STEP Solar Thermal

Aaron T. Bame

Joseph Furner

Brian D. Iverson

March 5, 2021

Acronyms BFP **Boiler Feed Pump** BFPT **Boiler Feed Pump Turbine** CC **Capital Cost** CO_2 Carbon Dioxide CP Condensate Pump Clear Sky Direct Normal Insolation [W m⁻²] CSDNI CSP Concentrating Solar Power DA Deaerator DC Drain Cooler Direct Normal Insolation [W m⁻²] DNI EPRI **Electric Power Research Institute** FE Fuel Earnings [USD] FS Fuel Saving Feedwater Heater FWH GHG Greenhouse Gas HP **High Pressure** HPT High Pressure Turbine HTF Heat Transfer Fluid IPT Intermediate Pressure Turbine Integrated Solar Combined Cycle ISCC Levelized Cost of Electricity [USD kWh⁻¹] LCOE LFR Linear Fresnel Reflector LP Low Pressure LPT Low Pressure Turbine NG Natural Gas NREL National Renewable Energy Laboratory NSRDB National Solar Resource Database 0&M **Operation & Maintenance** OBJ Objective PB Power Boost PBT Payback Time [years] PTC Parabolic Trough Collector PV Photovoltaic

Photovoltaic-Thermal
System Advisor Model
Solar Collection Assembly
Solar Integration
Solar Exchange
Thermal Energy Storage

Variables

\dot{Q}_B	Boiler Heating Power [MW]
$\dot{Q}_{ m fo}$	Thermal Equivalent of Fuel Offset [MW]
Ŵ	Mechanical Power [MW]
η	Efficiency [%]
η_c	CSP Collection Efficiency [%]
$\eta_{ m su}$	Solar Use Efficiency [%]
$\eta_{ m th}$	Thermal Efficiency [%]
η_{II}	2 nd Law Efficiency [%]
ω	Optimization Objective Weight [-]
Α	Area [m ²]
С	Cost [USD]
$c_{p,s}$	Specific Heat of Solar Heat Transfer Fluid [kJ kg ⁻¹ K ⁻¹]
d_r	Receiver Diameter [m]
Ε	Total Energy [kWh]
F	Conversion Factor
f	Optimization Objective [kW ⁻¹]
h	Specific Enthalpy [kJ kg ⁻¹]
h _{sun}	Useful Solar Time [hours day ⁻¹]
k	Augment Fraction [%]
L	Length [m]
ṁ	Mass Flow Rate [kg s ⁻¹]
$m_{\rm ef}$	Mass Extraction Fraction []
N_l	Number of Solar Field Loops
Na	Number of Solar Collection Assemblies per Loop
P_{s1}	HPT 1 st Stage Pressure [MPa]
r	Rate or Ratio

- *s* Specific Entropy [kJ kg⁻¹ K⁻¹]
- T Temperature [K]
- *T*₀ Dead State Temperature [K]
- *W_p* Aperture Width [m]
- *X* Exergy Rate [kW]

Subscripts

[] <i>c</i>	Concentration Property
$[]_d$	Discount Property
[] <i>n</i>	Annual Value
$[]_{p}$	Aperture Property
[] <i>r</i>	Solar Receiver Property
[] <i>s</i>	Solar Field/Solar Contribution
[]net	Net Property
[]opt	Optimum Property

Financial Variables (Appendix D)

Α	Cumulative Cash Flow
FCR	Fixed Charge Rate
DC	Direct Costs
C_{exp}	Operation and Maintenance Expenses
C_{FOM}	Fixed Operation and Maintenance Costs
$C_{\rm ins}$	Insurance Costs
$C_{P\&I}$	Principle and Interest Payment
$C_{t,\text{prp}}$	Property Tax Costs
$C_{\rm VOM}$	Variable Operation and Maintenance Costs
CFF	Construction Factor
CRF	Capital Recover Factor
EPC	Engineering-Procurement-Construction
F_L	Debt Fraction
FS	Fuel Savings
IC	Indirect Costs
IRR	Internal Rate of Return
ITC	Investment Tax Credit

L _{net,0}	Initial Loan Balance
N_L	Loan Period
PFF	Project Factor
PTC	Project Tax Credit
r _d	Discount Rate
r _i	Inflation Rate
r _{int}	Loan Interest Rate
S	Savings
SC _{dep}	Depreciation Schedule
WACC	Weighted Average of Component Costs
[] _{an}	Annual
[]con	Construction
[]cont	Contingency
[]Fed	Federal
[]nom	Nominal
[]nom [] <i>r</i>	Nominal Real
[] <i>r</i>	Real
[] <i>r</i> []sal	Real Sales
[] <i>r</i> []sal []SI	Real Sales Site Improvements

Executive Summary

The objectives of this study were outlined in a statement of work at the commencement of the study. This study was meant to address the viability of integrating concentrated solar power with coal-fired power plants including the Hunter Unit 3 in Castle Dale, UT. To be of use in future evaluations, this study was intended to identify a general plant model that could be used to determine hybrid feasibility and the optimization of solar integration into a general hybrid plant model. This report describes in depth the development of computational models used to evaluate hybrid feasibility, results for Hunter Unit 3 hybrid feasibility, and possible results for other coal plants under different conditions. Of particular interest was the impact of hybridization on the coal plant's thermodynamics, the financial impact (capital cost, levelized cost of electricity, and payback time), and the application of these methods to other power plants for future evaluations.

To extend the application of this study, a representative power plant model was designed to approximate coal power plant performance for plants of differing configurations. The primary simplification in the representative plant model is the reduction of feedwater heaters. Several feedwater heaters are placed in series to incrementally preheat the water of a coal power plant prior to the primary heating done in the boiler. However, each coal power plant has different configurations of feedwater heaters at high and low pressures. The representative model approximates the feedwater heating process using a single feedwater heater at each of the low and high pressures. Section 2.1 describes the process of evaluating feedwater heater operating properties, the implications of combining feedwater heaters, other simplifications made to achieve the representative model used throughout the study, and validation of the representative model with data published in archival literature.

A model for estimating the solar resource for Castle Dale, UT was developed and generalized to be applicable to any location, provided there is meteorological data available through the National Renewable Energy Laboratory. This solar resource model approximates the multi-year average direct normal insolation which is used to estimate the amount of solar equipment required to achieve any given solar augment fraction. Section 2.2 describes in detail the method of calculating the multi-year average direct normal insolation, the method of estimating the size of the solar field, and descriptions of the solar collection hardware and heat transfer fluids assumed as benchmark products.

The integration of the solar resource in the overall hybrid plant model and the interactions with the surrounding coal power plant are described in Sections 2.3 and 2.4. The possible options for solar integration are discussed along with the introduction of the solar work contribution, defined here as the amount of power generated by the hybrid plant that can be attributed to the integration of the solar resource.

While solar hybridization is shown to have thermodynamic benefits to fossil-fueled power plants, the financial impact is an important factor when considering real applications as opposed to theoretical implementation. The financial model description is included in Section 2.5. The financial calculations are based on the financial model used as part of the National Renewable Energy Laboratory's System Advisor Model and modified to be applicable to hybrid plants. Section 2.5 describes how the savings from fuel offset due to solar integration are used to calculate the payback time for the solar field and the marginal solar levelized cost of electricity.

The solar integration model and financial model are used to calculate the parameters used in the objective function for the optimization of solar hybridization: solar contribution, fuel offset, levelized cost of electricity, payback time 1, and total fuel earnings. The optimization is constrained by the requirements that the payback time 1 must be less than the expected life of the hybrid plant and that the solar field fit within the maximum land use available. More details on the calculation of the optimization objective and the searching algorithm are provided in Section 2.6.

The results for Hunter Unit 3 are that concentrated solar power hybridization is not feasible at this time. Because complete feedwater heater bypass was chosen as the solar integration method, a minimum augment fraction of 3% is required to offset coal use and see any financial benefit. However, the land area identified by the Hunter plant as an available candidate for a solar field is insufficient to accommodate augment fractions greater than 3%. Hybridization with Hunter Unit 3 is also infeasible financially. Payback times for integration with the Hunter Unit exceed expected project life for all configurations.

Though hybridization has been shown to be infeasible for the Hunter Unit 3 power plant, hybridization is still beneficial for other situations. Green energy premium prices and carbon taxes are common local incentives that improve financial feasibility for hybridization projects. California has a price of carbon in place at 16 USD sh.tn.⁻¹. A green premium price of 0.018 USD kWh⁻¹ has been reported as an average price common to US markets. Both the carbon price and the green premium are shown in this report to increase the feasibility of hybridization. In areas with either a carbon tax, green premium price, or both, this model can still be used to evaluate preliminary feasibility. With a 16 USD sh.tn.⁻¹ and no green premium, the optimal configuration is to bypass feedwater heater 6 with an augment fraction of 9% solar augmentation provided by a parabolic trough collector field with a levelized cost of electricity of 9.5×10^{-4} USD kWh⁻¹ and payback time of 25.2 years. For the same configuration and no carbon tax, the payback time decreases from 62.1 years with no green energy premium to 22.5 years with a green energy premium based on solar contribution and 3.9 years with a premium based on overall plant output.

1 Introduction

1.1 Fossil Fuel vs. Renewable Energy

Fossil fuels have proven to be reliable sources of power for a developing world, accounting for 10-12% of the energy provided in the US every year since 2010 [1]. Energy consumption in developing countries has been projected to increase at a rate of 3% per year [2]. As the number of people in need of electricity continues to climb, the availability of resources capable of power generation becomes a paramount concern. Additionally, the effect of CO_2 and other greenhouse gas (GHG) emissions from power plants on the environment and global health needs to be addressed. These concerns lead to regulations that loom over fossil fuel power plants forcing innovation in cleaning emissions and improving efficiency.

Concerns with fossil fuels have sparked an ongoing debate, the result of which has been the dramatic increase in power generation using renewable resources such as wind and solar, with increases from 2018-2019 of 140 and 100 Trillion BTU, respectively [1]. At first glance, renewable plants seem to solve all the problems associated with fossil fuels in that the resources are naturally occurring, renewable, and the process for the conversion of the energy to useful power does not provide harmful emissions.

However, renewable plants are not without drawbacks. The ability to harness a resource is completely dependent on location. Additionally, renewable power plants tend to have very high capital costs including transmission, land allocation, and thermal energy storage (TES) that is often used to meet grid demands when the resource is unavailable or production is inefficient. High capital costs and low efficiency power generation increase the levelized cost of electricity, or LCOE (measured in USD/kWh). Capital costs for natural gas combined cycles are approximately 1,000 USD kW⁻¹ compared to 2,000 USD kW⁻¹ for on shore wind and 2,600 USD kW⁻¹ for photovoltaic systems [3]. Conversion efficiencies for combined cycles can approach 60% while wind turbines range from 30-40% efficient and photovoltaic panels are typically 10-25% efficient; [4]. Effective locations for resources such as wind and solar are in places that are not densely populated, thus requiring power transmission. Solar plants do not have a high yield because the conversion process is simply not efficient enough. Therefore, large plots of land must be allocated for one plant to support a community. In the US, coal power plants occupy 12.21 ac MW⁻¹ compared to solar (43.5 ac MW⁻¹) and wind (70.64 ac MW⁻¹) [5]. In conjunction with the large scales that typically accompany renewable power plants, the cost of development is driven even higher by the wide use of relatively experimental technology. Perhaps the biggest drawback to renewable plants is intermittency. Power generation from wind peaks in the evening when there are large thermal

gradients through canyons, but power consumption is typically lowest in the evenings. Solar power is only effective when the sun is visible which presents problems during cloud cover or in the evening. These high costs and intermittency can preclude the penetration of renewable energy systems into many markets [6,7].

One solution proposed in 1975 [8] and further explored in 1993 [9] is to break out of the fossilrenewable dichotomy and implement hybrid power plants. The source energy for hybrid power plants may be either predominantly fossil-fuel with renewable augmentation or predominantly renewable with fossil-fuel augmentation. A baseload plant is one that continuously supplies at least the minimum amount of power required throughout the year. The integration of renewable and fossil fuel sources is able to maintain the necessary energy supply when the renewable resource availability drops and reduce the amount of carbon-based fuel used with its associated emissions. Concentrating solar power (CSP) and wind power are the best options for hybridization because both resources are more universally prevalent than other sources such as geothermal or tidal power. While wind power plants are limited by the average speed of the local wind, solar radiation can be used anywhere in the world with varying degrees of efficiency making CSP the most popular candidate for hybridization. Since 1993, hybridization has gained substantial international attention and is often discussed in current literature.

1.2 Evaluating CSP Hybridization Potential

Turchi et al. at National Renewable Energy Laboratory (NREL) have developed a method to evaluate hybridization potential for fossil fueled power plants [10]. The method compiles weighted parameters including plant age, capacity factor, annual average direct normal irradiation (DNI), available land and slope of the land, and the expected solar use efficiency. The plants are then rated as Excellent, Good, Fair, or Not Considered based on comparative scores.

The most important category by weight in the NREL study was DNI (35%). Of the 22 states evaluated in the study, Texas, Arizona, and Florida have the most total hybridization potential, but only Arizona, Nevada, California, and New Mexico have plants that qualify as Excellent. According to the National Solar Radiation Database at NREL.gov, the latter 4 states also record the highest average annual DNI, improving the hybridization score.

After DNI, normal operating plant capacity factor is the next important category (20%). The solar integration discussed in this and an NREL study is most effective for baseload plants (capacity factor > 50%) because capital costs can only be repaid as more power is generated. Baseload plants are operating more and will thus repay the capital comparatively faster than intermediate or peaking plants (capacity factor < 50%).

The land to be used for the collectors (15%) is of interest because the area available can severely limit the collector area or technology selection depending on the desired solar thermal input. Additionally, land with too steep of a grade can inhibit the collector from effectively tracking the sun.

Finally, solar use efficiency (10%), and age of the plant (5%) are weighted as the least important parameters. Solar use efficiency is the ratio of power generated by solar contribution to the amount of energy absorbed by the collectors ($\eta_{su} = MW_e/MW_{th}$). A low weight for solar use efficiency seems counter-intuitive, but is in place to avoid penalizing plants with large solar collection area that typically result in lower solar use efficiency. The main purpose in hybridization is to reduce fossil fuel consumption and overall GHG emissions, so while increasing solar collector area can have a negative impact on solar use efficiency, it has an overall positive impact on the pursuit of increasing renewable power generation.

1.3 Hybridization capabilities

The NREL study only focused on power plants that used fossil fuels, but CSP can be used to augment any power generation method. Pramanik and Ravikrishna reviewed the CSP technologies available for hybridization with fossil fuel plants as well as with biomass, geothermal, and wind power plants and assigned each combination to a hybrid ranking from low to high. High solar hybrids used CSP to supplement fuel from biomass, geothermal, and other plants that are already considered renewable. Medium solar hybrids combine CSP and natural gas as only a supplemental fuel limited to 15-25% to meet spikes in consumption. Low solar hybrids, the focus of this current study, use up to 20% CSP to supplement typically coal or natural gas fired Brayton cycles [11].

There are several medium solar hybrid systems in operation today. The Solar Electric Generating Systems in California are a collection of nine parabolic trough CSP plants, eight of which use natural gas as a backup resource. This backup fuel is used to offset volume required for the TES otherwise necessary in medium hybrid systems. Medium systems leave the designer with a choice between low LCOE and low GHG emissions. Increasing the amount of solar collector area will decrease GHG emissions and the amount of fossil fuel required to meet market demands but increase LCOE. Limiting collecting area will require more fossil fuel supplementation which decreases LCOE but increases GHG emissions. Fossil fuels consist of 15-25% of the source energy consumed in medium systems though individual analysis and optimization must be performed for each plant and geographic location.

Low solar hybrid systems consist of solar-Brayton cycles, integrated solar combined cycles (ISCC), and solar-aided coal cycles. Solar-Brayton cycles use the solar thermal technology to

Figure 1: Line focusing technology: a) Parabolic Trough Collector and b) Linear Fresnel Reflector [14].

preheat or superheat the working fluid of the power cycle. Fossil fuels are still burned, but the preheating or superheating increases power output and thermal efficiency. ISCC use heat exchangers to transfer the solar thermal energy to the working fluid. Solar-aided coal cycles without regeneration often use solar thermal energy to heat the working fluid in place of the steam that is bled off in standard plants. The results for integration in combined cycles and coal plants are similar to solar-Brayton, but further analysis is required to evaluate top cycle versus bottom cycle integration for ISCC. Care must also be given when designing the solar collection area for solar-aided coal plants if the solar thermal energy is used for feedwater heating because there exists an optimal collection area such that more collection area does not contribute any more to the coal cycle. Using CSP to augment coal power plants is of interest because of the higher amount of GHG emissions per unit energy, compared with natural gas [12].

1.4 CSP Technology

There are three technologies commonly used for solar thermal applications: Parabolic Trough Collector (PTC), Solar Tower, and Linear Fresnel Reflector (LFR). PTC have been in production for at least 100 years since Frank Shuman used them to heat steam to power an irrigation pump in Egypt in 1916 [13]. Since then, PTC have benefited from extensive research that has improved performance and reduced cost to the point that PTC now owns 94% of the CSP market share. PTC operate based on geometric properties of parabolas. Any normal radiation will reflect off the parabolic mirrors and concentrate on the collector tube running along the geometric focus. The power concentrated on the collector will heat the solar heat transfer fluid (HTF) that will be sent to integrate with the fossil-fueled power plant.

Solar Tower and LFR have not undergone as much development as PTC but are still viable options for CSP as stand-alone plants as well as in hybrid plants. Solar towers use a circular

Figure 2: Point focusing technology: Solar Tower [14]

array of mirrors that track the sun such that the radiation is concentrated on a collector area on top of a central tower. There are a growing number of CSP plants using Solar Tower technology in operation or in production. Because Solar Tower technology is still relatively new, it comes with considerable financial risk, but with more plants in operation, better and cheaper iterations will be developed eventually reducing the LCOE over time.

Like solar towers, few plants are in operation that use LFR, partly due to a lack of TES development for LFR. However, LFR operate based on very simple principles. Unlike PTC, LFR use a linear array of flat mirrors to focus the solar radiation on a collector tube. It is likely that LFR technology will see substantial improvements due to the simple operation principles and the lowest cleaning water requirements of the other 2 technologies. For now, however, LFR is the least common of these three technologies.

Peterseim et al. did an extensive study evaluating the contribution of each technology to a specified hybridization model [15]. Each technology was evaluated for feasibility, risk, environmental impact, and LCOE with weighted scores assigned to each category. The weights were determined by the average response from 40 experts in the energy field. Of all the categories, LCOE was considered most important followed by risk reduction and feasibility with impact reduction considered least important. After data was collected on operating parameters for each technology, it was shown that Solar Tower technology is the clear choice for high pressure integration at temperatures above 500 °C. However, Tower technology only scores well for the extreme requirements because it is expensive, which raises its LCOE. The other technologies require much more area to generate the same integration conditions which is why Tower technology only becomes viable as more collector area is required. LFR and PTC both scored well in the low to mid temperature ranges (about 380 °C - 450 °C). PTC scores well due to maturity and LFR scores well due to efficient land use and comparatively low cleaning water consumption.

1.5 CSP Integration Options

The Electric Power Research Institute (EPRI) conducted a study on different integration locations for coal and natural gas hybrid plants and ranked the suggested integration points by solar use efficiency [16]. The integration points for NGCC and coal are listed in the EPRI report. Because this study is focused on coal hybrid plants, only the integration points suggested for coal plants will be considered. For their model, it was determined that high-pressure (HP) superheated steam (about 540 °C) would be the best state to integrate into a coal plant at the main steam header ($\eta_{su} = 43-46\%$), followed by HP slightly superheated steam (about 370 °C) and HP saturated steam (about 350 °C) both integrated at the HP primary superheater inlet ($\eta_{su} = 30-42\%$ and 28-40%, respectively), and finally intermediate-pressure (IP) superheated steam (about 370 °C) for cold reheating ($\eta_{su} = 25-28\%$). Because a different technology would probably be ideal for each of the integration points above, a method of optimizing the integration point and technology is required, and should also include an analysis of a hybrid plant expected life cycle.

CSP augmentation of coal power plants offers multiple benefits including a reduction of CO_2 with some of the energy resource coming from a renewable source, a reduction in the overall cost as compared to a stand-alone CSP plant of the same combined capacity, and an increase in availability and capacity relative to a stand-alone CSP plant [17]. CSP integration also results in higher solar-to-electric efficiency, reduced costs for retrofitted projects, higher capacity factors without thermal energy storage, and improved ramping time [18, 19]. Among the various possible applications of CSP hybridization [20], coal is a popular candidate because CSP and coal share many of the same power generation components and because of the large presence of coal throughout the world. However, the possibility of hybridization is affected by more than just thermodynamic performance [21].

1.6 Benefits of CSP-Hybridization

Zhai et al. studied the life cycle of nine power plant combinations for baseload coal, CSP hybrid, and CSP hybrid with TES at 300, 600, and 1000 MW outputs [22]. Zhai et al. separated the life cycle of a CSP hybrid power plant into four phases: Fuel, Operation, Transport, and Materials. The Fuel phase is defined as the process of converting resources into useful fuel. The Operation stage is the actual burning of the fuel. The Transportation phase considers hardware transportation and

solar thermal HTF transmission. The Materials stage entails the exploitation and transportation of raw materials.

Each configuration was evaluated from plant construction to the end of the expected life on a weighted sum of objective scores: (1) global warming potential, (2) acidification potential, (3) respiratory effects potential, (4) primary energy consumption, and (5) capital costs. Zhai et al. showed that for each objective value, every hybrid plant performs better than a coal-fired plant with one exception, capital costs. Pure coal plants became economically comparable to hybrid configurations as the weight of capital costs increased and surpassed hybrids with a further increase in the capital weight factor. This means that, when considering hybridization potential, as capital costs become more important and other economic factors such as carbon tax are neglected, hybrid viability decreases. Zhai et al. also shows that GHG emissions, including CO₂ and SO₂, are highest during the Fuel and Operation stages of a plant life. The integration of CSP reduces the fuel required to produce the same amount of power and provides significant environmental benefit to CSP hybrid power plants operating in FS mode such as in Zhai et al.

Manente studied the benefits of hybridization and demonstrated which plant modifications and operating mode would provide an increase of 50 MWe turbine output power [23]. The plant analyzed was an integrated solar combined cycle which augments the heating for a natural gas combined cycle. Manente classified the operating modes as power boost (PB) and fuel saving (FS). In PB mode, solar augmentation is used to increase the power generation holding fuel consumption constant. The categories of power boost included: no change in plant equipment (PB1); upgrading steam turbines (PB2) to account for significant increases in turbine output; and upgrading both turbines and heat exchangers (PB3) to support the increased heat transfer from the solar collectors and loads on the turbine. In FS mode, solar augmentation is used to hold power generation constant and decrease fuel consumption. FS mode configurations were evaluated for configurations that required no equipment changes (FS1) and for the case of an upgraded turbine (FS2). The highest power output increase from solar augmentation was from PB3, but overall plant efficiency was highest for PB1. PB1 also required less solar collection area (SCA) and was comparable to PB2 and PB3 in both radiation and thermal-to-electric efficiencies. FS1 required slightly more augmentation than PB1, but provided a greater power boost and higher solar radiation-to-thermal efficiency. The hybrid power plants evaluated in this study will be assumed to operate in FS mode, or net power output will remain constant and the amount of fuel consumption will vary.

Both Behar et al. [24] and Libby [16] suggest that, among other options, solar can be integrated at a feedwater heater (FWH) where steam, extracted from a turbine, is typically used to preheat some other working fluid. Downstream effects can be mitigated by selecting the augment fraction such that the heat transfer limits of the FWH are not surpassed. This method is known as FWH bypass and has been shown to be a feasible candidate for CSP-coal hybridization [17,25–28]. Like the integrated solar combined cycles discussed in Manente [23], coal plants can integrate solar thermal energy by means of FWH bypass and operate in FS mode.

