. 2018-0088.

	OCS-5D Nelson		son	20-035-04	Page 119 of 124
2306	A.	Yes. The following is a modi		ified framework utilize	d by another state
2307		comm	nission. ¹⁰³		
2308			RMP, informed by sta	akeholder input, must	consider and address
2309		the fo	llowing:		
2310		1.	Definition and guiding	<u>g principles</u> . RMP mu	st consider and provide
2311			a specific preliminary	definition and guiding	principles of its AMI and
2312			grid modernization in	vestments.	
2313		2.	Current status of the	<u>electric grid</u> . RMP an	d stakeholders need to
2314			assess and better un	derstand the present	status of the electric grid
2315			to better inform which	n steps must be taken	to achieve the State's
2316			energy goals.		
2317		3.	Grid architecture and	interoperability. The	re is a need to assess a
2318			RMP specific grid arc	hitecture that can act	ively shape the evolution
2319			of the State's electric	grid rather than to pa	ssively allow grid
2320			evolution in a bottom	up- manner. In addit	ion, open standards and
2321			interoperability must	be viewed as foundati	onal components of the
2322			integrated grid.		
2323		4.	Grid-facing technolog	<u>iies</u> . RMP must solicit	and facilitate discussion
2324			regarding the capabil	ities of a modern distr	ibution network, the
2325			status of technologie	s required to enable th	nese capabilities, the

¹⁰³ Hawaii PUC Docket No. 2016-0087, Order 34281 at 6-8.

20-035-04

Page 120 of 124

regulatory changes that may be necessary to facilitate the
development of a modern distribution network, and the steps that
RMP should take to integrate relevant technologies in a cost
effective- manner.

2330 5. Customer-facing technologies. RMP, in conjunction with 2331 stakeholders, must assess how customer facing- technologies, 2332 practices, and strategies can be used to (a) enable customers to 2333 manage their electric usage more efficiently and enable maximum 2334 customer cost savings; (b) enable customers to harness their 2335 electric loads as a responsive resource to meet grid service needs; 2336 and (c) further integrate resources such as DER, including energy 2337 storage devices and electric vehicles.

- 2338
 Pace of implementation. RMP must address the sequence and
 pace of grid modernization infrastructure investments, including
 both grid facing and customer facing- technologies.
- 23417.Costs and benefits.RMP and stakeholders should examine what2342might constitute an appropriate framework to evaluate the cost2343effectiveness of grid modernization technologies and practices,2344including an evaluation of hard- to- -quantify impacts such as2345improved reliability, increased customer choice, and reduced2346environmental impacts.

	OCS-	5D Nel	son	20-	-035-04	Page 121 of 124
2347		8.	<u>Flexibility</u>	and resilience.	RMP should consid	er how grid
2348			moderniz	ation investmen	its can be designed a	and implemented to
2349			cost effec	ctively- meet the	dual goals of enhan	cing grid flexibility and
2350			resilience	9.		
2351		9.	<u>Health, c</u>	<u>ybersecurity, da</u>	ta access and privac	<u>⊳y</u> . RMP must
2352			proactive	ly address the n	nyriad issues related	to health,
2353			cybersec	urity, data acces	ss and privacy.	
2354						
2355		VII. C	ONCLUSI	ON		
2256	0					
2350	Q.	PLEA	SE SUIVIIV		RECOMMENDATION	NS FOR THE PSC.
2357	Α.	My ree	commenda	ations pertaining	to the ECOSS and	MCOSS are as
2358		follow	S:			
2359			Requi	ire RMP to remo	ove the ECOSS step	that subfunctionalizes
2360			produ	ction and transn	nission into fixed and	d variable categories
2361			within	the ECOSS.		
2362			Requi	ire RMP to provi	de additional informa	ation on the
2363			metho	odology and the	inputs used to justify	r the split between
2364			secon	idary and primai	ry distribution. This ir	nformation should
2365			includ	e:		
2366			0	the data set fro	om which RMP samp	led;
2367			0	a description o	f the data and how it	is tracked; and