1.7 Existing CSP Hybrid Power Plants

Behar summarized solar hybrid sites around the world according to the date of the Behar publication (2014) [24]. There are currently 12 CSP hybrid plants throughout the world in operation or under construction [11, 29–31]. All operational plants use parabolic trough collectors (PTC) and offset natural gas with the exception of the Dadri Hybrid Plant in India (under construction) which will be the only hybrid plant in operation to use linear Fresnel reflectors (LFR) and the only plant augmenting coal [32]. Previously, the Liddell Power Station in Australia used LFR to offset coal, but the CSP addition was non operational as of 2017 [33]. Similarly, the Palmdale hybrid plant (Palmdale, CA) was ammended to no longer include CSP because the CSP plant was never built [34] and has since been canceled altogether and the Victorville hybrid was also cancelled, allegedly due to economic trouble, suspected wasteful spending, and lack of a partner [35]. Since Behar's study, the status of the hybrid planned for Ningxia, China has been suspended [36]. Studies demonstrating the use of CSP in integrated solar combined cycles with natural gas show considerable benefits in hybrid performance [37], but a way for developers to evaluate hybrid feasibility has not been explored.

1.8 Research Objectives

While several studies have demonstrated the process of evaluating hybridization feasibility for specific locations [26, 30, 38–43], there is no known generalized method available to evaluate hybridization feasibility while simultaneously estimating changes in desired parameters such as efficiency, LCOE, and reduction in GHG emissions.

The purpose of this study is to develop and demonstrate a generalized method for evaluating CSP-coal hybrid feasibility based on thermoeconomic performance that can be applied to any coal power plant with feedwater heating and reheating. A representative model of coal power plants is presented and validated by data available in archival literature. The methods of estimating solar resource, solar field size, and financial performance are described. Optimization methods are shown with discussion about fitness function development including the calculation of solar contribution (\dot{W}_s) to plant power output. The optimization methods are demonstrated using Hunter

Plant Name (Location)	Tech	Fossil Fuel	Total Output [MW _e]	Solar Contribution [MW _e]
Medicine Hat (Canada)	PTC	NG	203	1.1
Aïn Beni Mathar (Morocco)	PTC	NG	470	20
Hassi R'mel (Algeria)	PTC	NG	150	20
Kuraymat (Egypt)	PTC	NG	140	20
Martin Next Generation (Florida, USA)	PTC	NG	1150	75
Archimede (Italy)	PTC	NG	130	5
Yazd* (Iran)	PTC	NG	467	17
Al-Abdaliyah* (Kuwait)	PTC	NG	280	60
Waad Al Shamal* (Saudi Arabia)	PTC	NG	1390	50
Agua Prieta II* (Mexico)	PTC	NG	478	12
Duba 1* (Saudi Arabia)	PTC	NG	605	43
Dadri* (India)	LFR	Coal	490	14

Table 1: List of the world hybrid power plants. On average, CSP contributes 5% of the power generated in these hybrid plants [24, 33]

*Plant under construction

Unit 3 in Castle Dale, UT as a representative coal power plant. This study focuses primarily on retrofit projects and is most related to fuel saving mode [23] to reduce the cost and complexity of retrofitting a power plant with solar collectors while still increasing efficiency.

2 Methods

Each coal plant differs from the next, but several hardware components are common to most power plant configurations. A representative plant model is developed that generally operates in a similar way to most coal plants but with simplifications that make it applicable to most coal plants. The solar integration model developed in this study, consisting of the representative plant and solar exchange (SX) model, assumes the coal plant of interest has at least one FWH in the low pressure (LP condensate stage and one FWH in the high pressure (HP) feedwater stage. Specific examples are calculated based on data for the Hunter Unit 3 in Castle Dale, UT Provided by PacifiCorp and validated where possible by data published in archival literature.

2.1 Power Plant Model

There are several power generation components that are consistently used in coal power plant configurations:

- Multiple turbines (Typically high, intermediate, and low pressure turbines)
- High pressure feedwater heating (HP FWH) from high and intermediate pressure turbines' (HPT and IPT, respectively) extraction and exhaust steam
- HPT exhaust reheating
- Low pressure feedwater heating (LP FWH) from low pressure turbine (LPT) extraction steam

2.1.1 Representative Plant Model

Each coal plant differs from the next, but several hardware components are common to most power plant configurations. The Hunter 3 Unit includes all of the standard components identified in the introduction. Data made available by PacifiCorp on the Hunter Unit performance provides a reliable source to benchmark the representative model introduced in this report.

Justification for the plant simplification is provided below. First, the thermodynamic principles that allow the simplification are described. Then the methods used to extract or calculate representative model inputs are explained. Finally, possible sources of error are discussed.

Figure 3: Schematic of the representative plant model analyzed in this study.

Combining Feedwater Heaters

As noted in Chapter 1, FWHs are common points of access for solar heating so attention is given to modeling the FWH processes accurately. The major focus of the plant simplification centered around reducing the number of FWHs and the amount of steam and the pressure at which the steam is extracted to run the FWHs.

The FWHs used in the representative plant model are modeled as open FWHs, similar to those found in published articles and in the Hunter heat balance diagram. The drain cooler (DC) is used to fix the operating parameters in the representative plant model. The DC sets the temperature

difference between the drain outlet and the FWH inlet streams.

A mass-averaged approach is used to approximate the DC for both the HP and LP FWH. As a sample case, consider a system of three LP FWHs that extract steam from the LPT at three different pressures. The extraction mass flow rates are converted to percentages of the total mass of steam extracted for that stage. Each LPT extraction is divided by the total mass flow rate from the three LPT extraction streams to obtain mass fractions A, B, and C (where A+B+C=1). The overall DC is determined by multiplying each mass fraction (A, B, and C) by its corresponding FWH DC and adding the three mass fraction-DC products. If the hypothetical FWHs have a DC of 5 (stream A), 7 (stream B), and 10 (stream C) °C, then the overall DC to be used in the representative plant model would be DC = 5A + 7B + 10C. This process is repeated for the HP FWH overall DC and both LP and HP DC.

It is efficient to incrementally heat the feedwater in multiple stages where the temperature of the extracted steam increases alongside the increase in pressure stage. The pressure of the feedwater ideally does not change significantly as it passes through each FWH. Each FWH can then be modeled as a simplified, isobaric heating process. There are changes to the exergy destruction when the feedwater is not heated incrementally by progressively higher temperatures, but the FWHs are modeled as a single heating process.

As can be seen in Choudhary [44], heat transfer devices (FWHs and boiler) are significant sources of entropy generation, so reducing the number of and operating parameters for the FWHs is expected to have a non-negligible impact on the overall entropy generated in the cycle and, consequently, the 2^{nd} law efficiency. This change in entropy generation will be captured in calculations of \dot{W}_s (Appendix A).

Boiler Feed Pump Turbine

The inlet and exhaust pressures of the boiler feed pump turbine (BFPT) are the same as the LPT inlet and exhaust. Rather than modeling a branch from the IPT exhaust, the amount of steam that would go through the BFPT is sent through the LPT. To compensate for the additional mass going through the LPT, the power required for the BFP is added to the gross work output requirement from the representative model.

Steam Extraction Selection

From the Hunter heat balance diagram and the Adibhatla and Kaushik schematic [28], all LP FWHs use extracted steam from the LPT. The steam used for the LP FWH in the representative

model should be steam extracted from the LPT. The mass-averaged pressure of the extraction lines in the Hunter plant is used as the extraction pressure in the representative model. More detail about how the mass-average method is applied to calculate the extraction steam pressure is presented in Appendix B.

The HP FWHs in coal plants use varying combinations of steam extracted from both the HPT and IPT. The representative model assumes that the HP FWH uses steam extracted from the HPT exhaust before the reheat process and is throttled to the mass-averaged pressure. The inclusion of the throttling valve adds entropy generation unique to the representative model. Compared to modeling the HP FWH steam as extraction from the IPT in the representative model, throttling the HPT exhaust to the mass-averaged pressure was selected to achieve model accuracy and preserve simplicity. More details on the decision between modeling the HP FWH extraction is provided in Appendix C.

The efficiency of each turbine is also determined using the mass-averaged approach between the inlet pressure and each extraction and exhaust pressure. The mass-averaged efficiency and the pressures discussed above are sufficient to determine the other fluid properties throughout the cycle. The methods of calculating each individual state point for the representative model are provided in Appendix B.

Representative Model Simulation

Coal power plants control the total power generation of the cycle by adjusting the HPT 1st stage pressure (P_{s1}) and the working fluid mass flow rate. The representative model was modified to calculate the plant performance, limited by a maximum power output constraint, when allowing bypass of a single FWH by solar heating (i.e. solar bypass). After simulating the turbine power generation with the recalculated extraction pressure, power output constraints for the overall plant and each individual turbine can be compared to the respective calculated values. If a constraint is violated, P_{s1} is incrementally reduced by 5% until all constraints are satisfied.

Changing P_{s1} has downstream effects on the mass flow rate, boiler operating temperature, and pressure ratios between the inlet to a turbine and each respective extraction or exhaust stream. Relationships between P_{s1} and each operating property must be determined and included in the model. Specifically, the properties for which a correlation is required include:

- Condenser pressure
- All FWH extraction pressure ratios
- Boiler inlet pressure

- Boiler outlet pressure
- Boiler operating temperature
- Boiler inlet mass flow rate
- Deaerator (DA) inlet water mass flow rate
- Extraction fractions for each FWH
- HPT, IPT, LPT isentropic efficiencies
- IPT, LPT extraction pressure ratios

Specific correlations for each property listed above are provided in Table F.1 along with a detailed description of how each state point is calculated in Appendix B.

2nd Law Efficiency

The 2nd Law Efficiency (η_{II}) is a value that quantifies the ability of a process to convert its work potential into useful work. Calculating η_{II} requires assuming a dead state, or the conditions at which no further work can be performed. For this analysis, the dead state temperature is assumed to be equivalent to the saturation temperature inside the condenser. The advantages of this choice will be clarified after the efficiency model is developed.

Figure 4: Simplified heat engine schematic. The system of interest is enclosed by the dashed circle.

Figure 4 shows a simplified heat engine schematic with arrows indicating the exergy interactions that cross the dashed boundary of the power plant: the heating done in the boiler, the net power output, and the energy rejected in the condenser as well as the energy rejected due to inefficiencies in the plant hardware.

The exergy rate for net power out (\dot{X}_W) is equal to the net power out of the cycle (Equation 1).

$$\dot{X}_W = \dot{W}_{\text{net}} \tag{1}$$

The exergy rate for heating is defined in Equation 2 [45].

$$\dot{X}_Q = \sum_{k}^{N} \left(1 - \frac{T_0}{T_k} \right) \dot{Q}_k \tag{2}$$

where T_k is the boundary temperature at which the respective heating (\dot{Q}_k) occurs, T_0 is the temperature of the dead state, and N is the number of heating interactions. For the case of the boiler heating (\dot{Q}_b) , the boundary temperature will be the temperature of the flame. Solar heating is provided by the sun, and to include all exergy destruction within the analysis, the temperature of the sun is used for calculating solar exergy ($T_{sun}=5800$ K). In this study, it will be assumed that the fuel is Bituminous Coal with an adiabatic flame temperature of 2172 °C. Using the adiabatic flame temperature results in a lower bound for η_{II} . More accurate results can be obtained by using the actual flame temperature for the boiler in the plant of interest. For the energy rejection (\dot{Q}_{out}), it is rejected to the dead state, so $T_k = T_0$ and $\dot{X}_{Q,out} = 0$.

Analyzing an exergy balance of Figure 4,

$$\dot{X}_{sys} = \dot{X}_{in} - \dot{X}_{out} - \dot{X}_d \tag{3}$$

where \dot{X}_{sys} and \dot{X}_d are the exergy rates of the whole system and the exergy destruction, respectively. For a plant operating at steady state, $\dot{X}_{sys} \approx 0$. The remaining balance is

$$\dot{X}_d = \dot{X}_{\rm in} - \dot{X}_{\rm out} \tag{4}$$

Exergy is added to the system through boiler heating $(\dot{X}_{in} = \dot{X}_Q)$ and exergy leaves the system by net power output $(\dot{X}_{out} = \dot{X}_W)$. η_{II} is defined in Cengel and Boles [45]

$$\eta_{\rm II} = 1 - \frac{\dot{X}_d}{\dot{X}_{\rm in}} \tag{5}$$

Substituting Equation 4 into Equation 5 yields

$$\eta_{\rm II} = 1 - \frac{\dot{X}_{\rm in} - \dot{X}_{\rm out}}{\dot{X}_{\rm in}} \tag{6}$$

Finally, simplifying and substituting the definitions for \dot{X}_{in} and \dot{X}_{out} yields Equation 7.

$$\eta_{\rm II} = \frac{W_{\rm net}}{\sum_k^N \left(1 - \frac{T_0}{T_k}\right) \dot{Q}_k} \tag{7}$$

With the summation in Equation 7, the solar heating is combined with the boiler heating. With the inclusion of CSP heating, boiler heating is reduced as discussed in Section 2.3. However, because the boundary temperature for solar heating is so high, the exergy in from low solar augmentation will increase at a slower rate than the boiler exergy decreases. The expected result is a decrease in η_{II} for low solar augmentation.

While this study analyzes steady state models, the potential use of the models for dynamic simulations is also of interest. Equation 7 poses a problem for dynamic simulations when $\sum_{k}^{N} \left(1 - \frac{T_0}{T_k}\right) \dot{Q}_k = 0$ as this condition results in $\eta_{\text{II}} \rightarrow \infty$. Such a condition is only possible when either $\dot{Q}_k = 0$ or $T_k = T_0$. However, those conditions are unlikely after the plant is operating. After the plant is operating and the CSP field begins collecting energy, there is heating from the boiler and from the solar field (i.e. $\dot{Q}_k \neq 0$). Similarly, if any coal is being burned, the coal flame temperature will always be greater than the temperature of the surroundings, or dead state. And for the case of $\dot{Q}_s > 0$, the boundary temperature used is the sun, as discussed above, and $T_{\text{sun}} > T_0$.

2.1.2 Adibhatla and Kaushik Configuration

The performance of the representative model is validated by comparing power output, heating power input, thermal efficiency, and 2nd law efficiency to actual data from the Hunter 3 Unit heat balance diagram and data published by Adibhatla and Kaushik [28]. The plant analyzed in Adibhatla and Kaushik is a 500 MWe plant with 3 LP FWHs and only 2 HP FWH (Figure 5).

Similar to the Hunter 3 Unit, the HPT exhaust and IPT extraction are used for FWH, but the IPT is used in the DA in Adibhatla and Kaushik instead of for a third HP FWH as in Hunter. The number of extraction streams is the same between the two plants, but the exhaust from the Adibhatla and Kaushik LPT goes directly to the condenser as opposed to an LP FWH as in Hunter. These differences will show the versatility of the proposed representative plant model to be applied to coal power plants of varying configurations.

2.1.3 Representative Model Validation

In order to validate the representative model, the power output, boiler heating power, thermal efficiency, and 2nd law efficiency were calculated for the representative plant model and compared to data from Hunter Unit 3 and Adibhatla and Kaushik (Table 2) [28].

Figure 5: Schematic for the power plant analyzed in Adibhatla and Kaushik [28]

		W _{net}	$\dot{Q}_{ m in}$	$\boldsymbol{\eta}_{th}$	η_{II}
		[MW]	[MW]	[%]	[%]
er	Reported Cycle Performance	511	1273	37.3	46.1
Hunter	Representative Model	505	1276	39.6	45.1
Н	Change (%)	-1.2	0.2	6.2	-2.2
atla nik	Reported Cycle Performance	500	1300	38.5	44.2
Adibhatla & Kaushik	Representative Model	511	1332	38.3	43.7
Ad Ka	Change (%)	2.2	2.5	-0.4	-1.1

Table 2: Results of applying the representative plant model to the Hunter 3 Unit and the data provided in Adibhatla and Kaushik [28].

The largest error is in the thermal efficiency. The thermal efficiency error likely stems from using mass-averaged values and other simplifications listed in this report. Using mass-averaged values approximates the changes in turbine efficiency with flow rate which affects the reported power output. Assuming constant pressure through FWH stages also reduces the power required by the CP and BFP. However, the net power output error is consistent between the two examples, so altering input parameters, e.g. solar augmentation, should have a consistent effect on the reported net power output. The boiler heating model is more accurate and will closely approximate the heating load on the system and corresponding emissions reduction from solar augmentation.

It is important to also note how the representative model compares to Hunter and Adibhatla and Kaushik's data for the entire cycle in addition to the parameters outlined in Table 2. More accurate approximations of the power plant in Adibhatla and Kaushik may be attainable with operating data similar to the data made available for the Hunter Unit 3. Figure 6 shows the comparison of the predicted state points from the representative model with the Hunter Unit 3 (Figure 6a) and Adibhatla and Kaushik (Figure 6b). The representative model sacrifices some accuracy to achieve consistency in modeling power plants with different configurations. Thus, results for this study will be obtained by varying the amount of solar augmentation to produce results that can be compared to each other based on changes in fuel consumption

Figure 6: T-s diagrams comparing the performance of the representative model with (a) Hunter 3 Unit and (b) data in Adibhatla and Kaushik [28].

One notable difference is the discrepancy between the temperature of the mass entering the condenser of the Hunter Unit, located at the bottom right of the cycle diagram in Figure 6a. The data used to define the Hunter Unit main loop is obtained directly from the heat balance diagram. The Hunter operating data suggests the LPT exhaust is actually at a lower pressure than is reported on the diagram. Using experimental data for the LPT exhaust would improve the Hunter comparison in Figure 6a. The error in power output can be seen in Figures 6 by the space between the vertical lines on the far right of each diagram denoting the IPT and LPT processes. As noted above, the error in estimates of power generation is expected when mass-averaged values are used for efficiencies. The \dot{W}_{net} error is compounded as the same method of using mass avergaed values is applied to all turbines. However, the actual plant and respective model diagrams match well and appear to be consistent, regardless of plant configuration.

2.2 Solar Resource

The amount of solar resource available per unit area is referred to in this study as the direct normal insolation (DNI). Since DNI is susceptible to fluctuations due to weather, the maximum possible DNI for a given time is based on calculations for a clear sky (CSDNI), such that DNI \leq CSDNI. The following sections describe methods to estimate the expected DNI at any given geography and its use in the SX model.

2.2.1 NSRDB Data

The National Renewable Energy Laboratory (NREL) reports solar resource data in the National Solar Resource Database (NSRDB) [46] for a number of locations in the United States, Canada, and South America. Sengupta et al. describes the method of retrieving data from the online NSRDB data viewer in depth [47]. The NSRDB has data from several meteorological measurements. For the methods described in Section 2.2.2, DNI [W m⁻²], CSDNI [W m⁻²], solar zenith angle (θ_z) [degrees], temperature [°C], and pressure [mbar] are utilized.

2.2.2 Solar Data Processing

A MATLAB script (Appendix H.4) has been written to process data downloaded from the NSRDB as described below. The average DNI for each day is calculated according to Equation 8 where N is the number of possible daylight data points. N is determined for each day by counting the number of data points for which CSDNI>0.

$$DNI_{avg} = \frac{1}{N} \sum_{i=1}^{N} DNI_i$$
(8)

Once the daily average is calculated for each day in the year file, the script then opens the next file, calculates daily averages and adds the averages from the currently open file to the sum of the average values from the previous files. Dividing the data array by the number of data files (or number of years) provides the multiple year daily average for each parameter. The multiple year daily averages are then averaged to generate the total multi-year average. When the multi-year average DNI is multiplied by the multi-year average daylight time (N), the multi-year average solar energy is calculated.

For Castle Dale, UT, the calculated multi-year average DNI and daylight time are 542 W m⁻² and 11.9 h, respectively. The calculated value for multi-year average solar energy then is 6.45 kWh m⁻². The NSRDB reports 6.48 kWh m⁻² as the nominal energy flux value for Castle Dale, UT. The

Figure 7: Sample PTC solar field array nomenclature.

calculated error then is 0.5% of the reported value by NREL. This multi-year average accounts for days of varying solar resource strength and useful time. For the steady state application in this study, it is assumed that the solar resource is available at the multi-year average DNI for a duration of the multi-year average solar time (h_{sun} [hrs day⁻¹]).

2.2.3 Technology References

PTC and LFR are both categorized as line-focusing CSP technology because they use mirrors to focus the solar irradiation onto a linear receiver. While the performance of LFR systems are comparable with PTC [48], PTC has had the benefit of design improvements and reduction in equipment costs. While it has been shown that the performance of PTC exceeds that of LFR in hybrid systems [49], LFR is included in this analysis as a secondary feasible hybrid design option.

Collection Equipment

In order to calculate the useful thermal energy transferred from the SX model, it is important to first understand the roles of solar collection geometry and solar field configuration.

For this study, a *solar module* will be defined as the assembly of a single set of individual parts. A PTC module consists of several curved mirrors attached end to end and a receiver tube at the

Plant Name		<i>L</i> _{SCA}	Configuration	d_r	W_p
		[m]	$N_l \mathbf{x} N_a$	[m]	[m]
LFR	eLLO	340	1x27	0.08	14
ī	Puerto Errado 1	806	1x2	0.08	16
	Andasol-1	144	4x156	0.07	5.7
	Aste 1A	150	4x156	0.115	5.4
PTC	Borges	96	6x56	0.115	5.7
P	Extresol 1	144	4x156	0.07	5.7
	Enerstar	150	4x105	0.07	5.4
	Godawari	144	4x120	0.07	5.7

Table 3: Solar field comparison of existing CSP plants [33].

Table 4: Typical dimensions for one CSP module used in power plants currently in operation [33]

Technology	d_r	W_p	r_c	L_r
8,	[m]	[m]	- 1	[m]
PTC	0.08	5.6	20	10
LFR	0.08	15	60	10

geometric focus of the row of parabolic mirrors and spanning the length of the combined mirrors. A *Solar Collection Assembly* (SCA) is used in this study to describe the assembly of multiple solar modules. A *loop* is defined as a single row of multiple SCA and includes the tracking technology used to rotate the mirrors. Figure 7 illustrates the nomenclature used to describe the solar field in this study.

LFR plants combine several solar modules in series into a continuous loop. PTCs are combined in smaller increments such as 8 or 12 modules per SCA for many of the plants listed in Table 3 [33]. For the current study, dimensions for physical components will be based on those used in the projects listed in Table 3. Most projects use a receiver tube from either Siemens (UVAC 2010) or Schott (PTR 70). The eLLO and PE1 plants use SUNCNIM and Novatec Solar assemblies, respectively, which have an average aperture width of W = 15 m. Most of the PTC projects listed in Table 3 use solar assemblies from Siemens or Sener. The average values from NREL data are included it Table 4 and will be used in simulating the solar field area.

The receiver area (A_r) is defined as the area absorbing the radiation. A_r is equivalent to the receiver surface area that is experiencing concentrated solar radiation, using the receiver diameter

 (d_r) and length (L_r) [50].

$$A_r = \pi d_r L_r \tag{9}$$

For LFR systems, the receiver is often covered from above by a trapezoidal reflector (shown in Figure 1b) to focus the thermal radiation onto the entire receiver. However, receivers on PTC modules do not absorb concentrated radiation through areas outside the focal area, or the area onto which thermal radiation is concentrated. The focal area depends on the aperture width and curvature of the PTC mirrors. To simplify the analysis in this report, the focal area of PTC modules will be assumed to be approximately equal to A_r , noting that the actual thermal energy collected over this area will be slightly less and accounted for when simulating the configuration of the solar field.

Aperture area (A_p) is defined as the area through which radiation enters the collector. In the case of PTC, A_p is the projected area of the mirror calculated by the product of L_r and the perpendicular opening width (W_p) . The A_p for LFR would be the product of the length of each mirror and the width of the overall mirror array.

The goal of CSP technology is to maximize the ratio between A_p and A_r , or concentration ratio (Equation 10).

$$r_c = \frac{A_p}{A_r} \tag{10}$$

If A_r is 50 times smaller than A_p , the heat flux absorbed by the receiver (q''_r) would be 50 times greater than the solar heat flux (DNI) entering the aperture area (Equation 11).

$$q_r'' = r_c \text{DNI} \tag{11}$$

Heat Transfer Fluid

CSP systems require a HTF to be pumped through the collection vessel and often use a heat exchanger to move the absorbed thermal energy for use elsewhere. Typical HTFs include air, water, molten solar salts (i.e. NaNO₃, KNO₃, etc. [51]), and thermal oils.

Air is a useful HTF due to its availability and versatility. While air does have a lower thermal capacitance compared to the other HTF in Table 5, it also avoids complications associated with phase change. The gas properties of air (including viscosity in Table 5) make it much easier to pump through a CSP system or compress to allow for a greater change in temperature. The thermal properties reported in Table 5 are largely what limit the application of air as a HTF. The specific heat of air is comparable to the other HTFs but for the same temperature difference, the volume of

Fluid at	Specific heat	Thermal Conductivity	Viscosity	Reference
300 °C	[kJ kg ⁻¹ K ⁻¹]	[mW m ⁻¹ K ⁻¹]	[mPa s]	Reference
Air	1.04	44.41	0.030	[52]
Liquid Water (8.6 MPa)	5.7504	552.65	0.086	[52]
Steam (0.1 MPa)	2.01	43.5	0.020	[52]
Therminol VP-1*	2.314	96.4	0.221	[53]
Nitrate Salt	1.4946	500	3.26	[51]

Table 5: Properties for common HTF used in CSP systems.

*Selected as solar collection fluid in this work

air required to match the mass of the liquid fluids is significantly higher. The thermal conductivity of air is also considerably lower than the liquid alternative HTFs. The drastic increase in thermal performance from using a liquid HTF can reduce the required collection area to offset HTF capital costs that are not present when using air.

Water is also used for its availability as well as its excellent thermal capacity but has a relatively low boiling point. The properties provided in Table 5 are for saturated liquid water at 300 °C, which requires the water be compressed to approximately 8.6 MPa. Otherwise, the liquid water may boil which complicates the selection of an appropriate pump and heat exchanger. CSP linear receivers are typically thin-walled to minimize radial temperature differences and may not be suited for the high pressures that would be required to maintain water at a liquid state. Unlike liquid water, steam has thermal properties much similar to air and would be less desirable as an HTF for the same reasons discussed above.

Solar salts have high melting points (typ. >300 °C for Nitrate salts) and excellent thermal capacity. However, line focusing technology typically operates close to 300-400 °C [11], often precluding the use of solar salts due to the potential for solidification. Point focusing technologies have higher concentration ratios and can maintain temperatures well above the freezing point of common solar salts. Increased performance has been shown for advanced LFR with solar salts as the heat transfer fluid [54], but the capital costs associated with this design may critically hinder the feasibility of LFR hybridization. Thus, solar salts are most commonly used with point focusing technologies and will not be considered in this study.

Vignarooban et al. performed an extensive study on heat transfer fluids available for CSP systems [55]. The data in Vignarooban et al. suggests that a thermal oil is the ideal choice for the design points in this study. Oils, like Therminol VP-1 from Eastman Chemical Company, are engineered specifically to operate in the temperature range for ideal line-focusing CSP applications [53]. While the thermal properties of oils are less impressive when compared to liquid water or solar salts, thermal oils are most often used due to their stability in typical line-focusing temperature ranges. For this study, properties for Therminol VP-1 will be used for solar collection calculations.

2.2.4 Solar Field Simulation

While the concentration ratio is determined by the installed hardware, the length used for collection can be adjusted. However, a straight line of CSP collectors for several miles is often not desirable so collectors are placed in arrays. For N_l loops of collection, the equation for the thermal power absorbed by the solar field ($q_{abs,f}$) can be related to collection geometry using Equation 12.

$$q_{abs,f} = N_l r_c \text{DNIA}_r \tag{12}$$

Alternatively, $q_{abs,f}$ can also be calculated using the change in temperature (ΔT_s) and specific heat ($c_{p,s}$) of the solar heat transfer fluid (Equation 13) assuming the fluid does not undergo a phase change.

$$q_{abs,f} = \dot{m}_s c_{p,s} \Delta T_s \tag{13}$$

The solar heat transfer fluid can then be routed to each collector either in parallel or in series. Series flow assumes that, even if the collectors are in an array, the mass flow rate is constant throughout each loop and the fluid is routed in a serpentine manner. Parallel flow assumes that a uniform fraction of mass flow rate is divided among each loop and mixes at the end before entering the solar heat exchanger. For the case of a CSP array with N_l loops, Equation 12 can be altered such that

$$q_r = r_c \text{DNI}\eta_c \sum_{i=1}^{N_l} A_{r,i}$$
(14)

where $A_{r,i}$ is the receiver area for the *i*th loop and η_c is the overall collection efficiency of the SCA. If each loop is assumed to be uniform (i.e. uniform length, mass flow), then Equation 14 can be further simplified and combined with Equation 13 (where $\dot{m}_l = \frac{\dot{m}_s}{N_l}$).

$$q_r = N_l r_c \text{DNI} \eta_c A_{r,l} = N_l \dot{m}_l c_{p,s} \Delta T_s \tag{15}$$

From Equation 15 it can be seen that ΔT_s will be less for parallel flow. To achieve the same $q_{abs,f}$, the total mass flow rate must be larger than in series. The large ΔT_s that can be expected in

a series configuration is not desirable if the process is operating close to the boiling point of the heat transfer fluid. Large temperature gradients may also cause warping in receiver tubes that can result in the defocusing of the receiver and radiation leakage.

The equation for $A_{r,tot}$ can be determined using Equation 15 where the total receiver area is equal to the product of the number of collection loops and the receiver area for each loop $(A_{r,tot} = N_l A_{r,l})$.

$$A_r = \frac{q_s}{\varepsilon \eta_c r_c \text{DNI}} \tag{16}$$

In terms of the augment fraction ($k = \dot{Q}_s / \dot{Q}_{B,nom}$), the minimum receiver length required can be determined by combining Equations 9 and 16

$$L_{\min} = \frac{k\dot{Q}_{B,\text{nom}}}{\text{DNI }\varepsilon\eta_c r_c\pi d_r}$$
(17)

For an assumed SCA length of 30 m, the minimum number of required SCA to meet the specifications set by k is the ratio of L_{min} to L_{SCA} rounded up to the nearest whole assembly.

In order to simulate the layout of the solar field, it will be assumed that the SCA are installed in a rectangular array with multiple loops of uniform length. Consistent with commercial CSP projects and a study published by Channiwala and Ekbote, it is assumed that each PTC loop is installed with a pitch of p = 15 m between each receiver tube or p = 20 m for LFR [56].

The length of each loop is maximized to avoid as much unused land as possible by initially assuming each loop of the solar field spans the maximum latitudinal length of the available land specified as an input to the model. The number of SCA in a loop (N_a) is equal to the ratio of the maximum field length to the length of a single assembly. For a rectangular array of SCA in an N_a x N_l configuration, N_a may not be a whole number factor of N_{sca} , meaning consistent loop lengths is not feasible. To check the configuration, the remainder of N_{sca}/N_a is calculated and compared to N_a . If the remainder is greater than half of N_a , then N_{sca} is rounded up to complete that loop and $N_l = N_{\text{SCA,new}}/N_a$. Rounding up is a slight overestimate for this simulation and can be considered to partially offset the overestimate of A_r such that the resulting solar field configuration from this method will approach the field size required to supply the energy specified by k. If the remainder is less than half of N_a , then N_a is decremented and the above process is repeated until a uniform array can be generated. The total estimated land area used (A_t) is approximated by the total length of a single loop (L_rN_a), W_p , and the loop pitch (p).

$$A_t = (L_r N_a) [W_p N_l + (p - W_p)(N_l - 1)]$$
(18)

<i>L_{l,max}</i> [m]	k [%]	Technology	<i>A_r</i> [10 ³ m ²]	A _{sf} [ac]
	1	PTC	2.1	30.4
	1	LFR	1.1	21.1
300	6	PTC	12.4	182.8
500	0	LFR	6.5	127
	10	PTC	20.7	305.1
	10	LFR	10.8	211.4
500	1	PTC	2.1	30.2
	1	LFR	1.1	21.6
	6	PTC	12.4	182.2
	0	LFR	6.5	127.2
	10	PTC	20.8	305
	10	LFR	10.8	210.8
	1	PTC	2.2	29.8
	1	LFR	1.2	22.3
1000	6	PTC	12.4	181.2
	Ū	LFR	6.5	127.2
	10	PTC	20.8	303.9
	10	LFR	10.8	211.3

Table 6: Effect of technology and maximum loop length $(L_{l,\max})$ on receiver area (A_r) and solar field size (A_{sf})

The effect of maximum loop length $(L_{l,\max})$ and k on the amount of receiver area and the size of the total solar field for both PTC and LFR is shown in Table 6. There does not appear to be a significant effect of $L_{l,\max}$ on A_r . For most instances, increasing $L_{l,\max}$ reduces A_{sf} , which is expected due to the potential reduction in total number of loops and unused land due to spacing needs. However, the changes in A_{sf} from $L_{l,\max}$ are not significant, so the estimates of A_{sf} from this analysis are largely independent of the geometry of the land designated for the solar field.

2.3 Solar Integration Model

Thermal energy collected by the solar field is assumed to be integrated into the coal power block by means of FWH bypass. The water bypasses the designated FWH and instead passes through a different heat exchanger in which the solar thermal energy is transferred to the water. Because the CSP energy is replacing the role of steam extracted from a turbine, that extraction mass flow is then assumed to continue through the cycle, increasing the total inlet enthalpy of the applicable turbine and all downstream hardware. Increasing the total enthalpy in turn increases the total power generated by each turbine. However, the simplified coal model used in this study assumes the FWH process is done by a single FWH at constant pressure. These changes in the power block thermodynamics require an update to the simplified model to allow for single FWH bypass and limits to total power generation.

The steam extraction pressure is calculated using the mass-averaged pressure approach assuming all flow rates are unchanged with the exception of the extraction line tied to the bypassed FWH and the main line. In the solar integration model, this is illustrated by placing the solar heat exchanger (SX) in series before the constant pressure FWH (Options A and C in Figure 8) with thermal input from the solar field to the SX if the FWH being bypassed is followed by another FWH in the real cycle. For FWHs not followed by another FWH (i.e. before the boiler or BFP, as in Options B and D in Figure 8), the SX was modeled after the combined FWH in the representative model. State 4 (Figure 8) represents the mixing done in the DA. While the DA may be thought of as an open FWH, only closed FWHs are considered as candidates for solar integration. However, the FWH numbering scheme common to coal power plant schematics is preserved in this study and FWH 4 is omitted from FWH bypass results discussed in Section 3.

2.4 Solar Contribution

Hou et al. defined a method to calculate the solar work contribution, W_s , that involved an exergy analysis on subsystems of the overall hybrid plant [57]. An adaptation of their approach for the solar integration model is presented here.

Subsystem boundary lines are selected based on the pressure level of the turbine stage included in the subsystem as shown in Figure 9a with extraction and exhaust pressures. However since steam is not extracted from the IP turbine, the boundary line corresponds with the pressure at state 13. Figure 9b illustrates the boundary lines for each subsystem when plotted on a T-s diagram and shows the highlighted area under the subsystems which is integrated to calculate \dot{W}_s . Each subsystem remains consistent across multiple solar integration configurations (Options A-D in Figure 3). The only modification is the inclusion of the SX model in different subsystems as the integration location changes. For example, Subsystem 4 always contains the lower stages of the LPT, the Condenser, CP, and drain cooler throttling after the LP FWH. For the lowest pressure solar integration (Figure 9a), the SX occurs before LP FWH and splits that boundary between

Figure 8: Sample solar integration model. Solar thermal energy is transferred from the solar field to the power block working fluid through a solar heat exchanger (SX) at one of the integration options A-D (Option A shown here in series before the low pressure feedwater heater (LP FWH).

subsystems 3 and 4. Similarly for options B-D, the subsystem boundaries are drawn to exclude the solar integration.

To test the model for \dot{W}_s calculation, the model was compared to the case study done by Hou et al. for a 600 MW hybrid plant with FWH 7 bypass, at k=5.5% [57]. The study by Hou et al. yielded a \dot{W}_s of 25.70 MW which results in a \dot{W}_s fraction of 4.28%. The model presented in this study for FWH 7 bypass at k = 5.5% yielded a \dot{W}_s of 21.7 MW from a calculated $\dot{W}_{net} = 494$ MW and \dot{W}_s fraction of 4.4%. Having computed comparable W_s fractions from Hou et al. and the current study shows that the application of Hou et al.'s process is successful and that \dot{W}_s can be used in this study as a parameter to evaluate CSP hybrid performance.

Figure 9: (a) Subsystem division for LP FWH1 or FWH 2 bypass and (b) T-s plot of \dot{W}_s for FWH 7 bypass at k=1%

2.5 Financial Model

This study uses an annual cash flow analysis, based on the methods used in the System Advisor Model (SAM) by NREL, to calculate the LCOE and payback time (PBT). The LCOE calculated from this study is treated as a solar marginal value that can be added to the LCOE of the parent coal plant to estimate the overall hybrid LCOE. The annual cash flow (C_{net}) is approximated (Equation 19) using annual costs (C_n) from operation and maintenance (O&M), financing, and taxes scaled by a nominal discount rate ($r_{d,nom}$). Input values used to approximate C_n are provided in Table 7.

$$C_{\rm net} = \sum_{n=0}^{N} \frac{C_n}{(1 + r_{d,\rm nom})^n}$$
(19)

Values selected for calculation of the Hunter plant are provided in Table 7. More details on the use of the values in Table 7 can be found in Appendix D.

The LCOE is calculated by dividing the annual costs by the annual \dot{W}_{net} , energy (E_n) , and adjusting to a net present value (Equation 20), where r_r is the real discount rate.

Parameter Name	Variable	Selected Input	Source					
Capital Cost								
Site Improvements	$F_{\rm SI}$ [USD m ⁻²]	25	[58]					
Solar Field	$F_{\rm SF}$ [USD m ⁻²]	170	[58]					
Heat Transfer Fluid	$F_{\rm HTF}$ [USD m ⁻²]	60	[58]					
Heat Exchanger	F _{HX} [MMUSD]	1.73	[59]					
Contingency	<i>r</i> _{cont} [%]	7	[58]					
Engineer-Procure-Construct	<i>r</i> _{EPC} [%]	11	[58]					
Sales Tax Amount	$F_{t,sal}$ [% of CC]	80	[58]					
Sales Tax Rate	$r_{t,\text{sal}}$ [%]	5	[58]					
A	Annual Operating Expenses							
Fixed O&M	$F_{\rm FOM}$ [USD kW _e ⁻¹]	12	[60]					
Variable O&M	F _{VOM} [USD MWh ⁻¹]	4	[61]					
Property Tax Amount	$F_{t,prp}$ [% of CC]	80	[61]					
Property Tax Rate	$r_{t,\text{prp}}$ [% of basis]	0.6	[62]					
Insurance Rate	<i>r</i> _{ins} [% of CC]	0.5	[61]					
	Annual Loan Payment							
Loan Amount	<i>F</i> _{<i>L</i>} [% of CC]	50	[63]					
Total Loan Period	P [years]	25	[61]					
Loan Interest Rate	$r_{\rm int}$ [% of remaining balance]	5	[61]					
Annual Tax Credits and Incentives								
Federal ITC Rate	$r_{\rm ITC,fed}$ [% of CC]	10*	[64]					
State ITC Rate	<i>r</i> _{ITC,st} [% of CC]	0	[61]					
Annual State and Federal Income Tax								
Depreciation Schedule	SC _{dep} [% of CC]	MACRS**	[61]					
Federal Tax Rate	$r_{t,\mathrm{Fed}}$ [%]	21	[61]					
State Tax Rate	$ r_{t,\mathrm{st}} $ [%]	5	[62]					

Table 7: Selected input values used for the cash flow cost analysis

* r_{ITC} was set in 2019 to depreciate from 30% to 10% by 2022 [64].

**The modified accelerated cost recovery system (MACRS) is the name given to the federal depreciation schedule and has a separate value for the first five years of the project as shown in the following vector (20, 32, 19.2, 11.52, 11.52, 5.76).

$$LCOE = \frac{C_{\text{net}}}{\sum\limits_{n=1}^{N} \frac{E_n}{(1+r_r)^n}}$$
(20)

O&M, tax costs, and loan payments are approximated using values shown in Table 7. Information on how to use the values in Table 7 is provided in Appendix D.

Two PBTs were calculated for this study. PBT1, used for the current analysis, assumes that the fuel savings resulting from operating a hybrid plant in fuel saving mode provide the benefit that offsets all accumulated costs inherent in the hybridization process. PBT2, discussed further in Appendix D, assumes that the fuel savings provide the benefit that offsets only the initial investment. The fuel savings are calculated using the fuel offset and the lower heating value of the coal (Equation 21). Annual fuel savings are subtracted from the annual costs until the savings are greater than or equal to the cumulative costs.

$$FS = \frac{E_{sav}F_F}{LHV_F}$$
(21)

The development of this financial model closely reflects the calculations performed within SAM by NREL; comparative tests during development showed agreement between the models to the order of rounding error. Savings obtained from fuel offset is a departure from the scope of SAM. The effect of augmentation and integration site on LCOE and PBT1 are explored further in Section 3.2.

Carbon tax is an incentive that has been introduced in certain countries and areas of the US to boost renewable energy projects over fossil fuel projects by penalizing the emission of greenhouse gases [65]. Though not widely implemented in the US, hypothetical values for a carbon tax are publicly available [66]. In this work, the effect of the carbon tax income is calculated from \dot{Q}_{fo} and the useful solar operating conditions. Results from the implementation of a solar premium and carbon tax are provided in Section 3.2.

Another option for improving financial feasibility is the consideration of a premium rate applied to the electricity consumer. A study by O'Shaughnessy et al. states that the average green energy premium paid by residential electricity consumers in 2016 was 0.018 USD kWh⁻¹ [67]. In this study, the income from increasing the electricity price for the consumer and the carbon tax are benefits that are treated similarly to income in the calculation. For each year, the premium benefit is calculated from the premium rate and the total energy provided by the power plant during average operating conditions. Alternatively, the green premium can charge the consumer based on the solar contribution to the power generation. Since the \dot{W}_s reported in Table 8 are up to 25 MW for higher *k*, the effect of the green premium price decreases but the consumer would only be paying for the

electricity attributed to the renewable resource.

2.6 Optimization

The following models presented to this point comprise the hybrid model:

- SI model (Section 2.3)
- Solar contribution (Appendix A)
- Solar field configuration (Section 2.2.4)
- Financial model (Section 2.5)

The hybrid model has been designed such that the only inputs, or design variables, required to calculate hybrid performance are technology type (PTC or LFR), the number of the bypassed FWH, and k. All other model outputs or required inputs are calculated within the hybrid model and are passed between the internal functions as necessary.

The list above is also the order in which the models must be executed. The flow of parameters within the hybrid model is illustrated in Figure 10. Each model shown in Figure 10 requires inputs that are either calculated in a model higher in the chart or specified as part of the optimization searching algorithm. The hybrid model has been designed such that the only inputs, or design variables, required to calculate hybrid performance are technology type (PTC or LFR), the number of the bypassed FWH, and k. All other variables shown in Figure 10 are calculated within models as specified by arrows leaving the square boxes. The variables used at the end of the hybrid model simulation are sorted in Figure 10 by their use in the objective function (f) or application to a constraint (con). All possible combinations of the design variables that fit within the constraints specified below are referred to as the *design space*. The selected searching algorithm will explore the design space by iterate through different combinations of the design variables to find the optimal design.

2.6.1 Searching Algorithm

Instead of looking at the hybrid plant as a problem with 2 discrete variables (FWH number and Technology) and 1 continuous variable (k), the problem can be expanded to be a series of continuous problems resulting in an optimization searching method referred to as an *exhaustive search*.

To implement the exhaustive search, all possible combinations of the discrete variables are treated as individual designs and processed as continuous problems. For the hybrid model, this means that for *i* possible CSP technologies and *j* possible integration sites, there will be $i \times j$ continuous optimization problems processed to determine the overall optimum for all possible

Figure 10: Overview of the interchange of parameters within the hybrid model. Bold rectangles indicate computational models with arrows connecting the necessary inputs and the reported outputs. Input and output variables are contained within rounded rectangles.

technology/FWH/k combinations. This exhaustive search is laid out in Figure 11 where each circle is a design variable and each line is a possible value of that variable. Only FWH bypass is considered for this study, so j is equal to the number of closed FWHs. Two feasible CSP technologies are considered: PTC and LFR. Thus, i = 2 and j = 6 because FWH 4 is an open FWH/deaerator (Section 2.3), and the total number of combinations analyzed is $i \times j = 12$.

Figure 11: Visualization of the exhaustive search implemented in determining the optimal k (k_{opt}) for each technology/FWH combination.

2.6.2 Objective

The various optimization objectives that have been analyzed in other studies capture important parameters but do not necessarily consider all the factors that impact the overall quality of a design [68–75]. The following parameters have been identified as candidates for the optimization objective.

- Solar work contribution (\dot{W}_s) [MW]
- Fuel offset (\dot{Q}_{fo}) [MW]
- Levelized cost of electricity (LCOE) [USD kWh⁻¹]
- Payback time 1 (PBT1) [yrs]
- Fuel earnings (FE) [USD]

When multiple variables are used in an objective, the units should be consistent and each combination of parameters should conflict with the others. Conflicting objectives provide a way to limit the search. For example, if maximizing \dot{W}_s is used as the only objective, the expected outcome would be to increase the augment fraction as high as possible until a constraint is violated. However, when opposed by financial parameters such as minimizing LCOE, the optimization will have to find some intermediate *k* that has the largest \dot{W}_s and the lowest LCOE. The MATLAB function 'fmincon', included within the MATLAB optimization package, has been selected to perform the continuous search for this study. Because 'fmincon' searches for the minimum value of the specified objective, care must be given to combine the variables above such that the ideal value will be a minimum. For best performance, multiple objectives should also have consistent units and be of comparable orders of magnitude.

If the sub-objectives are of different orders of magnitude, one objective will dominate the convergence criteria specified for the optimization termination. For example, if one sub-objective has an initial value of 100 and a second sub-objective is 1, the total objective could be 101. The next iteration in the optimization search may not result in any change in sub-objective 1, but a 100% increase in sub-objective 2. The total objective value would then be 102 with less than 1% change. Thus, sub-objectives may require an additional constant multiple to achieve consistent orders of magnitude.