	OCS-5D Nelson	20-035-04	Page 122 of 124
2368		\circ the criteria RMP uses to select	costs from the original
2369		data set.	
2370	• Re	quire RMP to provide an alternate	ECOSS utilizing the
2371	pro	bability of dispatch classification m	ethod in its next rate case.
2372	• Pri	pritize rate gradualism and fairness	due to the impact COVID
2373	ha	likely had on the ECOSS model i	nputs and results.
2374	• Fu	nctionalize metering costs to reflec	t the characteristics of
2375	AN	I. Specifically, meters should be fu	nctionalized as 1/3
2376	pro	duction, 1/3 transmission, and 1/3	distribution.
2377	• Cc	nsider my modified ECOSS results	, presented within Section
2378	III.	D, when informing revenue apportion	onment between customer
2379	cla	sses and rate designs.	
2380	• Do	not rely on RMP's proposed MCO	SS to inform revenue
2381	ар	portionment or rate design.	
2382			
2383	My recomme	ndations pertaining to residential ra	ate design are as follows:
2384	• Re	ect RMP's rate unbundling propos	al. In the next rate case,
2385	the	PSC should require RMP to inform	n rates based on cost and
2386	no	inform rates on its rate unbundling	g methodology.
2387	• Ap	prove RMP's proposed multi-family	v residential tariff.

	OCS-5D Nelson	20-035-04	Page 123 of 124
2388	•	In RMP's next rate case, require the utility t	o provide additional
2389		cost information to further differentiate the r	nulti-family from the
2390		single-family residential tariff.	
2391	•	For single-family residents, I recommend a	basic customer
2392		charge of \$7. For multi-family, I agree with	RMP's
2393		recommendation of \$6.	
2394			
2395	My recom	mendations pertaining to C&I rate design a	re as follows:
2396	•	For the current Schedule 35 pilot proposal	and future proposals,
2397		require RMP to utilize a clear framework the	at, at a minimum,
2398		clearly defines what is assessed, the object	tive of pilot, the
2399		ratepayer benefits that will be created, how	success will be
2400		measured, and describe what happens afte	er the pilot (e.g., a
2401		plan for scaling the offering).	
2402	•	Regarding RMP's proposed Schedule 35 p	ilot, round down the
2403		demand-related credit to \$0.50/kW.	
2404	•	Regarding RMP's proposed Schedule 35 p	ilot, adopt the
2405		reporting requirements in Section V.C.iii.	
2406	•	In RMP's next rate case, for each customer	class with demand
2407		over 1 MW, the PSC should order RMP to e	evaluate a critical
2408		peak pricing pilot.	
2409			

	OCS-5	D Nelson	20-035-04	Page 124 of 124
2410		My recom	mendations pertaining to RMP's propose	ed AMI project are as
2411		follows:		
2412		•	Reject RMP's AMI project without prejuc	dice.
2413		•	Provide clear guidance to RMP on the s	ubstance that needs to
2414			be in future AMI or grid modernization c	ost recovery requests. A
2415			detailed example of such guidance is pr	ovided in Section VI.C.
2416		•	Require RMP to file an advanced rate d	esign roadmap and
2417			updated CBA the next time it files for AN	/I, or grid modernization
2418			related, cost recovery.	
2419		•	Consider a demand response target or i	requirement as part of
2420			any AMI program approval. Adopting a o	demand response
2421			requirement concomitantly with approva	I of AMI (at whatever
2422			date that is) demonstrates the PSC's co	mmitment to tangible
2423			and customer facing benefits being crea	ated with grid
2424			modernization investments. The proces	s for developing the
2425			demand response requirement could be	gin with approval of AMI
2426			or in RMP's next rate case.	
2427	Q.	DOES TH	AT CONCLUDE YOUR TESTIMONY?	
2428	A.	Yes.		
2429				