Objective parameters are separated in two categories based on impact of plant thermodynamics or economics. The total objective (f) can then be expressed in terms of the objective parameters (Equation 22) where \dot{W}_s and \dot{Q}_{fo} are scaled by the net work output by the plant (\dot{W}_{net}). The financial parameters are combined to achieve dimensional homogeneity. To penalize $\dot{Q}_{fo} < 0$, the optimization is set up such that each sub-objective would drive toward a maximum. Multiplying by -1 effectively turns the maximization problem into a minimization problem, satisfying 'fmincon' minimum search preference. Each sub-objective will have units kW USD⁻¹.

$$f \propto -\frac{\dot{Q}_{\rm fo} \, \dot{W}_s}{CC \, \dot{W}_{\rm net}} - \frac{1}{\text{LCOE} \left(365 \, \text{PBT1} \, h_{\rm sun}\right)} \tag{22}$$

Further control of sub-objective impact is achieved by applying weights (ω) to each subobjective. The weight for each sub-objective is determined by the developer, but the sum of all weights should equal 1 ($\omega_1 + \omega_2 + \cdots + \omega_N = 1$). As an example, for plants that have strict environmental goals, increasing Q_{fo} may be more important than financial outcomes, so this process can be implemented with $\omega_1 > \omega_2$. Conversely, if financial performance is most important, $\omega_2 > \omega_1$ will provide the desired optimum.

$$f = -\omega_1 \frac{\dot{Q}_{\rm fo} \, \dot{W}_s}{CC \, \dot{W}_{\rm net}} 10^7 - \omega_2 \frac{1}{\text{LCOE} \, (365 \, \text{PBT1} \, h_{\rm sun})} 10^2$$
(23)

Additional constants are multiplied with the objectives as necessary to reach comparable orders of magnitude and dimensional homogeneity, such as converting PBT1 from years to hours by multiplying 365 days/year and h_{sun} .¹ For best optimization results, the starting point given to

¹11.9 hr day⁻¹ in Castle Dale

Figure 12: Behavior of \dot{Q}_{fo} . FWH 1 and FWH 2 bypass does not show a decrease in fuel consumption. Other bypass options only reduce fuel consumption once $k > k_{FWH}$.

'fmincon' should be within the feasible design space.

The range of financially feasible designs can be approximated by analyzing the behavior of \dot{Q}_{fo} with respect to k, as shown in Figure 12. All bypass options are negative for low k. Each option seems to approach 0 at k_{FWH} , or the k equivalent to the heating load of the bypassed FWH at nominal operating conditions. Analyzing the state points of the solar integration model for each of the LP integration options shows that the water boils at k > 3%. Considering $k_{FWH} \approx 2 - 3\%$ for all LP integration options, no LP option is considered feasible for complete FWH bypass. Once $k > k_{FWH}$, the CSP field is starting to contribute more thermal energy and \dot{Q}_{fo} increases. One option to expand the region of feasible designs based on \dot{Q}_{fo} is partial FWH bypass as opposed to complete FWH bypass, the focus of this current work.

2.6.3 Constraints

Additional constraints were placed within the individual models used in the optimization to ensure the outputs were feasible, such as confirming the components within the hybrid model simulation met requirements for the conservation of energy. However, additional constraints are required to ensure the designs generated in the optimization search are feasible for the desired application.

Two additional constraints have been applied restricting the size of the solar field and the duration of PBT1. The optimization constrained the designs to limit the size of the solar field area below a maximum size specified by the user. For this analysis, it is assumed there is an area of 20 ac $(81,000 \text{ m}^2)$ available for a solar field.² A second constraint specifies that the PBT1 be less than the expected project lifetime specified by the user. A project life of 30 years is assumed for this study.

²For Hunter, an area of approximately 45000 m² (12 ac) has been identified as a candidate for CSP installation.

3 Results

The results presented here are for the models described in Chapter 2. Unless otherwise specified, the specific values reported and conclusions drawn are based on data for the Hunter Unit 3 coal power plant in Castle Dale, UT.

3.1 Solar Contribution

The methods used to calculate \dot{W}_s were tested for several k at each integration site. The energy transferred in each FWH accounts for approximately 3% of the overall heating power done in a coal power plant. Thus, k = 3% CSP effectively replaces each FWH while providing the same amount of thermal power as the bypassed FWH would and k = 1% and 6% are used as lower and upper bounds, respectively. As expected, Table 8 shows that increasing k and increasing the pressure stage of FWH bypass generally increases \dot{W}_s . Of note is the relative effect of k on \dot{W}_s as compared to integration site. While \dot{W}_s depends on the amount of steam typically extracted from the bypassed FWH, the increase from changing integration site is small as compared to the increase in \dot{W}_s with increasing k. The choice between k and integration site allows for flexibility in design and operation decisions. Determining the size of a solar field is a decision that must be made in the design stage of a project, but the results in Table 8 suggest that the choice of integration site is much more flexible in that changing the integration from bypassing one FWH to another FWH at a similar pressure stage should not significantly affect the performance of the hybrid plant.

LP FWH #	k	₩s	\dot{Q}_B	η_{th}	η_{II}	HP FWH #	k	₩s	\dot{Q}_B	$\boldsymbol{\eta}_{th}$	η_{II}
	[%]	[MW]	[MW]	[%]	[%]		[%]	[MW]	[MW]	[%]	[%]
1	1	1.24	1313	38.6	43.9	5	1	3.23	1309	38.7	44.0
	3	4.53	1287	38.5	43.8		3	10.35	1279	38.7	44.0
	6	11.42	1276	37.7	42.8		6	21.97	1233	38.9	44.1
2	1	1.24	1293	39	44.5	6	1	3.23	1299	38.8	44.2
	3	4.53	1276	38.8	44.1		3	10.38	1270	38.9	44.3
	6	11.40	1276	37.6	42.6		6	22.12	1223	39.1	44.3
3	1	2.74	1293	39.1	44.6	7	1	3.48	1297	37.7	43.0
	3	8.88	1263	39.2	44.6		3	110.4	1267	37.8	43.0
	6	18.24	1213	39.2	44.5		6	24.02	1221	37.9	43.0

Table 8: Results for solar contribution based on FWH number and the solar augment fraction (*k*). Compare with results for k = 0% in Table 2.

Figure 13: Variation in LCOE with augment fraction, *k*. The LCOE for each FWH generally increases in the order $1 \approx 2 < 3 < 5 \approx 6 < 7$ as shown in the insert.

For the HP configurations that have been shown to be feasible, both η_{th} and η_{II} increase slightly. This behavior was predicted in Section 2.1, though both η_{th} and η_{II} are lower than the nominal values reported in Table 2.

3.2 Financial

A sample of financial results is provided in Figures 13 and 14. Of note in Figure 13 is the LCOE order of magnitude. The LCOE reported here is a marginal value representing the ratio of the costs associated only with the integration of CSP to the total hybrid plant energy output. This marginal value can then be added to the LCOE of the coal plant to approximate the overall hybrid LCOE. Figure 13 shows that the LCOE depends mainly on k and does not vary considerably for different locations of solar integration in the plant. The general trend for integration options is that the LCOE is less for LP integration.

The fuel offset power (\dot{Q}_{fo}) is the parameter than has the largest effect on PBT1. The variation

Figure 14: Calculated PBT1 for solar integration at HP FWHs with 0 USD sh.tn.⁻¹ carbon tax. The horizontal line at PBT1=30 years signifies the typical life of coal power plant.

in PBT1 with k is shown in Figure 14 for HP integration options and 0 USD sh.tn.⁻¹ carbon tax. As was shown in Section 2.6, \dot{Q}_{fo} was negative for FWH 1 and FWH 2 but became positive for all other FWHs once k passed the k_{FWH} . Until $k > k_{FWH}$, there is no benefit for PBT1. However, the costs of the plant continue to increase with k so integration options only become feasible when \dot{Q}_{fo} gets sufficiently large. The \dot{Q}_{fo} for HP integration configurations does not vary greatly between each FWH, resulting in nearly identical PBT1 results for each HP configuration (Figure 14).

Figure 15 shows the effect of carbon tax on the LCOE (Figure 15a) and on PBT1 (Figure 15b) for FWH 3 and FWH 7 bypass.

Values for the carbon tax used to generate Figures 15a and 15b are moderate (16 USD sh.tn.⁻¹; similar to California Emission Trading System), aggressive (30 USD sh.tn.⁻¹; similar to Iceland carbon tax) and very aggressive (50 USD sh.tn.⁻¹; France carbon tax) [65,66]. Even for a moderate carbon tax (16 USD sh.tn.⁻¹), significant changes in both LCOE and PBT1 are seen in Figure 15. This sensitivity to carbon tax suggests that hybridization is more likely to have a wider range of feasible designs for locations with carbon taxes in place. Having an LCOE less than 0 (as in Figure 15a) occurs when the financial benefit exceeds the cumulative costs. After the initial

Figure 15: Effect of carbon tax on (a) LCOE and (b) PBT1. FWH 6 is used as an example of HP integration. LCOE and PBT1 trends for other bypass options are similar to those shown in Figures 13 and 14.

investment, the annual net costs must be negative (net financial gain) in order for the project to make money. For projects without carbon tax, the initial investment and annual loan payments are large enough that the summation of each negative LCOE does not make up the difference. With a carbon tax in place, the negative LCOE for each year in the cash flow analysis will increase in magnitude with increasing carbon tax to the point that the summation of negative LCOE for each year surpasses the cumulative LCOE from the initial investment and annual loan payments. In this study, negative LCOE typically corresponds with an aggressive carbon tax or large \dot{Q}_{fo} .

Applying a green energy premium value of 0.018 USD kWh⁻¹, as reported in O'Shaughnessy et al. [67], reduces PBT for PTC bypass of FWH 6 at k = 9% with a 0 USD sh.tn.⁻¹ from 62.1 to 3.9 years (94% reduction), resulting in a feasible condition for that k/technology/FWH configuration. As is shown in Figure 16, the PBT with the premium based on \dot{W}_s still decreases but at a lower rate than the PBT with the premium based only on \dot{W}_{net} . For FWH 6 at k = 9%, no carbon tax, and the average green energy premium value of 0.018 USD kWh⁻¹, the PBT comparison from Figure 16 is 3.9 years when based on \dot{W}_{net} and 22.5 years when based on \dot{W}_s .

Consumer electricity rates are highly dependent on location, so the sensitivity of feasibility to green premium price can be seen in Figure 16 for PTC bypass of FWH 6 at k = 6, 9, and 10% with a 0 USD sh.tn.⁻¹ carbon tax. The main conclusion from Figure 16 is that applying a premium

considerably decreases PBT with all else constant. However, there is a limit at which increasing the premium price no longer shows significant decreases in PBT. For Figure 16, the change in PBT is less than 2% when it is increased beyond 0.0155 USD kWh⁻¹. The premium of 0.0155 USD kWh⁻¹ is sufficient to reduce PBT to 4.3 years for k = 9%.

Looking at the effect of a carbon tax (Figure 15b) and a green premium electricity price (Figure 16) show similar trends in the effect on PBT from carbon tax and green premium. Increasing a carbon tax or green premium will decrease the PBT, but adjusting the green premium has a greater impact than increasing the carbon tax. This is due to how each value is implemented in this study, as discussed in Section **??**. A carbon tax is applied to the coal saved by solar augmentation, typically as high as 100 MW for low-solar augmentation. The green premium, however, is applied to all the electricity generated during h_{sun} throughout the year. For the Hunter Unit 3 plant with a nameplate generation of almost 500 MW_e, the green premium is effectively applied to a greater source of power.

3.3 Optimization

As described in Section 2.6, hybrid performance is divided in thermodynamic and economic categories. Figure 17 shows the relationship between the two objectives for weights in increments of $\omega = 0.2$ (i.e. $\omega_1 = [0, 0.2, 0.4, \dots, 1]$, and $\omega_2 = [1, 0.8, 0.6, \dots, 0]$) for HP FWHs and 16 USD sh.tn.⁻¹ carbon tax. The curves represented by the trendlines fit to the calculated optimums are Pareto fronts. The Pareto front for two-objective optimization is a curve that represents the hypothetical boundary for feasible designs. In the case of this study, the optimization objective was written such that the optimal design would trend towards the minimum of each objective. In Figure 17, the Pareto fronts suggest that the majority of other feasible designs result in a higher value for at least one of the two objectives.

As expected, the trendline reflects an inverse relationship and the objectives contradict each other. The trendline fit to the sample simulations demonstrates the expected pareto front of feasible designs for different possible ω combinations. The results in Figure 17 result in the majority of the ω combinations lying closer toward a thermodynamic minimum, suggesting that OBJ1 may be dominating the optimization. In general, the trendline representing the Pareto front for FWH 6 bypass lies below all other designs, suggesting FWH 6 bypass is most likely to be the optimal integration site for a hybrid plant when compared to results for each of the other FWHs.

Results from Section 3.2 show that k, directly tied to the capital cost, has the largest impact on financial performance and overall feasibility of a hybrid project once $\dot{Q}_{fo} > 0$ (Figure 13). Thus, more weight is given to the financial objective, or $\omega_1 = 0.2$, $\omega_2 = 0.8$. Optimization results for each FWH and Technology type are given in Table 9 assuming a project life of 30 years and a maximum allowable solar field of 30 ac. As shown in Figure 11, k_{opt} is found for each FWH bypass option combined with either PTC or LFR for the solar field.

The optimization results in Table 9 show the k_{opt} for each technology/FWH combination. The overall hybrid optimal design is found by selecting the configuration resulting in the lowest (most negative) value for f (Section 2.6). For this study, k = 9% PTC bypassing FWH 6 is the optimal configuration for 16 USD sh.tn.⁻¹ carbon tax. This result is consistent with similar work published in archival literature suggesting hybrid performance improves as the integration site approaches the boiler stage [40, 76]. It was expected that LFR integration would be generally less feasible than PTC due to higher capital costs. This is evident in that none of the optimal designs for LFR had feasible PBT1. However, the efficiency of LFR land use is apparent throughout Table 9, but particularly for FWH 5 bypass where the estimated solar field for the LFR configuration is similar to the PTC configuration despite a higher k_{opt} than PTC FWH 5 bypass [77].

Figure 17: Pareto fronts for HP FWH bypass displaying the competing optimization objectives for the current study and 16 USD sh.tn.⁻¹ carbon tax. A minimum in OBJ1 corresponds to a maximum in OBJ2 and vise-versa for each FWH option.

Table 9: Optimums at for each FWH bypass option for $\omega_1 = 0.2$, $\omega_2 = 0.8$, and 16 USD sh.tn.⁻¹ carbon tax. *f* is a minimizing function, so the smallest value (or most negative) is considered the best.

	FWH #	<i>k_{opt}</i>	\dot{Q}_{fo}	A_f	LCOE	PBT1	f
	1 ***11 #	[%]	[MW]	[ac]	[10 ⁻⁴ USD kWh ⁻¹]	[years]	[kW USD ⁻¹]
	5	14.5	202.7	517.9	16	23.7	-0.79
PTC	6	9	112.6	301.4	9.5	25.2	-0.92
	7	9	105.1	301.4	9.6	27.1	-0.84
	5	14.8	208.5	366.5	24	> 30	-0.46
LFR	6	13.2	188.6	320.9	21	> 30	-0.48
	7	14.7	209.2	364.2	23	> 30	-0.46

3.4 Geography

Changing the geographic location of hybridization also has a significant effect on financial parameters. DNI is highly dependent upon geography, which has a strong impact on the size of the solar field required (Equation 16). Changing location also may change state or federal tax information. As an example of the effect geography has on the optimization results, Table 10 shows the optimal configurations for a plant with parameters consistent with Hunter Unit 3 operating in a city with lower DNI (Cleveland, OH) and a city with higher DNI (El Paso, TX) for FWH 7 bypass and an aggressive carbon tax (50 USD sh.tn.⁻¹).

Table 10: Effect of geography on hybrid performance. Castle Dale, UT is the benchmark with Cleveland, OH and El Paso, TX as examples of lower and upper DNI, respectively. Local tax and financing parameters are not included.

Location	DNI	k _{opt}	$A_{\rm sf}$	LCOE	PBT1	f
Location	[W m ⁻²]	[%]	[ac]	[10 ⁻⁴ USD kWh ⁻¹]	[yrs]	[kW USD ⁻¹]
Cleveland, OH	326	14.7	875	30	> 30	-0.35
Castle Dale, UT	542	9	301.4	9.5	25.2	-0.92
El Paso, TX	624	9	263.4	8.0	21.5	-1.26

In comparing the optimization fitness, the minimal f is expected to be in El Paso, TX, depending on the specific operating procedure of a power plant in that area. This confirms the high dependence CSP technology has on installation geography. A proposed hybrid project is most likely to be feasible if the location of interest has high DNI.

4 Conclusion

The data presented shows that the integration site in the power plant causes the greatest effect on plant performance; k and CSP technology type have the greatest impact on financial performance. Hybridization has an impact beyond just plant efficiency and LCOE.

The US Energy Information Administration reports that the amount of CO₂ emissions from a coal power plant can be estimated by the conversion factor 205 lb. CO₂ MMBTU⁻¹ for bituminous coal [12]. With FWH 6 bypass as an example, Table 9 shows that 52 MW worth of coal is offset during hybrid mode. Using the effective solar time to convert from MW to MMBTU and projecting throughout the year, the conversion from the Energy Information Administration results in a CO₂ emissions reduction of approximately 171 tons per year. According to Bernal et al. [78], a typical temperate, dry conifer forest (the most prominent forest in UT) removes approximately 6.4 t CO₂ ha⁻¹ year⁻¹. Thus, CSP augmentation in UT reduces emissions equivalent to approximately 27,000 ha of dry conifer forest for k = 9% PTC augmentation at FWH 6 bypass.

This study analyzes a retrofit hybrid model operating in fuel saving mode, but Manente showed that plants constructed with hybrid capabilities, typically operating in power boost mode, can also see considerable benefits [23]. Manente's study, focused on integrated solar combined cycles, shows that the inclusion of solar in the power generation process can add 50 MW_e to an existing plant without changing any equipment. Included in Manente's study was the requirement to upgrade the turbine to account for the potential increase in capacity. This suggests that a power boost analysis is best for initial construction and plants anticipating upgrades to turbines or electrical transformers due to the added capital cost of higher capacity components whereas fuel saving mode is best for retrofit projects.

The impact of hybridization can be extended with the addition of thermal energy storage (TES). Storage technology has been studied for use in building energy efficiency [79] as well as CSP. Common options for storage materials include phase change materials [80,81], large collections of rock [82], and molten salts [83]. Studies show that TES can add considerably to the hybridization benefit [84–87]. The inclusion of TES would cause changes in the financial performance of a hybrid plant necessitating edits to the model presented in the current study. The operation of the plant would largely be the same with the exception that the hybrid plant would be able to operate in fuel saving mode for a longer period of time. This increase in effective solar time is expected to increase the total amount of coal saved over time and cause a potential decrease in LCOE and PBT1 depending on the selection of TES technology.

While benefits of hybrid technology have been explored in published literature, this study has contributed a simplified method to evaluate preliminary hybridization feasibility based on a representative coal power plant. The representative model was shown to be applicable to Hunter Unit 3 in Castle Dale, UT and a separate coal power plant with a different configuration [28]. Using solar data from NREL and standard equipment dimensions, the solar resource for the hybrid geography was quantified and combined with the representative model in the solar integration model. The fraction of power out of the hybrid power plant that can be attributed to the solar integration was calculated using an exergy analysis. A financial model was used to calculate comparative parameters including LCOE, PBT1, and fuel earnings. The performance of the solar heat exchange model is combined with the financial performance to define the optimization objective used to find the optimal configuration for a proposed hybrid retrofit project. Results from simulating CSP integration into Hunter Unit 3 suggest that hybridization may be feasible considering the expected thermodynamic benefits to the power plant and the LCOE and PBT1 for small k. LFR requires less land for a solar field than PTC, but higher capital costs universally preclude the use of LFR in hybrid projects according to the assumptions of this analysis. As expected, areas with higher average DNI are more promising candidates for \dot{W}_s and areas with lower DNI are less feasibile. It is shown that for a possible scenario including a carbon tax, the LCOE and PBT1 will decrease accordingly and increase the feasibility of hybridization. The impact of a green premium on consumer electricity prices is also demonstrated to have a dramatic effect on decreasing PBT1. Carbon taxes and green premium prices are common in communities across the world [65, 67], so a combination of both incentives makes CSP-coal hybridization feasible and competitive with other power generation options. The method presented in this paper, while simplified, is largely irrespective of any particular coal plant, geography, or local tax code. The results suggest a generous range of feasible hybrid configurations, but do not provide an explicit commentary on public policy. While the effects of carbon tax on feasibility as defined in this analysis are substantial, there are many and various effects of carbon tax on an economy and social structure such that this study alone cannot be used to argue for or against the implementation of a carbon tax or other applicable policies. Instead, it is only suggested that hybridization be considered where such policies may be in place.

References

- [1] U.S. Energy Information Administration, 2020. Annual Energy Review https://www.eia.gov/totalenergy/data/annual/ (Accessed on 07 Jan 2021).
- [2] Keho, Y., 2016. "What drives energy consumption in developing countries? The experience of selected African countries." *Energy Policy*, **91**, 4, pp. 233–246.
- [3] U.S. Energy Information Administration, 2016. Carbon Dioxide Emissions Coefficients by Fuel.
- [4] Kostic, M. M., 2015. "Energy: Global and historical background." *Encyclopedia of Energy Engineering*, 06, p. 15.
- [5] Stevens, L., Anderson, B., Cowan, C., Colton, K., and Johnson, D., 2017. The Footprint of Energy: Land Use of U.S. Electricity Production Tech. rep., Strata, 6.
- [6] National Renewable Energy Laboratory, 2020. Annual Technology Baseline https://atb.nrel.gov/electricity/2020/ (Accessed on 09 Oct. 2020.
- [7] Zhang, H. L., Baeyens, J., Degrève, J., and Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology." *Renewable and Sustainable Energy Reviews*, 22, pp. 466–481.
- [8] Zoschak, R., and Wu, S., 1975. "Studies of the direct input of solar energy to a fossil-fueled central station steam power plant." *Solar Energy*, **17**(5), 11, pp. 297–305.
- [9] De Laquil III, P., Kearney, D., Geyer, M., and Diver, R., 1993. "Solar-Thermal Electric Technology." In *Renewable Energy: Sources for Fuels and Electricity*, T. B. Johansson, H. Kelly, A. K. N. Reddy, and R. H. Williams, eds. Island Press, Washington, D.C., ch. 5, pp. 234–6.
- [10] Turchi, C., Langle, N., Bedilion, R., and Libby, C., 2011. Solar-Augment Potential of U.S. Fossil-Fired Power Plants Tech. rep., National Renewable Energy Laboratory, Golden, CO.
- [11] Pramanik, S., and Ravikrishna, R. V., 2017. "A review of concentrated solar power hybrid technologies." *Applied Thermal Engineering*, **127**, pp. 602–637.
- [12] U.S. Energy Information Administration, 2016. Carbon Dioxide Emissions Coefficients by Fuel https://www.eia.gov/environment/emissions/co2_vol_mass.php (Accessed on 14 Apr. 2020).

- [13] New York Times, 1916. American Inventor Uses Egypt's Sun for Power, 7.
- [14] Kalogirou, S., 2007. "Recent Patents in Solar Energy Collectors and Applications." *Recent Patents on Engineering*, 1(1), 2, pp. 23–33.
- [15] Peterseim, J. H., White, S., Tadros, A., and Hellwig, U., 2013. "Concentrated solar power hybrid plants, which technologies are best suited for hybridisation?." *Renewable Energy*, 57, pp. 520–532.
- [16] Libby, C., Meagher, P., and Cerezo, L., 2010. Solar-Fossil Hybrid Power Plants: Summary Report on Conceptual Designs, 1022418 Tech. rep., Electric Power Research Institute, Palo Alto, CA.
- [17] Powell, K. M., Rashid, K., Ellingwood, K., Tuttle, J., and Iverson, B. D., 2017. "Hybrid concentrated solar thermal power systems: A review." *Renewable and Sustainable Energy Reviews*, 80, pp. 215–237.
- [18] Li, Y., and Yang, Y., 2014. "Thermodynamic analysis of a novel integrated solar combined cycle." *Applied Energy*, **122**, pp. 133–142.
- [19] Zhao, Y., Liu, M., Wang, C., Li, X., Chong, D., and Yan, J., 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes." *Applied Energy*, **228**(July), pp. 2375–2386.
- [20] Mohammadi, K., Khanmohammadi, S., Khorasanizadeh, H., and Powell, K., 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective." *Applied Energy*, 268(March).
- [21] Ihsan, A., Jeppesen, M., and Brear, M. J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant." *Applied Energy*, 238(January), pp. 972–984.
- [22] Zhai, R., Li, C., Chen, Y., Yang, Y., Patchigolla, K., and Oakey, J. E., 2016. "Life cycle assessment of solar aided coal-fired power system with and without heat storage." *Energy Conversion and Management*, **111**, pp. 453–465.
- [23] Manente, G., 2016. "High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design." *Energy Conversion and Management*, **111**, pp. 186–197.

- [24] Behar, O., Khellaf, A., Mohammedi, K., and Ait-Kaci, S., 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology." *Renewable and Sustainable Energy Reviews*, **39**, 7, pp. 223–250.
- [25] Rech, S., Lazzaretto, A., and Grigolon, E., 2018. "Optimum integration of concentrating solar technologies in a real coal-fired power plant for fuel saving." *Energy Conversion and Management*, **178**(October), pp. 299–310.
- [26] Peng, S., Wang, Z., Hong, H., Xu, D., and Jin, H., 2014. "Exergy evaluation of a typical 330 MW solar-hybrid coal-fired power plant in China." *Energy Conversion and Management*, 85, pp. 848–855.
- [27] Zhao, Y., Hong, H., and Jin, H., 2017. "Optimization of the solar field size for the solar–coal hybrid system." *Applied Energy*, 185, pp. 1162–1172.
- [28] Adibhatla, S., and Kaushik, S. C., 2017. "Energy, exergy, economic and environmental (4E) analyses of a conceptual solar aided coal fired 500 MWe thermal power plant with thermal energy storage option." *Sustainable Energy Technologies and Assessments*, 21, pp. 89–99.
- [29] Okoroigwe, E., and Madhlopa, A., 2016. "An integrated combined cycle system driven by a solar tower: A review." *Renewable and Sustainable Energy Reviews*, **57**, pp. 337–350.
- [30] Binamer, A. O., 2019. "Al-Abdaliya integrated solar combined cycle power plant: Case study of Kuwait, part I." *Renewable Energy*, **131**, 2, pp. 923–937.
- [31] Sheu, E. J., Mitsos, A., Eter, A. A., Mokheimer, E. M. A., Habib, M. A., and Al-Qutub, A., 2012. "A Review of Hybrid Solar–Fossil Fuel Power Generation Systems and Performance Metrics." *Journal of Solar Energy Engineering*, **134**(4), p. 041006.
- [32] Sinha, M., 2017. NTPC's Dadri unit set to install solar-thermal hybrid power plant https://energy.economictimes.indiatimes.com/news/renewable/ntpc-dadri-set-to-installsolar-thermal-hybrid-plant/57804545 (Accessed on 12 Jun. 2020).
- [33] National Renewable Energy Laboratory, 2020. Concentrating Solar Power Projects https://solarpaces.nrel.gov/ (Accessed on 19 Nov. 2020).

- [34] Madler, M., 2017. Regulators Approve Palmdale Power Plant https://sfvbj.com/news/2017/aug/11/regulators-approve-palmdale-power-plant/ (Accessed on 23 Apr. 2019).
- [35] Johnson, S., 2018. Plug pulled on Victorville power plant as land lease pursued https://www.vvdailypress.com/news/20180425/plug-pulled-on-victorville-power-plant-asland-lease-pursued (Accessed on 23 Apr. 2019).
- [36] New Energy Update, 2017. CSP Today Global Tracker http://tracker.newenergyupdate.com/tracker/projects (Accessed on 12 Jun. 2020).
- [37] Alqahtani, B. J., and Patiño-Echeverri, D., 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar." *Applied Energy*, **169**.
- [38] Abdelhafidi, N., Bachari, N. E. I., Abdelhafidi, Z., Cheknane, A., Mokhnache, A., and Castro, L., 2019. "Modeling of integrated solar combined cycle power plant (ISCC) of Hassi R'mel, Algeria." *International Journal of Energy Sector Management*, 14(3), p. 22.
- [39] Tannous, C., Ahlam, D., and Rosa, M., 2016. "Renewable energy integration into existing plants: Application: Deir Ammar thermal plant-North Lebanon." In 2016 3rd International Conference on Renewable Energies for Developing Countries, REDEC 2016, Institute of Electrical and Electronics Engineers Inc., p. 9.
- [40] Wang, F., Li, H., Zhao, J., Deng, S., and Yan, J., 2016. "Technical and economic analysis of integrating low-medium temperature solar energy into power plant." *Energy Conversion and Management*, **112**, pp. 459–469.
- [41] Bakos, G. C., and Tsechelidou, C., 2013. "Solar aided power generation of a 300MW lignite fired power plant combined with line-focus parabolic trough collectors field." *Renewable Energy*, 60, pp. 540–547.
- [42] Zhao, Y., Hong, H., and Jin, H., 2015. "Thermo-economic Optimization of Solar-Coal Hybrid Systems." *Energy Procedia*, **75**, pp. 457–461.
- [43] Mokheimer, E. M., Dabwan, Y. N., and Habib, M. A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia." *Applied Energy*, 185, pp. 1268–1280.

- [44] Choudhary, T., and Sanjay, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization." *Energy*.
- [45] Cengel, Y. A., and Boles, M. A., 2011. *Thermodynamics: An Engineering Approach.*, 7 ed. McGraw-Hill, New York, NY.
- [46] National Renewable Energy Laboratory, 2018. National Solar Radiation Database https://maps.nrel.gov/nsrdb-viewer (Accessed on 6 Nov. 2019).
- [47] Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., and Shelby, J., 2018. "The National Solar Radiation Data Base (NSRDB)." *Renewable and Sustainable Energy Reviews*, 89, 6, pp. 51–60.
- [48] Sait, H. H., Martinez-Val, J. M., Abbas, R., and Munoz-Anton, J., 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors." *Applied Energy*, **141**, 3, pp. 175–189.
- [49] Rovira, A., Barbero, R., Montes, M. J., Abbas, R., and Varela, F., 2016. "Analysis and comparison of Integrated Solar Combined Cycles using parabolic troughs and linear Fresnel reflectors as concentrating systems." *Applied Energy*.
- [50] Moya, E. Z., 2012. "7 Parabolic-trough concentrating solar power (CSP) systems." In Woodhead Publishing Series in Energy, K. Lovegrove and W. B. T. C. S. P. T. Stein, eds. Woodhead Publishing, pp. 197–239.
- [51] Zavoico, A. B., 2001. Solar Power Tower Design Basis Document Tech. Rep. SAND2001-2100, Sandia National Laboratories, San Francisco, CA.
- [52] Lemmon, E. W., Bell, I. H., Huber, M. L., and McLinden, M. O., 2018. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology https://www.nist.gov/srd/refprop (Accessed on 8 Jun. 2020).
- [53] Eastman Chemical Company, 2019. THERMINOL VP-1 heat transfer fluid brochure https://www.therminol.com/product/71093459?pn=Therminol-VP-1-Heat-Transfer-Fluid (Accessed on 8 Jun. 2020).

- [54] Qiu, Y., He, Y. L., Cheng, Z. D., and Wang, K., 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods." *Applied Energy*, **146**, pp. 162–173.
- [55] Vignarooban, K., Xu, X., Arvay, A., Hsu, K., and Kannan, A. M., 2015. "Heat transfer fluids for concentrating solar power systems - A review." *Applied Energy*, 146, pp. 383–396.
- [56] Channiwala, S. A., and Ekbote, A., 2015. "A Generalized Model to Estimate Field Size for Solar-Only Parabolic Trough Plant." *Third South African Solar Energy Conference*, 3(May), pp. 283–288.
- [57] Hou, H., Xu, Z., and Yang, Y., 2016. "An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis." *Applied Energy*, 182, pp. 1–8.
- [58] Freeman, J., Blair, N., Guittet, D., Boyd, M., Neises, T., Wagner, M., Janzou, S., and Gilman, P., 2018. System Advisor Model.
- [59] GmbH, B.-D., Band, D., and Michalzik, R., 2009. BUDGET OFFER REVISION 3 Solar Steam Generator System PROJECT: SOLANA Tech. rep., SPX, Ratingen.
- [60] Montes, M. J., Rovira, A., Muñoz, M., and Martínez-Val, J. M., 2011. "Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors." *Applied Energy*, 88, pp. 3228–3238.
- [61] Turchi, C., 2010. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM) Tech. Rep. July, National Renewable Energy Laboratory, Golden, CO.
- [62] Tax-Rates, 2020. Utah Property Taxes 2020 http://www.tax-rates.org/ (Accessed on 25 Jan. 2020).
- [63] Bailey, N., 2019. Interview With Nathan Bailey from PacifiCorp.
- [64] Energysage, 2020. Investment tax credit for solar power https://www.energysage.com/solar/cost-benefit/solar-investment-tax-credit/ (Accessed on 24 Jan. 2020).

- [65] Ramstein, C., Dominioni, G., Ettehad, S., Lam, L., Quant, M., Zhang, J., Mark, L., Nierop, S., Berg, T., Leuschner, P., Merusi, C., Klein, N., and Trim, I., 2019. State and Trends of Carbon Pricing 2019 Tech. Rep. June 2019, World Bank Group, Washington, D.C.
- [66] PacifiCorp IRP Resource Planning, 2019. 2019 Integrated Resource Plan Tech. rep., PacifiCorp, Portland, OR.
- [67] O'Shaughnessy, E., Heeter, J., Cook, J., and Volpi, C., 2017. Status and Trends in the US Voluntary Green Power Market (2016 Data) Tech. Rep. TP-6A20-70174, National Renewable Energy Laboratory, Golden, CO.
- [68] Zhai, R., Zhao, M., Tan, K., and Yang, Y., 2015. "Optimizing operation of a solar-aided coal-fired power system based on the solar contribution evaluation method." *Applied Energy*, **146**, 5, pp. 328–334.
- [69] Wang, Y., Xu, J., Chen, Z., Cao, H., and Zhang, B., 2017. "Technical and economical optimization for a typical solar hybrid coal-fired power plant in China." *Applied Thermal Engineering*, **115**, pp. 549–557.
- [70] Quirante, N., Caballero, J. A., and Grossmann, I. E., 2017. "A novel disjunctive model for the simultaneous optimization and heat integration." *Computers & Chemical Engineering*, 96, 1, pp. 149–168.
- [71] Donado, K., Navarro, L., Quintero, M. C. G., and Pardo, M., 2019. "HYRES: A multi-objective optimization tool for proper configuration of renewable hybrid energy systems." *Energies*, **13**(1), 12.
- [72] Wang, J., Duan, L., Yang, Y., Yang, Z., and Yang, L., 2019. "Study on the general system integration optimization method of the solar aided coal-fired power generation system." *Energy*, 2, pp. 660–673.
- [73] Baghernejad, A., and Yaghoubi, M., 2011. "Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm." *Energy Conversion and Management*, **52**(5), 5, pp. 2193–2203.
- [74] Zhong, W., Chen, X., Zhou, Y., Wu, Y., and López, C., 2017. "Optimization of a solar aided coal-fired combined heat and power plant based on changeable integrate mode under different solar irradiance." *Solar Energy*, **150**, pp. 437–446.

- [75] Bravo, R., and Friedrich, D., 2018. "Two-stage optimisation of hybrid solar power plants." *Solar Energy*, **164**(January), pp. 187–199.
- [76] Qin, J., Hu, E., and Nathan, G. J., 2016. "The performance of a Solar Aided Power Generation plant with diverse "configuration-operation" combinations." *Energy Conversion and Management*, **124**, pp. 155–167.
- [77] Ong, S., Campbell, C., Denholm, P., Margolis, R., and Heath, G., 2013. Land-Use Requirements for Solar Power Plants in the United States Tech. rep., National Renewable Energy Laboratory, Golden, CO.
- [78] Bernal, B., Murray, L. T., and Pearson, T. R., 2018. "Global carbon dioxide removal rates from forest landscape restoration activities." *Carbon Balance and Management*, **13**(1).
- [79] Lizana, J., Chacartegui, R., Barrios-Padura, A., and Valverde, J. M., 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review." *Applied Energy*, **203**, pp. 219–239.
- [80] Pereira da Cunha, J., and Eames, P., 2016. "Thermal energy storage for low and medium temperature applications using phase change materials - A review." *Applied Energy*, 177, pp. 227–238.
- [81] Xu, B., Li, P., and Chan, C., 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments." *Applied Energy*, **160**, pp. 286–307.
- [82] Flueckiger, S., Yang, Z., and Garimella, S. V., 2011. "An integrated thermal and mechanical investigation of molten-salt thermocline energy storage." *Applied Energy*, 88(6), pp. 2098–2105.
- [83] Tian, Y., and Zhao, C. Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications." *Applied Energy*, **104**, pp. 538–553.
- [84] Wu, J., Hou, H., Yang, Y., and Hu, E., 2015. "Annual performance of a solar aided coal-fired power generation system (SACPG) with various solar field areas and thermal energy storage capacity." *Applied Energy*, **157**, pp. 123–133.
- [85] Reddy, K. S., Mudgal, V., and Mallick, T. K., 2018. "Review of latent heat thermal energy storage for improved material stability and effective load management." *Journal of Energy Storage*, 15, pp. 205–227.

- [86] Kumar, A., and Shukla, S. K., 2015. "A Review on Thermal Energy Storage Unit for Solar Thermal Power Plant Application." *Energy Proceedia*, 74, pp. 462–469.
- [87] Dowling, A. W., Zheng, T., and Zavala, V. M., 2017. "Economic assessment of concentrated solar power technologies: A review." *Renewable and Sustainable Energy Reviews*, 72(January), pp. 1019–1032.
- [88] Zhai, R., Yang, Y., Zhu, Y., and Chen, D., 2013. "The evaluation of solar contribution in solar aided coal-fired power plant." *International Journal of Photoenergy*, 2013.
- [89] Hu, E., Yang, Y. P., Nishimura, A., Yilmaz, F., and Kouzani, A., 2010. "Solar thermal aided power generation." *Applied Energy*.
- [90] Zhu, G., Neises, T., Turchi, C., and Bedilion, R., 2015. "Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant." *Renewable Energy*, 74, pp. 815–824.
- [91] Zhao, Y., Hong, H., and Jin, H., 2014. "Evaluation criteria for enhanced solar-coal hybrid power plant performance." *Applied Thermal Engineering*, 73(1), pp. 575–585.
- [92] Valero, A., Serra, L., and Uche, J., 2006. "Fundamentals of exergy cost accounting and thermoeconomics. Part II: Applications." *Journal of Energy Resources Technology, Transactions of the ASME*, **128**(1), 3, pp. 9–15.
- [93] Li, J., Yu, X., Wang, J., and Huang, S., 2016. "Coupling performance analysis of a solar aided coal-fired power plant." *Applied Thermal Engineering*, **106**, 8, pp. 613–624.
- [94] Cambell, M., 2008. The Drivers of the Levelized Cost of Electricity for Utility-Scale Photovoltaics Tech. rep., Sunpower Corporation, San Jose, CA.
- [95] U.S. Energy Information Administration, 2019. Levelized Cost and Levelized Avoided Cost of New Generation Resources-AEO2019 Tech. rep., U.S. Energy Information Administration.
- [96] Short, W., Packey, D., and Holt, T., 1995. A manual for the economic evaluation of energy efficiency and renewable energy technologies Tech. rep., National Renewable Energy Laboratory (NREL), Golden, CO, 3.
- [97] Finance Formulas, 2019. Loan Payment https://financeformulas.net/Loan_Payment_Formula.html (Accessed on 25 Jan. 2020).

- [98] The United States of America Congress, 2016. Consolidated Appropriations Act of 2016.
- [99] Turchi, C., Mehos, M., Ho, C. K., and Kolb, G. J., 2010. "Current and future costs for parabolic trough and power tower systems in the US market." *Renewable Energy*(October), p. 11.
- [100] Adibhatla, S., and Kaushik, S. C., 2017. "Energy, exergy, economic and environmental (4E) analyses of a conceptual solar aided coal fired 500 MWe thermal power plant with thermal energy storage option." *Sustainable Energy Technologies and Assessments*, 21, pp. 89–99.
- [101] Duffie, J. A., and Beckman, W. A., 1985. "Solar Engineering of Thermal Processes." *American Journal of Physics*, 53(4), pp. 382–382.
- [102] U.S. Energy Information Association, 2019. Utah State Energy Profile Tech. rep., U.S. Energy Information Association, Washington, D.C.
- [103] World Nuclear Association, 2016. Heat values of various fuels https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-ofvarious-fuels.aspx (Accessed on 29 Jan. 2020).
- [104] Lilliestam, J., Thonig, R., Gilmanova, A., Zang, C., and Trondle, T., 2020. CSP Database csp.guru (Accessed on 06 Jan. 2021).

A Solar Contribution

A.1 Introduction

To better understand the benefits of integrating concentrated solar power (CSP) with coal power generation, a process of estimating the solar contribution (\dot{W}_s) of a hybrid solar and coal power plant is developed. \dot{W}_s is the portion of power generated from the hybrid power plant that can be directly credited to the CSP augmentation.

To understand the amount of generated electricity that can be attributed to CSP, researchers have developed various methods to calculate \dot{W}_s . Based on a study conducted by Zhai et al. [88], approaches to analyzing \dot{W}_s have focused primarily on energy balance [28, 89–91], exergy balance [68], and thermoeconomics [92]. Hou et al. [57] states that methods that rely exclusively on energy flow result in an over estimate of \dot{W}_s because either the change of coal unit efficiency is ignored or the difference of quality between solar energy and coal is not considered. To account for energy grade differences, Hou used a method "Based on the first and second laws of thermodynamics and the characteristics of exergy flows crossing the boundaries of the subsystems" [57]. The method of calculating the solar contribution based primarily off of the method used by Hou with various changes for use in the optimization of CSP hybridization is discussed below. Results based on various locations of CSP integration and varying augment fractions are also included.

A.2 Method

The methods used to estimate \dot{W}_s are based primarily on the method developed by Hou et al. [57]. Hou developed this model for solar contribution by first dividing the power plant into subsystems and then calculating the portion of solar exergy destruction in each subsystem. The solar contribution was estimated by determining the difference between solar exergy addition and solar exergy destruction. This study adapts Hou's methods for a generalized, non-ideal cycle.

A.2.1 Equation for Calculation of Solar Contribution

 \dot{W}_s is calculated by determining the exergy from the solar field that is converted to usable work. Equation A.1 from Hou et al. [57] estimates \dot{W}_s from the sum of the solar proportion of work output (r_s) and exergy destroyed (x_d) for the i^{th} subsystem up to N subsystems, the maximum mass flow rate of steam (\dot{m}_{max}) , and the exergy transferred from the CSP augmentation (x_s) .

$$\dot{W}_{s} = \frac{1}{1000} \dot{m}_{m} (x_{s} - \sum_{i=1}^{N} r_{s,i} \cdot x_{d,i})$$
(A.1)

A.2.2 Solar Heat Exchange Exergy Flow

 x_s is calculated as shown in Equation A.2 from Hou et al. [57]. Equation A.2 uses the specific enthalpy (*h* kJ kg⁻¹) and specific entropy (*s* kJ kg⁻¹ K⁻¹) flowing into and out of the solar heat exchanger, T_0 , \dot{m}_m , and the mass flow rate through the solar heat exchanger (\dot{m}_{sx}).

$$x_{s} = \frac{\dot{m}_{sx}}{\dot{m}_{m}} [(h_{\rm in} - h_{\rm out}) - T_{0}(s_{\rm in} - s_{\rm out})]$$
(A.2)

A.2.3 Division of Subsystems

Following the method from Hout et al., the block is divided into subsystems. Hou et al. developed subsystems by dividing the power plant according to the exhaust ports in the turbines, such that each subsystem aligns with the pressure stages of the turbines. The model used in this study can be divided into four subsystems following the method in Hou et al. (Figure A.1). When combined, the subsystems should include all components with the exception of the boiler and HTF to water solar heat exchanger (SX). Each subsystem remains consistent across multiple solar integration configurations. The only modification is the inclusion of the solar integration in different subsystems as the integration location changes. For example, Subsystem 4 always contains the lower stages of the LPT, the Condenser, CP, and drain cooler throttling after the LP FWH. For the lowest pressure solar integration (Figure 2.8a), the SX occurs before LP FWH and splits that boundary between subsystems 3 and 4. Similarly for options B-D, the subsystem boundaries are drawn to exclude thesolar integration. The subsystem divisions for each configuration considered in this study are included in Appendix G.

Figure A.1: CSP-coal hybrid power plant diagram with subsystem divisions for bypass of FWHs 1 & 2 $\,$

Subsystem boundary lines are selected based on the level of turbine as shown in Figure A.1 with extraction and exhaust pressures. However, since steam is not extracted from the IP turbine, the boundary line is determined from the pressure at node 13. Figure A.2 illustrates the boundary lines for each subsystem when plotted on a T-s diagram.

Figure A.2: Temperature vs entropy plot of main loop of CSP-coal hybrid power plant subsystems.

A.2.4 Calculation of Solar Proportion of Work Output

Once subsystems are determined, the next step is to calculate the solar proportion of work output (r_s) . Equation A.3 defines r_s as the ratio of reversible solar work output $(\dot{w}_{s,rev})$ to the total reversible work output (\dot{w}_{rev}) where \dot{w}_{rev} is the sum of $\dot{w}_{s,rev}$ and the coal work output $\dot{w}_{f,rev}$.

$$r_s = \frac{\dot{w}_{s,rev}}{\dot{w}_{rev}} = \frac{\dot{w}_{s,rev}}{\dot{w}_{s,rev} + \dot{w}_{f,rev}}$$
(A.3)

Hou et al. [57] defines $\dot{w}_{s,rev}$ and $\dot{w}_{f,rev}$ as the integral of the temperature curve through the solar heat exchange and the boiler respectively. Using the equations for reversible work assumes that the heat transfer out of the subsystem is negligible compared to the irreversibilities contained within the subsystem. Equations A.4 and A.5 demonstrate the process to calculate $\dot{w}_{s,rev}$ and $\dot{w}_{f,rev}$ respectively. Figure A.3 illustrates this process for subsystem 3.

$$\dot{w}_{s,rev,i} = \frac{\dot{m}_s}{\dot{m}_m} \int_{S_{s,1}}^{S_{s,2}} [T_{i-1}(s) - T_i(s)] ds$$
(A.4)

$$\begin{cases} \dot{w}_{f,rev,i} = \int_{S_6}^{S_7} [T_{i-1}(s) - T_i(s)] ds & i = 1 \\ \dot{w}_{f,rev,i} = \int_{S_6}^{S_7} [T_{i-1}(s) - T_i(s)] ds + \frac{\dot{m}_{rh}}{\dot{m}_m} \int_{S_8}^{S_9} [T_{i-1}(s) - T_i(s)] ds & i = 2, 3, 4 \end{cases}$$
(A.5)

1

Figure A.3: Temperature vs entropy plot of main loop of CSP-coal hybrid power plant subsystems demonstrating the calculation of reversible work for subsystem *i*

Figure A.3 illustrates the process for calculating reversible work for subsystem 3 bounded by P_9 and P_{14} The boundary line between subsystems 1 and 2 varies due to the throttle between nodes 8 and 10. Since P_8 is different than P_{10} , P_i for subsystem 2 is equal to P_8 before the throttle and is throttled down to equal P_{10} after the throttle. This allows for the temperature curve to account for the throttling between nodes 8 and 10.

Since the solar integration site changes, the location of $S_{s,1}$ and $S_{s,2}$ is subject to change. For the scenario that the solar exchange occurs after node 6, S_6 would be adjusted to be equal to $S_{s,2}$.

Equations A.4 and A.5 are applied by using the trapezoid rule to estimate the area under the temperature curves for each constant pressure boundary line. The upper boundary curve for subsystem 1 cannot be represented by a constant pressure line because of the pressure drop across the boiler. To account for the pressure drop in subsystem 1, $\dot{w}_{f,rev}$ is determined by setting it equal

to the heat transferred into the water from the boiler. This process is justified by rearranging the entropy balance and energy balance equations to solve for heat transferred into the boiler [45]. The process for determining the heat transferred into the boiler q is demonstrated in Equation A.6 where T is the temperature curve through the boiler and upper boundary line for subsystem 1.

$$q = \int T(s)ds = h_7 - h_6 \tag{A.6}$$

Equation A.6 shows that q is equal to the integral under the temperature curve through the boiler which allows for $\dot{w}_{f,rev}$ to be determined for subsystem 1 by finding the difference between qand the area under the lower boundary line of subsystem 1. Equation A.7 solves for $\dot{w}_{f,rev}$ by substituting Equation A.6 for the integral over $T_{i-1}(s)$ in Equation A.4. For Equation A.7, $T_i(s)$ is the temperature curve for the the lower boundary line of subsystem 1.

$$\dot{w}_{f,rev} = h_7 - h_6 - \int_{s_6}^{s_7} T_i(s) ds \tag{A.7}$$

A.2.5 Calculation of Exergy Destruction

Exergy destruction is calculated by treating each subsystem as a control volume and performing an exergy balance. Equation A.8 expresses the exergy balance for steady flow systems where T_0 is the dead state temperature, T_k is the boundary temperature, \dot{Q}_k is the rate of heat crossing the boundary at T_k , \dot{W}_{out} is the rate that work crosses the boundary line, \dot{X}_{in} and \dot{X}_{out} are respectively exergy entering and leaving the subsystem through mass flow, and \dot{X}_d is the exergy destroyed [45]. \dot{Q}_k is assumed to be entering and \dot{W}_{out} is assumed to be leaving the subsystem.

$$\sum_{k}^{N} (1 - \frac{T_0}{T_k}) \dot{Q}_k - \dot{W}_{\text{out}} + \dot{X}_{\text{in}} - \dot{X}_{\text{out}} - \dot{X}_d = 0$$
(A.8)

The only subsystem that has a value for \dot{Q}_b is subsystem 4 as a result of the condenser, however it is assumed that $T_0 = T_b$ for the condenser to include all irreversibilities in the system. Work leaving each subsystem can be devided into work leaving through the turbine (\dot{W}_t) and entering through the pump (\dot{W}_p) . Equation A.8 is simplified to solve for \dot{X}_d .

$$\dot{X}_d = \dot{X}_{\rm in} - \dot{X}_{\rm out} + \dot{W}_p - \dot{W}_t \tag{A.9}$$

It is important to note that each of the subsystems have multiple mass flow rates (\dot{m}) crossing the boundary line. For example, in subsystem 2 \dot{m} through the IPT is different than \dot{m} through the BFP. To allow for the value of \dot{X}_d in each subsystem to be considered for the solar contribution of the entire power plant, \dot{X}_d is scaled by the mass flow rate of the main stream (\dot{m}_m) as demonstrated in Equation A.10.

$$x_d = \frac{\dot{X}_d}{\dot{m}_m} \tag{A.10}$$

A.3 Results

The validity of the solar contribution analysis presented here compared to results published in Hou et al. is demonstrated in Section 2.4.

The methods used to calculate solar contribution were tested for several k at each integration site, results for which are provided in Table 2. T-s diagrams for different solar contribution simulations are provided for k = 3% bypassing FWHs 3 and 7 (Figure A.4) and FWH 7 bypass of k = 1, 6% (Figure A.5).

Figure A.4: Temperature vs entropy plot for FWH 3 bypass with an augment fraction of k = 3% (a) and FWH 7 bypass with an augment fraction of k = 3% (b).

Figure A.5: Temperature vs entropy plot for FWH 7 bypass with an augment fraction of k = 1% (a) and FWH 7 bypass with an augment fraction of k = 6% (b).

A.4 Conclusion

CSP integration close to the boiler at a high k value maximises the solar contribution. This conclusion was determined by estimating the solar contribution based on the process described in Hou et al. [57] and adapted to a simplified model. The process developed in this study generalized the division of the power plant into subsystems, and calculated the solar proportion of exergy destroyed in each subsystem. This allowed for the solar contribution to be determined from the difference of the exergy transferred from the solar field and the exergy destroyed.

B State Properties

Simulating the performance of the simplified model requires multiple input values, relationships, and equations relating to equipment performance or operating behavior of the hardware being modeled. A derivative of the state postulate requires two independent, intensive properties to fix the state of a simple compressible system [45]. Thus, for each state in the representative model, two properties that are independent of each other and do not depend on mass (intensive) must be provided to determine the other properties of interest at that state.

For the model presented in this work, we are particularly interested in the following properties.

- Pressure (P [MPa])
- Temperature (T [K])
- Specific enthalpy (h [kJ kg⁻¹])
- Specific entropy (s [kJ kg⁻¹ K⁻¹])
- Steam quality (x) $\frac{m_{vapor}}{m_{total}}$

The information required to obtain these properties can be separated into four categories

- 1. Correlation provided by user (Table F.1)
- 2. Process design points
- 3. Conservation of energy
- 4. Efficiency

We have selected the HPT 1st stage pressure as the control parameter used to adjust the power generation of the plant. Because this pressure is the independent variable, all correlations (category 1) used to calculate the properties for the simulation of the Hunter plant are related to the HPT 1st stage pressure (Table F.1).

The description of state point values are provided sequentially below beginning with state 1. When the properties of a state are dependent on a process related to a later state, some conditions are introduced out of order.

The pressure at state 1 is equivalent to the condenser operating pressure, provided as a correlation in Table F.1 (category 1). The water in condensers is designed to exit as a saturated liquid, so the second property to fix state 1 is x = 0 (category 2).

The feedwater in the condensate stage of real power plants incrementally increases in pressure as it is heated until it enters the DA. In the simplified model, the condensate stage is assumed to take place at constant pressure ($P_2 = P_3 = P_4$), as opposed to the gradual compression experienced in the real plant. This pressure is approximated using a correlation in Table F.1 for the DA extraction pressure (category 1). The CP is assumed to have a constant isentropic efficiency. The isentropic efficiency of a pump is defined as the ratio of the isentropic work ($\Delta s = 0$) to the actual work. For pumps with an outlet enthalpy (h_e) and inlet enthalpy (h_i) , the work done by that pump can be derived from conservation of energy to get Equation B.1.

$$W_{pump} = \dot{m}(h_e - h_i) \tag{B.1}$$

The isentropic efficiency can then be written in terms of the actual work (W_a) and isentropic work (W_s) in Equaion B.2.

$$\eta_{pump} = \frac{W_s}{W_a} = \frac{h_{e,s} - h_i}{h_{e,a} - h_i} \tag{B.2}$$

After finding the isentropic enthalpy of state 2 ($h_{e,s} = h(P_2, s_1)$), the actual enthalpy can be calculated using the isentropic efficiency (Equation B.2), which fixes state 2 (category 4).

The enthalpy of state 3 is determined using the FWH efficiency. This method can be written in terms of states 2, 14, and 15 in Equation B.3 (category 2).

$$h_3 = \frac{\eta_{\rm FWH}}{\dot{m}_{14}(h_{14} - h_{15})} + h(2) \tag{B.3}$$

State 3 is then fixed knowing h_3 and that $P_3 = P_2$, as stated previously (category 2).

State 4 is a simplified model of the DA used in coal plants to remove air from the feedwater before it enters the boiler. The ideal version of a DA is a mixing chamber. In the case of state 4, condensate stream 3 and FWH drain exit (state 12) enter the chamber at equal pressure and exit at the same pressure ($P_3 = P_4 = P_{12}$, category 2). State 4 is fixed after finding the enthalpy of state 4 using the conservation of energy (category 3). For a steady, open system with no external heating or work interactions, *N* inlet streams, and *M* exit streams,

$$\sum_{j}^{M} (\dot{m}_{j}h_{j})_{exit} = \sum_{k}^{N} (\dot{m}_{k}h_{k})_{in}$$
(B.4)

and, therefore,

$$h_4 = \frac{1}{\dot{m}_4} \left(\dot{m}_3 h_3 + \dot{m}_{12} h_{12} \right) \tag{B.5}$$

However, h_{12} is still unknown for this process. In order to calculate states 4, 11, and 12, a temperature for state 5 is assumed and used with a correlation for pressure in Table F.1 (category 1) to fix the state. The temperature for state 11 is determined using the Drain Cooler (DC) temperature difference specification for FWHs. The DC approach assumes that the drain of the FWH exits at a specified temperature difference above the feedwater inlet temperature. In the case of the HP FWH, T₁₁ can be related to the assumed T₅ using Equation B.6 (category 2).

$$T_{11} = T_5 + DC (B.6)$$

It is assumed that the steam exits the FWH for state 11 at the same pressure as the extraction inlet $(P_{11} = P_{10}, \text{category 2})$. State 11 is then fixed and can be used to determine state 12.

It has been identified previously that state 12 is at the same pressure as states 3 and 4. A relationship for the throttling process is useful to fix state 12 (category 3). A general expression for a control volume at steady state with no external heating or work interactions is presented in Equation B.5. Equation B.7 shows the results for a single inlet and exit. Since $\dot{m}_{12} = \dot{m}_{11}$, the enthalpy at states 11 and 12 are equivalent.

$$\sum_{j}^{M} (\dot{m}_{j}h_{j})_{exit} = \sum_{k}^{N} (\dot{m}_{k}h_{k})_{in}$$
(B.7)

State 4 is then fixed as previously described and can be used to evaluate the assumed T_5 . The new state 5 is fixed using the boiler feed pump (BFP) efficiency (category 4), as described for state 2 (Equation B.2) and a pressure calculated from a correlation in Table F.1 (category 1). The temperature from the new state 5 is compared to the assumed state. A tolerance of 0.1% is applied for sensitivity when comparing the assumed and calculated state 5 temperatures. The properties of the calculated state 5 are then used to iterate through the calculations for states 4, 11, and 12 until the tolerance requirement is met.

State 6 is calculated assuming a FWH efficiency (η_{FWH}) based on the conservation of energy (category 3). For a FWH, the amount of energy transferred between the streams can be determined by analyzing the heat transfer material, or the space between the extraction and feedwater streams. Since the extracted steam and feedwater heat rates are related by η_{FWH} ,

$$\eta_{\text{FWH}} \dot{m}_{10-11} (h_{10} - h_{11}) = \dot{m}_{5-6} (h_6 - h_5)$$
 (B.8)

and, therefore,

$$h_6 = h_5 + \eta_{\rm FWH} \frac{\dot{m}_{10-11}}{\dot{m}_{5-6}} (h_{10} - h_{11}) \tag{B.9}$$

State 6 can then be fixed using Equation B.9 and the pressure, assuming $\eta_{\text{FWH}} \approx 99\%$.³ Similar to the LP FWH, the feedwater exit is assumed to be at the same pressure as the inlet ($P_6 = P_5$, category 2).

State 7 is at the exit of the boiler. For lack of a model for pressure losses in the boiler, a correlation is provided for the boiler outlet pressure in Table F.1 (category 1). It is assumed that a

 $^{{}^{3}\}eta_{\text{FWH}} = 99\%$ confirmed with operating data from Hunter Unit 3

boiler operates at constant temperature (category 1).⁴

The exhaust or extraction properties from a turbine are dependent on turbine pressure limits and its isentropic efficiency. For the example of the HPT exhaust (state 8), the inlet pressure has already been calculated (P_7). The pressure ratio from the inlet of the HPT to the exhaust varies with P_{s1} , but it is assumed that the pressure ratio from P_{s1} to the HPT exhaust is constant.⁵ Since the 1st stage pressure is set for a plant operating condition, the HPT exhaust pressure can be calculated using a constant pressure ratio (category 1).

The isentropic efficiency of an adiabatic turbine is similar to Equation B.2 for compressor efficiency.

$$\eta_{turb} = \frac{W_a}{W_s} = \frac{h_{e,a} - h_i}{h_{e,s} - h_i} \tag{B.10}$$

For a specified turbine efficiency (category 1), the exit state can be fixed by rearranging Equation B.10 to solve for $h_{e,a}$ (category 4).

The boiler reheating is assumed to be a constant pressure process ($P_9 = P_8$, category 2). As discussed previously, the boiler operates at a consistent temperature, thus it is assumed that $T_9 = T_7$ (category 2). As long as the water is not a saturated liquid-vapor mixture, pressure and temperature are independent and state 9 is fixed.

Multiple options for modeling state 10 have been considered (Appendix C); the selected option is to throttle a fraction of the steam extracted from the HPT exhaust to the mass-averaged pressure. The process to calculate the mass-averaged pressure is based on a generalized schematic in Figure B.1.

In the case represented in Figure B.1, there are 3 HP FWHs with a single extraction from the HPT exhaust (A) and 2 extractions from the IPT (B, C). First, the FWH mass fraction (*mf*) is calculated using a ratio of the respective extraction mass flow rate to the total mass extracted, as in Equation B.11 for the FWH mass fraction of stream A.

$$mf_A = \frac{\dot{m}_A}{\dot{m}_A + \dot{m}_B + \dot{m}_C} \tag{B.11}$$

The mass-averaged pressure is assumed to be the combination of each of the individual extraction pressures (Equation B.12) while the extraction mass flow rate in the simplified model is assumed to be equal to the sum of the extraction flow rates.

⁴Data from Hunter Unit 3 confirms constant operating temperature as reported in Table F.1.

⁵The constant P_{s1} -HPT exhaust pressure ratio is confirmed with data from Hunter Unit 3.

Figure B.1: Generalized schematic to illustrate the process of calculating the mass-averaged pressure used in the simplified model.

$$P_{mavg} = mf_A P_A + mf_B P_B + mf_C P_C \tag{B.12}$$

This mass-average process is implemented using the correlations for turbine pressure ratios and mass fractions listed in Table F.1 (category 1) to determine the throttling pressure and extraction mass flow rate for state 10 (category 2). State 10 is fixed using the isenthalpic valve assumption as in Equation B.7 (category 3).

The extraction mass flow rate used in the mass-average process is calculated using extraction fractions (m_{ef}). For HP extractions, m_{ef} is the fraction of the mass differential between the main steam flow (\dot{m}_7) and the DA inlet (\dot{m}_3). The LP m_{ef} are the fractions of the mass flow into the LPT (\dot{m}_{13}). Values for m_{ef} are determined by plant operating data.

The pressure at the exit of the IPT (state 13) is specified by a correlation for the IPT pressure ratio in Table F.1 (category 1). The enthalpy for state 13 is determined using the turbine isentropic efficiency (Equation B.10, category 4).

States 14 and 17 are also fixed using exit pressures and the LPT isentropic efficiency (Equation B.10, category 1). The extraction pressure (P_{14}) is assumed to be at the mass-averaged pressure from the real power plant LP FWHs as described in Equation B.12 (category 2). The LPT is assumed to exhaust to the condenser, i.e. $P_{17} = P_1$ (category 2).

States 15 and 16 are determined in the same way as states 11 and 12, using the DC approach (Equation B.6, category 2) at constant pressure ($P_{15} = P_{14}$, category 2) and isenthalpic valve as-

sumption (Equation B.7, category 3) exiting at the condenser pressure ($P_{16} = P_1$, category 2).

In summary, below is a list of inputs the model requires in order to simulate the power plant performance:

- Condenser pressure
- All FWH extraction pressures
- Boiler inlet pressure
- Boiler outlet pressure
- Boiler operating temperature
- Boiler inlet mass flow rate
- DA inlet water mass flow rate
- Extraction fractions for each FWH
- HPT 1st stage-exhaust pressure ratio
- HPT, IPT, LPT isentropic efficiencies
- IPT, LPT extraction pressure ratios

C HP FWH Extraction

C.1 Overview

Combining multiple FWHs from a plant schematic into a single FWH in the representative model simplifies calculations but creates a problem in calculating properties of the extraction steam. The extraction pressure is calculated using a mass averaged approach as has been discussed. One other property must be known in order to determine the other properties of the extraction state. Each state in the representative model is determined by correlations to actual plant data and by operating relationships for the hardware to which the state relates. In the case of the HP FWH extraction steam, knowing the pressure from the mass averaged approach is insufficient; the extraction location within the cycle must also be known.

C.2 Methods

Each coal plant has a unique FWH configuration, varying the number of heaters, extraction locations, and extraction pressures. However, HP FWHs are always operated using steam extracted from either the HPT or IPT. Thus, extraction from the HPT or IPT is considered for the representative model. Specifically, the following options were considered for FWH extraction and are illustrated in Figure C.1:

- 1. HPT exhaust at HPT exhaust pressure (Figure C.1a)
- 2. HPT exhaust throttled to mass averaged pressure (Figure C.1b)
- 3. IPT extraction at mass averaged pressure (Figure C.1c)

Using steam at the HPT exhaust pressure is infeasible because there would be no difference in plant performance when the FWH number from the real plant is changed. Thus, results from options 2 and 3 will be reported and discussed in terms of accuracy and computational performance.

C.3 Results

The remaining design options (Figures C.1b and C.1c) were simulated using the solar integration model for the Hunter Plant (Appendix H.2) assuming an augment fraction k = 0 and no FWH bypass. State 10 for option 2 is modeled using an isenthalpic valve to throttle the extracted HPT exhaust steam to the mass averaged pressure calculated from the plant data. For option 3, the enthalpy at state 10 is calculated using the isentropic efficiency of the IPT and the same mass averaged pressure. Results for these tests are provided in Table C.1.

Figure C.1: Schematics for the three options considered for HP FWH extraction modeling: (a) HPT exhaust pressure, (b) throttled steam extracted from HPT exhaust, and (c) extraction from IPT.

Data Source	Ŵ _{net} [MW]	<i>Q</i> _B [MW]	η _{th} [%]	η ₁₁ [%]
Hunter Plant	511	1273	40.2	45.8
Option 2	505	1276	39.6	45.1
Option 3	504	1226	41.1	46.8

Table C.1: Comparison of HP FWH extraction steam design options 2 and 3 to calculated performance parameters for the Hunter plant.

Figure C.2: CSP-coal hybrid power plant as published in Li et al. [93]. Two steam lines are extracted from the HPT for feedwater heating.

Both options converged to similar accuracy for power estimates. However, option 2 stands out with superior accuracy, particularly regarding \dot{Q}_B and η_{th} .

C.4 Discussion

Plants such as the Hunter plant and the model in Adibhatla and Kaushik do not extract steam from the HPT at an intermediate pressure [28]. But there exists plants such as from Li et al. in which two extraction lines for feedwater heating come from the HPT [93].

For the schematic from Li et al. (Figure C.2), the pressure used for State 10 in the representative model (Figure 8 is calculated using the mass averaged approach for the two HPT extractions and the IPT extraction for H3 in Li et al. For the case where H3 is bypassed, the calculated mass averaged

pressure would only consider the HPT extractions and would necessarily be greater than the inlet pressure to the IPT. This eliminates Option 3 for use in systems with multiple HPT extractions. Due to this complication and the frequency of configurations similar to Li et al., option 2 is selected to ensure this process can still be widely accessible.

C.5 Conclusion

Option 2 has been shown to be more accurate and option 3 has been shown to be infeasible for common configurations of coal power plants. Projects with a single HPT extraction line that require greater modeling accuracy may choose to analyze their system using the approach laid out in option 3. To preserve the scope of this study, option 2 was used for the analysis in this study.

D Financial Parameters

D.1 Introduction

LCOE is used to compare the life-cycle costs and life-cycle energy production of the overall project [94]. LCOE calculation is accomplished by using either a discount rate and cash flow analysis, or the fixed charge rate. As will be shown below, the discount rate LCOE is a more applicable calculation method for this study. A discussion on the estimation of the capital cost and payback time is also included. To verify the methods used, this report also discusses estimations for LCOE, capital cost, and payback time for a CSP-coal hybrid plant based on the PacifiCorp Hunter Unit 3 power plant in Castle Dale, Utah.

D.2 Method

LCOE can be calculated using either a discount rate or a fixed charge rate, as discussed in Section D.2.1. Section D.2.2 describes capital cost as a combination of direct and indirect costs, and represents the investment cost of the CSP augmentation. Payback time (PBT) calculation represents the time required for the augmentation financial benefits to recover investment costs. Equations used for calculation are provided. The model for the calculations of LCOE, capital cost, and PBT is primarily based on the National Renewable Energy Laboratory (NREL) System Advisor Model (SAM) [58].

D.2.1 Methods of LCOE Calculation

LCOE represents the average revenue required to recover the costs of installing and operating a power plant for a specified project life per unit of electrical energy [95]. In general, LCOE is equal to the net cost (C_{net}) of the project scaled by the energy output (E), as shown in Equation D.1.

$$LCOE = \frac{C_{net}}{E}$$
(D.1)

Equation D.1 is a general calculation for LCOE but does not account for the change in value of C_{net} over time. This study focuses on two methods used to determine the LCOE; the first of which uses a discount rate and the second uses a fixed charge rate (FCR) to determine the present value of C_{net} . For clarification throughout the report, the first method will be referred to as the discount rate LCOE and the second method will be referred to as the FCR LCOE.

Discount rate LCOE requires a cash flow analysis to determine the after tax costs of the solar augmentation. The discount rate determines the present value of the annualized costs over the

project life. FCR LCOE uses the FCR to determine the amount of revenue per dollar of investment cost that will need to be collected to cover the costs of the investment [96].

 C_{net} for this study does not account for costs associated with the existing coal plant, rather it only accounts for the costs the associated with the CSP augmentation. The LCOE of the hybrid plant can be estimated by the sum of cost of the CSP augmentation and the cost of the existing coal plant.

Since this study uses a long term analysis, the LCOE is expressed in real dollars rather than nominal. Real refers to a constant dollar, or an inflation adjusted dollar. This is in contrast to nominal which represents a current dollar value, or a value not adjusted by inflation [58]. Equation D.2 demonstrates the process to convert real rates (r_r) to nominal rates (r_{nom}) by using the inflation rate (r_i) .

$$r_{\rm nom} = (r_i + 1) \cdot (r_r + 1)$$
 (D.2)

Discount Rate LCOE

To generate an accurate LCOE, the net cost is discounted to determine the present value of the project costs. Equation D.3 uses the nominal discount rate $(r_{d,nom})$ to determine the present value, subject to inflation, of C_{net} from the after tax costs of the project (C_{tot}) where N is the analysis period and n represents the current year. Note that n = 0 represents the initial project investment.

$$C_{net} = \sum_{n=0}^{N} \frac{C_n}{(1 + r_{d,\text{nom}})^n}$$
(D.3)

Discount LCOE is similar to Equation D.1, however Equation D.4 shows that along with the levelized C_{net} the real discount rate $(r_{d,r})$ is applied. Although it appears that E is discounted, the LCOE is actually the value being discounted. This allows for the money value of the energy load to be considered at a present day value.

$$LCOE = \frac{C_{net}}{\sum\limits_{n=1}^{N} \frac{E_n}{(1+r_r)^n}}$$
(D.4)

An annualized cash flow analysis is used to determine the variance in C_n over the project life. The procedure to determine C_n can be separated into four categories: operating expenses, loan payments, tax credits, and income tax. All formulas for the cash flow analysis, with the exception of loan payment, were taken from the SAM financial model [58].

Operating and Maintenance Expenses

Annual operation and maintenance (O&M) expenses (C_{tot}) include fixed (C_{FOM}) and variable (C_{VOM}) O&M costs, insurance (C_{ins}), and property tax ($C_{t,prp}$). The total expenses for each year are the sum of the previously mentioned cost values as shown in Equation D.5.

$$C_{\text{tot}} = C_{\text{FOM}} + C_{\text{VOM}} + C_{ins} + C_{t,prp} \tag{D.5}$$

Loan Payments

Annual loan payments are a constant yearly payment that are equal to the sum of the debt interest and the principle payment. Equation D.6 calculates the principle and interest payment ($C_{P\&I}$) from the loan rate (r_{int}), initial loan balance ($L_{net,0}$), and loan period (N_L) [97].

$$C_{\text{P&I}} = \frac{r_{\text{int}} \cdot L_{\text{net},0}}{1 - (1 + r_{\text{int}})^{N_L}}$$
(D.6)

Tax Credits

Tax credits are an important variable when considering renewable energy sources. This study focuses primarily on the federal Investment Tax Credit (ITC) and Project Tax Credit (PTC). Other incentives used in the SAM financial model but are not included in this study are: Investment based incentives, capacity based incentives, and production based incentives [58]. These incentives were omitted because there is not recent history of them being applicable for CSP in the United States.

ITC is a percentage of the investment for solar energy equipment, and is included in the tax refund for the year the investment was made. Equation D.7 shows the calculation of the ITC based off of the capital cost and the ITC rate (r_{ITC}).

$$ITC = CC \cdot r_{ITC} \tag{D.7}$$

The PTC is less relevant for this study since the Consolidated Appropriations Act of 2016 terminated the federal PTC for solar power generation [98]. However, Equation D.8 demonstrates how to calculate the federal PTC, in the case that it is reinstated or if a similar program is applicable in other countries, by using the PTC rate (r_{PTC}), the electrical capacity of the solar augmentation (\dot{W}_s) and the amount of sunlight hours in a year (365 h_{sun}), where h_{sun} is the multi-year average daily sunlight hours [hrs day⁻¹]. The PTC is only applied throughout a government specified term.

$$PTC_n = \dot{W}_s \cdot 365 \ h_{sun} \cdot r_{PTC} \tag{D.8}$$

ITC is included in the income tax savings during the first year of the project. PTC is included in the income tax savings during the duration of time specified by the applicable tax law.

Income Tax

Once the operating expenses, loan payment, and tax credits have been determined, it is then possible to calculate the federal and state income taxes. The calculation for both the federal and the state income taxes are almost identical, however, the state income tax is calculated before the federal income tax so that the state tax will be considered when calculating federal deductions.

Income taxes, including income tax savings (S_t), are based on state and federal income tax rates, depreciation schedule, taxable income, operating expenses, interest payments, and applicable tax credits. Calculations for S_t are more thoroughly expressed in the MATLAB code included in Appendix H and were pulled from SAM [58]; however, equation D.9 shows that in general, it consists of the sum of ITC, PTC, and federal ($S_{t,Fed}$) and state ($S_{t,st}$) income tax savings.

$$S_t = S_{t,Fed} + S_{t,st} + \text{ITC} + \text{PTC}$$
(D.9)

After Tax Costs

After calculating the operating expenses, loan payment, tax credits, and income taxes, C_{tot} can then be determined for each year as shown in Equation D.10.

$$C_{\text{tot}} = C_{\text{tot}} + C_{\text{P\&I}} - S_t \tag{D.10}$$

Input values used to calculate the costs of the project vary depending on the location and the scale of the project. Default values used in these equations are provided in Table 7.

Fixed Charge Rate LCOE

When financing is neglected and energy output and O&M costs are assumed to be constant, the LCOE can be estimated by using the FCR. The FCR is used to estimate the average annual cost of capital. The benefit to using the FCR method is that it allows for the LCOE to be estimated from first year inputs without the need for a complete cash flow analysis. This eliminates the possibility of estimating PBT which is further discussed in Section D.2.2. Equation D.11 estimates the LCOE by multiplying the FCR by the capital cost (CC). The product of the FCR and CC is added to the average annual cost which is all scaled by the first year energy output (E_0).

$$LCOE = \frac{FCR \cdot CC + C_{FOM,0}}{E_0} + r_{VOM}$$
(D.11)

There are two assumptions involved in Equation D.11 that cause it to differ from the discount LCOE. Since E_0 is used instead of a discounted E, the future energy output is not scaled back to

match its present money value. The second flaw with Equation D.11 is that C_{FOM} is not inflated throughout the project life which again does not allow an accurate assessment of the project present value for long term projects.

FCR is a combination of the capital recover factor (CRF), project factor (PFF), and construction factor (CFF) as shown in Equation D.12. CRF is the fraction of the capital cost that will account for annual loan payment [96]. PFF accounts for the project financing costs such as taxes and depreciation. CFF accounts for the construction costs of the project.

$$FCR = CRF \cdot PFF \cdot CFF \tag{D.12}$$

The methods used to determine CRF, PFF, and CFF are mapped out in Equations D.13 through D.19. The effective tax rate ($r_{t,e}$ and weighted average cost of capital (WACC) are both needed for determining CRF, PFF, and CFF, and are calculated in Equations D.13 through D.16. The $r_{t,e}$ accounts for both state ($r_{t,st}$) and federal ($r_{t,Fed}$) income tax rates as shown in Equation D.13.

$$r_{t,e} = r_{t,st} + r_{t,\text{Fed}} \cdot (1 - r_{t,st}) \tag{D.13}$$

WACC is a weighted average of the component costs of debt, preferred stock, and common equity [96]. Equations D.14, D.15, and D.16 use the debt fraction (F_L), effective tax rate, internal rate of return (IRR), nominal interest rate (r_{int}), and inflation rate (r_i) to determine the WACC. r_{int} and IRR are converted from nominal to real, ($r_{int,r}$) and (IRR $_r$), respectively in Equations D.16 and D.15.

WACC =
$$\frac{1 + ((1 - F_L) \cdot ((1 + IRR_r) \cdot (1 + r_i) - 1)))}{1 + r_i} + \frac{F_L \cdot ((1 + r_{int,r}) \cdot (1 + r_i) - 1) \cdot (1 - r_{t,e})}{1 + r_i} - 1$$
(D.14)

Where,

$$\operatorname{IRR}_{r} = \frac{1 + \operatorname{IRR}}{1 + r_{i}} - r_{i} \tag{D.15}$$

$$r_{\text{int},r} = \frac{1 + r_{\text{int}}}{1 + r_i} - r_i$$
 (D.16)

Once the WACC and effective tax rate are determined, Equations D.17 and D.18 are used to determine the CRF and PFF. While Equation D.17 only uses the WACC and N, Equation D.18 also includes the depreciation schedule (SC_{dep}) and $r_{t,e}$.

$$CRF = \frac{WACC(1 + WACC)^{N}}{(1 + WACC)^{N} - 1}$$
(D.17)

$$PFF = \frac{1 - \left(r_{t,e} \cdot \left(\sum_{n=0}^{N} \frac{SC_{dep,n}}{(1 + WACC) \cdot (1 + r_i)^{n+1})}\right)}{1 - r_{t,e}}$$
(D.18)

Equation D.19 is used to determine the CFF from the construction cost schedule (SC_{con}), $r_{t,e}$, nominal construction financing interest rate (r_{con}), and construction period in years (N_{con}).

$$CFF = \sum_{n=0}^{N_{con}} SC_{con,n} \cdot (1 + (1 - r_{t,e}) \cdot ((1 + r_{con})^{n + \frac{1}{2}} - 1))$$
(D.19)

CRF, PFF, and CFF were estimated from the inputs provided in Table D.1 with the exception of FOC and VOC. The values in Table D.1 were taken from the default values used in SAM.

Default Input	Value	Source
IRR [%/year]	13	[99]
SC _{con} * [%/year]	80 10 10	[58]
<i>r_{con}</i> [%/year]	8	[58]

Table D.1: Default values for FCR LCOE excluded in Table 7

*The construction cost schedule is a vector of percentages of the capital cost that are used during each year of the construction of the solar augmentation. This study assumes a three year construction period.

D.2.2 Model and Input Adjustments for Hybridization

SAM was developed to analyze standalone CSP projects. This section will discuss some of the changes required to allow for the methods used in SAM to be applied to a coal power plant augmented with solar-thermal energy. The areas that require adjustments include capital cost, O&M costs, and energy output.

Calculation of the Capital Cost

Total capital costs are a combination of direct and indirect costs. The process of calculating direct, indirect, and capital costs are included in Tables D.2 and 7. Both tables show methods and values provided by SAM [58] and Adibhatla and Kaushik [100]. Some of the direct costs needed to install a parabolic trough system are based on the total aperture area of the troughs (Section 2.2).

O&M Costs

For a standalone CSP plant, fist year O&M costs $C_{\text{FOM},0}$ and $C_{\text{VOM},0}$ would be calculated using the

Cost item	Variable	Calculation method [USD]
	Direct	t Costs (C _{DC})
Site improvements	$C_{\rm SI}^*$	$C_{\rm SI} = F_{\rm SI}A_p$
Solar field	${C_{\mathrm{SF}}}^\dagger$	$C_{\rm SF} = F_{\rm SF} \cdot A_p$
HTF system	$C_{\mathrm{HTF}}^{\ddagger}$	$C_{\mathrm{HTF}} = F_{\mathrm{HTF}} \cdot A_p$
Heat exchanger	C_{HX} §	$C_{\rm HX} = F_{\rm HX} \cdot 1000000$
Contingency	C _{cont}	$C_{cont} = r_{cont} (C_{\rm SI} + C_{\rm SF} + C_{\rm HTF} + C_{\rm HX})$
Total direct costs	$C_{\rm DC}$	$C_{\rm DC} = C_{\rm SI} + C_{\rm SF} + C_{\rm HTF} + C_{\rm HX} + C_{cont}$
	Indire	ct Costs (C _{IC})
EPC and owner costs	$C_{\rm EPC}$	$C_{\rm EPC} = r_{\rm EPC} \cdot C_{\rm DC}$
Sales tax	$C_{t,sal}$	$C_{t,sal} = r_{t,sal} \cdot F_{t,sal} \cdot C_{\rm DC}$
Total indirect costs	$C_{\rm IC}$	$C_{\rm IC} = C_{\rm EPC} + C_{t,sal}$
Total Capital Cost	CC	$CC = C_{DC} + C_{IC}$

Table D.2: Methods used to calculate the capital cost.

* C_{SI} : Costs for site preparation and other expenses not included in the solar field. † C_{SF} : Costs related to the installation and purchase of parts related to the solar field.

 $\ddagger C_{\text{HTF}}$: Costs accounting for installation of pumps and piping of HTF system, including labor and equipment.

 C_{HX} : Costs accounting for the installation and purchase of a heat exchanger.

capacity of the power block and the energy load as shown in Equations D.20 and D.21.

$$C_{\text{FOM},0} = F_{\text{FOM}} \cdot \dot{W}_{\text{net}} \tag{D.20}$$

$$C_{\text{FOM},0} = F_{\text{VOM}} \cdot E \tag{D.21}$$

For a hybrid power plant, the capacity and energy output used to calculate $C_{\text{FOM},0}$ and $C_{\text{VOM},0}$ for the solar augmentation are based on \dot{W}_s . To determine the $C_{\text{FOM},0}$ and $C_{\text{VOM},0}$ for the CSP portion of the power plant, E and \dot{W}_{net} need to be adjusted to represent the portion of the energy load and capacity that can be attributed to the solar augmentation (Equations D.22 and D.23).

$$C_{\text{FOM},0} = F_{\text{FOM}} \cdot \dot{W}_s \tag{D.22}$$

$$C_{\text{VOM},0} = F_{\text{VOM}} \dot{W}_s h_{\text{sun}} 365 \tag{D.23}$$

Calculation of Simple Payback Time

While LCOE provides important information on the cost of solar and coal hybridization, it does not provide information on the amount of time it would take to recover the costs. PBT gives further insight by reporting the time needed to recover associated costs. The definition of PBT can vary depending on the parameters that are considered and this report focuses on two definitions.

The first definition of PBT (PBT1) is the number of years required for the cumulative fuel savings (S_{an}) to equal the cumulative annual costs (C_{an}) (Equation D.24). S_{an} and C_{an} are calculated by determining the cumulative annual cash flow (A_{an}) including the capital costs.

$$A_{an} = S_{an} - C_{an} \tag{D.24}$$

Equation D.24 is repeated for each year of the project until A_{an} is equal to 0. The year A_{an} is equal to 0 is the projected PBT. It is important to note that A_{an} includes the capital costs and neglects the loan payment because this method focuses only on the time required to recover the initial investment [101].

The second definition of PBT (PBT2) is the time needed for the cumulative fuel savings to equal the initial investment [101]. Equation D.25 shows that fuel savings (FS) are determined by converting the fuel offset power (\dot{Q}_{fo}), applicable only for the time the plant is operating in hybrid mode (h_{sun}), to the cost of its equivalent coal mass by using the cost (F_F), at 36.3 USD/sh. tn. [102], and heating value (LHV_F) of coal, at 23.9 MJ/kg [103].

$$FS = \frac{365 h_{sun} \cdot \dot{Q}_{fo} \cdot F_F}{LHV_F}$$
(D.25)

This study only calculates fuel savings as revenue generated from the project, however some countries implement a carbon tax which, if applicable, would contribute to recovering the costs of the project. To implement a carbon tax, the tax would be added to the fuel savings. Equation D.26 demonstrates a simple example of how to calculate carbon tax savings (S_{t,CO_2}) by using a tax rate (r_{t,CO_2}), E_{sav} , the CO₂ to coal mass conversion ratio (F_{cc}), and LHV_F.

$$S_{t,CO_2} = \frac{r_{t,CO_2} \cdot F_{cc} \cdot E_{sav}}{\text{HV}_F}$$
(D.26)

Duffie and Beckman [101] provided a method to calculate PBT2 (Equation D.27) which uses

Figure D.1: Comparison of capital cost data and calculated capital costs from financial model.

the inflation rate and the capital cost.

$$PBT2 = \frac{\ln\left[\frac{CC \cdot r_i}{FS}\right] + 1}{\ln\left(1 + r_i\right)}$$
(D.27)

D.3 Results

Actual data for capital costs of CSP power plants is provided by CSP Guru in connection with SolarPACES [104]. Figure D.1 shows the comparison between the capital costs of actual power plants and the capital costs estimated using the financial model of this study. The difference between the values calculated using the financial model and the CSP Guru trend are likely attributed to the inclusion of all CSP technologies (PTC, LFR, Dish, and Tower) as well as the price of equipment not considered in the financial model such as turbines, pump for the power block, and a condenser.

Table D.3 was produced using the methods described for calculating LCOE, capital cost, PBT1, and PBT2, along with the determined input values (Table 7). The model is designed to iterate based on changes in the net capacity of the power block (\dot{W}_{net}), and the required receiver area (A_r).

Also included in Table D.3 is the number of the feedwater heater (FWH) that is bypassed and k. The range for k is 1%, 5%, and the equivalent fraction of that FWH at full operating conditions (typically 2-3%).

FWH #	k	A _r	$A_{\rm sf}$	CC	Discount Rate LCOE	FCR LCOE	PBT1	PBT2
	[%]	$[10^3 m^2]$	[ac]	[MMUSD]	[10 ⁻⁴ USD kWh ⁻¹]	[10 ⁻⁴ USD kWh ⁻¹]	[years]	[years]
	3	6.4	92.1	39.9	4.48	7.6	200	N/A
5	6	13.3	194.2	80.7	9.11	15	146.4	41.2
	10	23.1	337.9	138	16	26	68.35	30
	3	6.4	92.1	39.9	4.48	7.62	200	N/A
6	6	13.3	194.2	80.7	9.12	15	91.5	36.2
	10	23.1	337.9	138	16	26	59.9	28.2
	3	6.4	92.1	39.9	4.5	7.62	200	N/A
7	6	13.3	194.2	80.7	9.21	15	90.2	35.2
	10	23.1	337.9	138	16	26	61.9	29.5

Table D.3: Calculated values for Capital Cost (CC), LCOE, and payback time (PBT).

D.4 Conclusion

Table D.3 demonstrates that the FWH primarily affects the performance of the CSP augmentation, and k is what primarily affects the LCOE.

The difference in the discount rate and FCR methods for calculating the LCOE are also important to note. The Discount Rate LCOE varies less than the FCR LCOE and is consistently separated by about 90%. It is also important to note that the LCOE doesn't significantly change for each test. This is most likely a result of scaling by the total energy output of the coal plant which is very large in comparison to the thermal energy of the CSP.

When comparing the LCOE from the discount rate method and the FCR method, the discount rate is considered to be more applicable for this study. In addition to providing a cash flow analysis useful in calculating PBT, discount rate LCOE allows for the present value of future costs to be considered more accurately. FCR however is less applicable because constant annual costs is a poor assumption, and future cash flow is not levelized.

E NSRDB Data

Hour	Minute	DNI	CSDNI	θ_z	Temperature	Pressure
11001	1,111400	[W m ⁻²]	[W m ⁻²]	[degrees]	[°C]	[mbar]
0	0	0	0	117.13	15.2	830
0	30	0	0	117.43	14.8	830
1	0	0	0	116.96	14.5	830
1	30	0	0	115.71	14.1	830
2	0	0	0	113.74	13.8	830
2	30	0	0	111.12	13.5	830
3	0	0	0	107.91	13.1	830
3	30	0	0	104.19	12.8	830
4	0	0	0	100.04	12.5	830
4	30	0	0	95.52	12.9	830
5	0	56	56	90.21	13.2	830
5	30	376	376	85.47	15.4	830
6	0	592	592	80.26	17.6	831
6	30	720	720	74.83	19.7	831
7	0	803	803	69.26	21.8	831
7	30	860	860	63.57	23.4	831
8	0	899	899	57.82	25	831
8	30	928	928	52.02	26.1	831
9	0	951	951	46.21	27.3	831
9	30	970	970	40.45	28.3	831
10	0	985	985	34.78	29.3	831
10	30	999	999	29.32	30.2	831

Table E.1: 6/25/2018 Meteorological data for Castle Dale, UT. Downloaded from NSRDB [46]

11	0	1012	1012	24.24	31	831
11	30	1017	1017	19.87	31.7	830
12	0	1020	1020	16.8	32.3	830
12	30	1021	1021	15.82	32.7	830
13	0	1017	1017	17.31	33.1	830
13	30	1012	1012	20.73	33.3	830
14	0	1006	1006	25.3	33.4	830
14	30	998	998	30.48	33.3	830
15	0	986	986	36	33.2	829
15	30	970	970	41.69	32.8	829
16	0	949	949	47.47	32.5	829
16	30	923	923	53.28	32.5	829
17	0	887	887	59.08	31.3	829
17	30	838	838	64.82	30.3	829
18	0	772	772	70.48	29.3	829
18	30	676	676	76.03	26.8	830
19	0	526	526	81.42	24.4	830
19	30	285	285	86.58	23.6	830
20	0	18	18	91.78	22.9	830
20	30	0	0	96.54	22.7	830
21	0	0	0	100.99	22.6	830
21	30	0	0	105.05	22.6	830
22	0	0	0	108.67	22.6	830
22	30	0	0	111.76	22.3	830
23	0	0	0	114.25	22	830
23	30	0	0	116.07	21.3	830

F Correlations

Boiler Inlet Pressure

$$P_6 = 2.9985 P_{s1}^{0.548} + 7.6221 \tag{F.1}$$

Figure F.1: Boiler inlet pressure data and correlation to HPT 1st stage pressure.

Main Steam Pressure

$$P_7 = 10.7684 P_{s1}^{0.1739} \tag{F.2}$$

Figure F.2: Main steam pressure data and correlation to HPT 1st stage pressure.

FWH 6 Pressure ratio

$$r_{FWH6} = \frac{P_{HPT,ex}}{P_{FWH6}} = 1.8155$$
(F.3)

Figure F.3: FWH 6 data and constant average value

FWH 5 Pressure ratio

$$r_{FWH5} = \frac{P_{HPT,ex}}{P_{FWH5}} = -0.7076P_{s1}^{-0.8261} + 2.638$$
(F.4)

Figure F.4: FWH 5 pressure ratio data and correlation to HPT 1st stage pressure.

IPT Pressure Ratio

$$r_{IPT} = \frac{P_{HPT,ex}}{P_{IPT,ex}} = 2.586$$
 (F.5)

Figure F.5: IPT pressure ratio data and correlation to HPT 1st stage pressure.

DA Pressure Ratio

$$r_{DA} = \frac{P_{IPT,ex}}{P_{DA}} = 49.7939 P_{s1}^{-3.4562} + 2.2131$$
(F.6)

Figure F.6: DA pressure ratio data and correlation to HPT 1st stage pressure.

FWH 3 Pressure Ratio

$$r_{FWH3} = \frac{P_{IPT,ex}}{P_{FWH3}} = 5.7824 \tag{F.7}$$

Figure F.7: FWH 3 pressure ratio data and correlation to HPT 1st stage pressure.

FWH 2 Pressure Ratio

$$r_{FWH2} = \frac{P_{IPT,ex}}{P_{FWH2}} = 13.0703 \tag{F.8}$$

Figure F.8: FWH 3 pressure ratio data and correlation to HPT 1st stage pressure.

LPT Pressure Ratio

$$r_{LPT} = \frac{P_{IPT,ex}}{P_{LPT,ex}} = \begin{cases} 7.9169P_{s1} + 14.8199 & P_{s1} \le 6\text{MPa} \\ 62.65 & P_{s1} > 6\text{MPa} \end{cases}$$
(F.9)

Figure F.9: LPT pressure ratio data and correlation to HPT 1st stage pressure.

Boiler Inlet Mass Flow Rate

$$\dot{m}_6 = 31.3897 P_{s1} + 0.75 \tag{F.10}$$

Figure F.10: Boiler inlet mass flow rate data and correlation with respect to HPT 1st stage pressure.

DA Inlet Flow Rate

$$\dot{m}_{DA} = 25.5728P_{s1} - 2.7841 \tag{F.11}$$

Figure F.11: DA inlet mass flow rate data and correlation with respect to HPT 1st stage pressure.

Property P ₆	P ₆ [MPa]	14H7	rFWH 6	<i>1</i> 'HPT <i>1</i> 'FWH 6 <i>1</i> 'FWH 5	Idl,	<i>I</i> 'DA	<i>r</i> FWH3	<i>r</i> FWH 2	<i>1</i> LPT	<i>ṁ</i> 6 [kg s ⁻¹]	\dot{m}_{6} \dot{m}_{DA} T_{B} P_{cond} η_{HPT} η_{IPT} η_{LP} [kg s ⁻¹] [kg s ⁻¹] [K] [MPa] [%] [%] [%]	T_B [K]	TBPcond[K][MPa]	Янет Ліет Л.ет [%] [%] [%]	ηιΡΤ [%]	ηlpt [%]
а	2.9985	2.9985 10.7684	0	-0.7076	0	49.7939	0	0	0	31.3897 25.5728	25.5728	0	0	0	0	0
q	0.548	0.548 0.1739	0	-0.8261	0	-3.4562	0	0	0	1	1	0	0	0	0	0
с	7.6221	0	1.8155	1.8155 2.6838 2.5860	2.5860	2.2131		5.7824 13.0703 62.65	62.65	0.75	-2.7841 811.8 8.1e-3 89.4 91.7 91.8	811.8	8.1e-3	89.4	91.7	91.8

G Solar Integration Configurations and Subsystems

Figure G.1: FWH 1 or FWH 2 bypass solar integration configuration.

Figure G.2: FWH 3 bypass solar integration configuration.

Figure G.3: FWH 5 or FWH 6 bypass solar integration configuration.

Figure G.4: FWH 7 bypass solar integration configuration.

Figure G.5: Subsystem division for SX Model integration at FWH 1 or FWH 2 bypass.

Figure G.6: Subsystem division for SX Model integration at FWH 3 bypass.

Figure G.7: Subsystem division for SX Model integration at FWH 5 or FWH 6 bypass.

Figure G.8: Subsystem division for SX Model integration at FWH 7 bypass.

H MATLAB Functions

H.1 Optimization

```
1 % SX_opt
2 % Created by Aaron Bame (aaron.bame@gmail.com)
3 % v1-Initial creation.
4
5 FWHres=zeros(6,2);
6 kres=zeros(6,2);
7 % lambda=
8 zeros(6,2);
9 weights=5;
10 w(1,:)=0:(1/weights):1;
11 % w(1, 1) = 0.5;
12 w(2,:)=1-w(1,:);
13 %% PTC
14 for i=1:2
      for j=1:3
15
  00
                  [kres((i*j),1),FWHres((i*j),1),~,~]=kopt(1,i,j,w);
16
           TECH=1
17
           i
18
19
           İ
           for l=1:length(w(1,:))
20
               w(1,1)
21
               [kres((3*(i-1)+j),l),FWHres((3*(i-1)+j),l),~,~]=kopt(1,i,j,w(:,l));
22
           end
23
      end
24
25 end
26
27 %% LFR
28 for i=1:2
      i
29
      for j=1:3
30
31 %
                  [kres((i*j),2),FWHres((i*j),2),~,~]=kopt(2,i,j,w);
32
           İ
           for l=1:length(w(1,:))
33
               w(1,1)
34
               [kres((6+(3*(i-1)+j)),l),FWHres((6+(3*(i-1)+j)),l),~,~]=kopt(2,i,j,w(:,l));
35
           end
36
```

```
37
  end
38 end
39
40 %% Check Specific condition
41 TECH=2;
42 PFLAG=2;
43 FWHno=3;
44 [kres, FWHres, ~, ~]=kopt(TECH, PFLAG, FWHno, [0.2, 0.8])
45 % parfor l=1:length(w(1,:))
                [kres(1,1),FWHres(1,1),~,~]=kopt(TECH,PFLAG,FWHno,w(:,1));
  8
46
47 % end
48
49 %% Optimization
50 function [xopt, fopt, exitflag, output] = kopt(TECH, PFLAG, FWHno, w)
51
      % -----Starting point and bounds-----
52
      x0 = [0.0646502873206063];
53
      ub = [0.075];
54
      lb = [0.001];
55
56
      % -----Linear constraints-----
57
      A = [];
58
      b = [];
59
      Aeq = [];
60
      beq = [];
61
62
      % -----Objective and Non-linear Constraints------
63
      function [f, c, ceq] = objcon(k)
64
65
          N=30;
                     % [yrs] Project life % Put this in class, call where necessary
66
                      % [ac] Max solar field area % Put this in class
          Amax=150;
67
          Amax=Amax*4046.86; % [m<sup>2</sup>] Convert max area to m<sup>2</sup>
68
          hsun=11.89; % [hrs] Average useful sunlight time % Put in class
69
70
          [Wtot,Qsav,Wsol,qsol]=SX_model_v11(k,PFLAG,FWHno);
                                                                    % Call solar contribution
71
72
          [~,~,Ar,Af]=solfield(TECH,qsol);
                                                     % Calculate Areq in solfield
          [LCOE, ~, PBT1, ~, FE]=LCOE_Calc_v4 (Ar, TECH, Wsol, Qsav); %Need to get fuel earnings f.
73
74
75 %
           OBJ1=Wsol/Wtot;
            OBJ2=LCOE*(PBT1*hsun*24*365)*Qsav/FE;
76 %
          OBJ1=Wtot/(Wsol*Qsav*1000);
77
```

```
OBJ2=LCOE*(PBT1*hsun*365)/FE*1e4;
78
           f=w(1)*OBJ1+w(2)*OBJ2;
79
80
           c=zeros(2,1);
81
           c(1)=(Af-Amax)*1e-6;
82
           c(2) = (PBT1-N) *1e-2;
83
84
85
           ceq=[];
86
       end
87
88
       % -----Call fmincon-----
89
       options = optimoptions(@fmincon, 'display', 'iter-detailed');
90
       [xopt, fopt, exitflag, output] = fmincon(@obj, x0, A, b, Aeq, beq, lb, ub, @con, option
91
92
93
       % ------Separate obj/con (do not change)-----
94
       function [f] = obj(x)
95
                [f, \tilde{,} \tilde{,} \tilde{]} = objcon(x);
96
       end
97
       function [c, ceq] = con(x)
98
                [, c, ceq] = objcon(x);
99
       end
100
   %
         lambout=lambda.ineqlin';
101
102 end
```

H.2 Solar Integration

```
1 % Script to test solar exchange
2 % v1: 8/13/2019 Aaron Bame (aaron.bame@gmail.com)
3 % v2: 12/16/2019 Aaron Bame
 8
      Still LPT only
      Add pressure ratios from Hunter data (see FWHdata.m)
 8
  % v3: 1/7/2020 Aaron Bame
      Add correlations for boiler temperature, H/IPT pressure ratios
  0
7
      Change file date format to MM.dd.yy
  2
  0
      Add boiler outlet and HP FWH throttling valves, update numbering
0
  % v4: 1/10/2020 Aaron Bame
10
  00
      Retry constraining power with constant pressure ratios
11
      Corrected y calculation using P(8)
  %
12
      Works well with constant pressure ratios
13
  00
      Updated pressure ratios from FWHdata.m performs better, Qb still high
14
  00
 % v5: 4/10/2020 Aaron Bame
15
      Incorporate updated data from FWHdata.m
16
  8
      Include correlation for boiler inlet mass flow
  2
17
  % v6: 4/21/2020 Aaron Bame
18
      Include option for HP FWH bypass
  00
19
      Assume constant mass extraction fractions (BAD ASSUMPTION)
  0
20
  % v7: 5/16/2020 Aaron Bame
21
      Define mass fractions as constant ratio of the difference between
  %
22
          boiler inlet and DA inlet (HP FWH) and constant fraction of LPT inlet
23
  0
          for LP FWH.
  0
24
      Add correlations for DA inlet flow and boiler inlet pressure
  2
25
  % v8: 6/16/2020 Aaron Bame
26
      HP FWH violates conservation of energy. h10 too low. Try moving HP FWH
  2
27
          extraction to IPT extraction at mass averaged pressure.
  0
28
      FWH exits should both exit at the extraction pressure and then throttle
  %
29
          because the same temperature at lower pressure means higher
30 %
31
  8
          enthalpy and
  % v9: 11/6/2020 Aaron Bame
32
      Re-make function for optimization
33
  8
      Use Correlations class
34 %
35 % v10: 11/6/2020 Aaron Bame
      Set FWH performance to be eta=99%
36 %
37 % v11: 11/9/2020 Aaron Bame
  2
      Add constraint that the condensate water doesn't boil
```

```
39 function [Wnet,Qsav,Wsol,qs]=SX_model_v11(k,PFLAG,FWHno)
40
41
42 %% Power Plant Input Parameters
43 %Working fluid
44 flname='water';
45
46 % % Solar Exchange flag
47 % % SX='LP';
                          %LP = LP FWH Exchange
48 % SX='HP';
                        %HP = HP FWH Exchange
49 % % SX='SH';
                          %SH = Superheating after Boiler
50
51 switch PFLAG
     case 1
52
         SX='LP';
53
     case 2
54
         SX='HP';
55
     otherwise
56
         SX='SH';
57
58 end
59
60 N=21;
61 T=zeros(1,N);
62 P=zeros(1,N);
63 h=zeros(1,N);
64 s=zeros(1,N);
65 mdot=zeros(1,N);
66 xd=zeros(1,13);
                          %13 Devices
67
 68
 % This area needs to be before optimization so the number of FWH's at each%
69
                     pressure stage is known
70 %
72 TmaxK=810; %K
                        Boiler temp in Kelvin
73 etalp=0.918187;
                               00
                                          Efficiency of turbines
74 etaip=0.917276;
75 etahp=0.894375;
r6 etaboil=0.8978694531;
77 TTC_LP=25/9;
78 TTC_HP=0;
79 DCLP=50/9;
```

0

```
80 DCHP=50/9;
81 etacp=0.44;
82 etabfp=0.809;
83 Td=300;
                             %K
                                     Dead state temperature
84 Tk=2445;
                             ۶К
                                     Boiler flame temperature
85 Tsun=5800;
                             %K
                                     Boundary temperature of the sun
86
87 Wmax=525;
                             % MW-Maximum power output
88 HPlim=140;
89 IPlim=110;
90 LPlim=270;
91 BFPTlim=11;
92 Qrate=1273;
                            % MW
93 00=1276;
94 % k=0.06;
                                % Solar augment fraction
95 qs=k/(1-k)*Qrate;
                         % MWth transferred to the cycle
                       % convert to kW
96 qs=qs *1000;
  if (strcmp(SX, 'LP'))
97
       qsollp=qs;
98
       qsolhp=0;
99
   else
100
       qsollp=0;
101
       qsolhp=qs;
102
   end
103
104
   %% Cycle Analysis
105
106
  %List of states in order evaluated
107
  % 7-Boiler exit
108
109 % 8-HPT exhaust
110 % 10-HP FWH extraction throttling
111 % 9-Reheat exit
112 % 13-IPT exhaust
113 % 14-LPT bleed exit
114 % 17-LPT exhaust
115 % 1-Condenser exit
116 % 2-CP exit
117 % 3-LP FWH cold exit
118 % 15-LP FWH hot exit
119 % 16-LP FWH drain cooler
120 % 6-HP FWH cold exit
```

```
121 % Guess 5-HP FWH cold inlet
122 % 11-HP FWH hot exit
123 % 12-HP FWH drain cooler
   % 4-Mixing/deaerator
124
   % Check 5 and iterate
125
126
   FLAGpow=0;
127
   Ps1=14;
                     %Starting guess for 1st stage pressure (1875 psi)
128
129
   rHPs1=2.9909;
                     % Constant pressure ratio from HPT 1st stage to exhaust
130
131
132 %Mass Extraction fractions
133 mf7=0.37415;
134 mf6=0.150794;
135 mf5=0.188209;
136 mf3=0.037;
137 mf2=0.0355;
   mf1=0.057;
138
139
140
   while(~FLAGpow)
141
        corr=correlations(Ps1);
142
       mflow=corr.mdot;
143
       mda=corr.mda;
144
       PBFP=corr.pbfp;
145
       PHP=Ps1*corr.php;
146
        rFWH6=corr.rf6;
147
        rFWH5=corr.rf5;
148
        rDA=corr.rda;
149
       rFWH3=corr.rf3;
150
        rFWH2=corr.rf2;
151
        rFWH1=corr.rf1;
152
        rIPT=corr.rip;
153
        rRH=corr.rrh;
154
          etahp=eta7_corr(Ps1);
   8
155
          eta6=eta6_corr(Ps1);
156
   8
   8
          eta5=eta5_corr(Ps1);
157
   00
          etaipex=etaip_corr(Ps1);
158
   00
          etada=etada_corr(Ps1);
159
          eta3=eta3_corr(Ps1);
   8
160
161 %
          eta2=eta2_corr(Ps1);
```

```
162
   %
          etal=etal_corr(Ps1);
163
        dm=mflow-mda;
164
165
        %Find new bleed values
166
        % HP Stage
167
        rHP=[rFWH5,rFWH6,rHPs1]; % High to low pressure extraction ratios
168
        PHPex=Ps1/rHP(3);
169
        PIPi=PHPex/rRH;
170
        HPex=[PIPi./rHP(1:2),PHPex];
171
        mHP = [mf5, mf6, mf7];
172
        mHP=mHP.*dm;
173
        % TDHP=[0,0,0];
174
        if (strcmp(SX, 'HP'))
175
            HPex(FWHno) = [];
176
            mHP (FWHno) = [];
177
        end
178
        hp_ave=bleedpress(mHP, HPex);
179
180
        hpbleed=hp_ave(1);
        pHPFWH=hp_ave(2);
181
          etaip=eta_solve([eta6,eta5,etaipex],[mHP(2:3),(mflow-sum(mHP))]);
   8
182
183
        mLPi=mflow-sum(mHP);
184
        mDAex=dm-sum(mHP);
185
186
        % LP Stage
187
        rLP=[rFWH1, rFWH2, rFWH3, rDA];
                                            % High to low pressure extraction ratios
188
        PLPi=PIPi/rIPT;
189
        LPTex=PLPi./rLP;
190
        mLP=[mf1, mf2, mf3, mDAex];
191
        mLP(1:3) = mLP(1:3).*mLPi;
192
        Pmin=LPTex(1);
193
        PCP=LPTex (end);
194
        if (strcmp(SX, 'LP'))
195
            LPTex(FWHno) = [];
196
            mLP(FWHno) = [];
197
        end
198
   8
          TDLP=[25/9,25/9,25/9];
199
        lp_ave=bleedpress(mLP,LPTex);
200
        PLP_bleed=lp_ave(2);
201
        lpbleed=lp_ave(1);
202
```

```
etalp=eta_solve([etada,eta3,eta2,eta1,eta1],[mLP,(mda-sum(mLP(2:4)))]);
203
   00
204
        %State 7 (HP Turbine inlet)
205
        T(7) = TmaxK;
206
        P(7) = PHP;
207
        temp=waterprops('TP', [T(7), P(7)], ['D', 'H', 'S']);
208
        rho(7) = temp(1);
209
210
        h(7) = temp(2);
        s(7) = temp(3);
211
        mdot(7) = mflow;
212
213
        %State 8 (HPT throttle pressure)
214
        P(8) = PHPex;
215
        s(8) = s(7);
216
        mdot(8) = mflow;
217
        temp=waterprops('PS', [P(8), s(8)], ['T', 'H']);
218
        Ts8=temp(1);
219
        hs8=temp(2);
220
        h(8) = h(7) - (h(7) - hs8) + etahp;
221
                                                         %etas=(h7-h8a) / (h7-h8s)
        temp=waterprops('PH', [P(8), h(8)], ['T', 'D', 'S']);
222
        T(8) = temp(1);
223
        rho(8) = temp(2);
224
        s(8) = temp(3);
225
226
        %Option 2
227
        %State 9 (Reheat exit)
228
        P(9)=PIPi;
229
        T(9) = TmaxK;
230
        temp=waterprops('PT', [P(9),T(9)], ['D', 'H', 'S']);
231
        rho(9) =temp(1);
232
        h(9) = temp(2);
233
        s(9) = temp(3);
234
        mdot(9) = mdot(8) - hpbleed;
235
236
        % State 10 (HP FWH extraction throttling)
237
        h(10) = h(8);
238
        P(10) = pHPFWH;
239
        temp=waterprops('PH', [P(10), h(10)], ['T', 'D', 'S']);
240
        T(10) =temp(1);
241
        rho(10) =temp(2);
242
        s(10) = temp(3);
243
```

```
H-9
```

```
mdot(10)=hpbleed;
244
245
        %Option 3
246
   00
           %State 9
247
           P(9)=PIPi;
   00
248
           T(9) = TmaxK;
   8
249
   00
           temp=waterprops('PT', [P(9),T(9)], ['D', 'H', 'S']);
250
           rho(9) = temp(1);
251
   00
   8
          h(9) = temp(2);
252
   00
           s(9) = temp(3);
253
   8
          mdot(9) = mdot(8);
254
   8
255
           %State 10 (IPT extraction)
   8
256
          mdot(10) = hpbleed;
   8
257
           P(10) = pHPFWH;
   8
258
   00
          h10s=waterprops('PS',[P(10),s(9)],'H');
259
   8
           h(10) = h(9) - etaip * (h(9) - h10s);
260
   00
           temp=waterprops('PH', [P(10), h(10)], ['T', 'D', 'S']);
261
262
   8
           T(10) = temp(1);
           rho(10) = temp(2);
   00
263
           s(10) = temp(3);
   00
264
265
266
        %State 13 (IP Exit w/efficiency)
267
        P(13)=PLPi;
268
        s(13) = s(9);
269
        temp=waterprops('PS', [P(13), s(13)], ['T', 'H']);
270
        T13s = temp(1);
271
        h13s=temp(2);
272
        mdot(13) = mdot(8) - hpbleed;
273
        h(13) = h(9) - etaip * (h(9) - h13s);
                                                             %etas=(h11-h12a)/(h11-h12s)
274
        temp=waterprops('PH', [P(13), h(13)], ['T', 'D', 'S']);
275
        T(13) =temp(1);
276
        rho(13) = temp(2);
277
        s(13) = temp(3);
278
279
        %State 14 (LP Bleed Exit)
280
        s(14) = s(13);
281
        P(14)=PLP_bleed;
282
        temp=waterprops('PS', [P(14), s(14)], ['T', 'H']);
283
        T14s = temp(1);
284
```

```
h14s=temp(2);
285
286
       mdot(14)=lpbleed;
       h(14) = h(13) - etalp * (h(13) - h14s);
                                                           %etas=(h11-h13a) / (h11-h13s)
287
        temp=waterprops('PH', [P(14), h(14)], ['T', 'D', 'S']);
288
        T(14) = temp(1);
289
        rho(14) = temp(2);
290
        s(14) = temp(3);
291
292
        %State 17 (LP Exit)
293
        s(17) = s(13);
294
        P(17)=Pmin;
295
        temp=waterprops('PS', [P(17), s(17)], ['T', 'H']);
296
        T17s = temp(1);
297
       h17s=temp(2);
298
       mdot(17) = mdot(13) - lpbleed;
299
       h(17)=h(13)-etalp*(h(13)-h17s);
                                                           %etas=(h11-h17a)/(h11-h17s)
300
        temp=waterprops('PH', [P(17), h(17)], ['T', 'D', 'S']);
301
        T(17) = temp(1);
302
303
        rho(17) = temp(2);
        s(17) = temp(3);
304
305
        % Check Turbine limits
306
        Whp=mdot(8) * (h(7) -h(8)) /1000;
307
        %Option 2
308
        Wip = (mdot(9) * (h(9) - h(13))) / 1000;
309
        %Option 3
310
          Wip = (mdot(9) * (h(9) - h(13)) + mdot(10) * (h(9) - h(10))) / 1000;
   8
311
       Wlp = (mdot(14) * (h(13) - h(14)) + mdot(17) * (h(13) - h(17))) / 1000;
312
        Wtot=Whp+Wip+Wlp;
313
        if (Wtot>Wmax)
314
            315
              FLAGpow=1;
   8
316
            if (Whp>HPlim || Wip>IPlim || Wlp>LPlim)
317
                 % Change P7
318
                 Ps1=0.95*Ps1;
319
320
            end
        else
321
            FLAGpow=1;
322
        end
323
   end
324
  %State 1 (Condenser Exit)
325
```

```
326 P(1)=Pmin;
                           %Saturated liquid
327
  x_1 = 0;
328 temp=waterprops('PQ',[P(1),x_1],['T','D','H','S']);
329 T(1) = temp(1);
330 rho(1)=temp(2);
h(1) = temp(3);
_{332} s(1) = temp(4);
   mdot(1) = lpbleed+mdot(17);
333
334
   %State 2 (CP Exit)
335
336 \ s(2) = s(1);
337 P(2)=PCP;
338 mdot (2) = mdot (1);
339 temp=waterprops('PS', [P(2), s(2)], ['T', 'H']);
340 Ts2=temp(1);
_{341} hs2=temp(2);
h(2) = h(1) + (hs2 - h(1)) + 1/etacp;
                                                      %etas=(h2s-h1)/(h2a-h1)
343 temp=waterprops('PH', [P(2), h(2)], ['T', 'D', 'S']);
_{344} T(2)=temp(1);
345 rho(2)=temp(2);
   s(2) = temp(3);
346
347
   % State 2sol
348
  P(18) = P(2);
349
   mdot(18) = mdot(2);
350
   if(strcmp(SX, 'LP')&&(FWHno<3))</pre>
351
        h(18)=qsollp/mdot(2)+h(2); %qsol=etasx*mdot(2)*(h2sol-h(2))
352
        temp=waterprops('PH', [P(18), h(18)], ['T', 'D', 'S']);
353
        T(18) = temp(1);
354
        rho(18) =temp(2);
355
        s(18) = temp(3);
356
   else
357
        h(18) = h(2);
358
        T(18) = T(2);
359
        rho(18) = rho(2);
360
        s(18) = s(2);
361
362
   end
363
   %State 15
364
  mdot(15) = mdot(14);
365
_{366} P(15)=P(14);
```

```
% P(15)=P(1);
367
368
   T(15) = T(18) + DCLP;
   temp=waterprops('PT', [P(15), T(15)], ['D', 'H', 'S']);
369
370 rho(15)=temp(1);
_{371} h(15) = temp(2);
   s(15) = temp(3);
372
373
374 mdot(3) = mdot(2);
375 P(3)=P(2);
  h(3) = mdot(15) / mdot(3) * (h(14) - h(15)) + h(18);
376
377 temp=waterprops('PH', [P(3), h(3)], ['T', 'D', 'S']);
378 T(3)=temp(1);
379 rho(3)=temp(2);
  s(3) = temp(3);
380
   s3sat=waterprops('PQ', [P(3),0],'S');
381
   if(s(3)>s3sat)
                           % Make sure LP FWH doesn't boil
382
        s(3)=s3sat;
383
        temp=waterprops('PS', [P(3), s(3)], ['T', 'D', 'H']);
384
        T(3) = temp(1);
385
        rho(3) = temp(2);
386
        h(3) = temp(3);
387
   end
388
   % T(3)=waterprops('PQ', [P(14), 0], 'T')-TTC_LP;
389
   % if(T(3)>T3sat)
390
          03=0;
   00
391
          temp=waterprops('PQ', [P(3),Q3], ['T', 'D', 'H', 'S']);
   00
392
          T(3) = temp(1);
   00
393
          rho(3) = temp(2);
   8
394
   8
          h(3) = temp(3);
395
   8
          s(3) = temp(4);
396
   % else
397
          temp=waterprops('PT', [P(3),T(3)], ['D', 'H', 'S']);
   8
398
   00
          rho(3) = temp(1);
399
   00
          h(3) = temp(2);
400
   00
          s(3) = temp(3);
401
402
   % end
403
   % State 3sol
404
405 P(19) = P(3);
406 mdot(19)=mdot(3);
   if(strcmp(SX, 'LP')&&FWHno==3)
407
```

```
h(19)=qsollp/mdot(3)+h(3); %qsol=etasx*mdot(3)*(h3sol-h(3))
408
        temp=waterprops('PH', [P(19), h(19)], ['T', 'D', 'S']);
409
        T(19) = temp(1);
410
        rho(19) =temp(2);
411
        s(19)=temp(3);
412
   else
413
        h(19) = h(3);
414
        T(19) = T(3);
415
        rho(19) = rho(3);
416
        s(19) = s(3);
417
   end
418
419
420
421
   %State 16
422
423 mdot (16) = mdot (15);
424 P(16)=P(1);
425 h (16) = h (15);
426 temp=waterprops('PH', [P(16), h(16)], ['T', 'D', 'S']);
427 T(16) = temp(1);
  rho(16)=temp(2);
428
   s(16)=temp(3);
429
430
   %Guess 5, find 11->12->4, check 5 and iterate
431
432 mdot(5) = mflow;
433 P(5)=PBFP;
434 T (5) = 450;
                    %Guess Temp
435 T51=T(5);
436 err=1;
437 tol=1e-3;
   i=0;
438
   while(err>tol)
439
        i=i+1;
440
        T(5) = (T(5) + T51) / 2;
441
        temp=waterprops('PT', [P(5),T(5)], ['D', 'H', 'S']);
442
        rho(5) = temp(1);
443
        h(5) = temp(2);
444
        s(5) = temp(3);
445
446
        %State 5sol
447
        mdot(20) = mdot(4);
448
```

```
P(20) = P(5);
449
        if(strcmp(SX, 'HP')&&FWHno<3)</pre>
450
             h(20) =qsolhp/mdot(5) +h(5);%qsol=mdot*(h5sol-h5)
451
             temp=waterprops('PH', [P(20), h(20)], ['T', 'D', 'S']);
452
             T(20) =temp(1);
453
             rho(20) = temp(2);
454
             s(20) = temp(3);
455
456
        else
             h(20) = h(5);
457
             T(20) = T(5);
458
             rho(20) = rho(5);
459
             s(20) = s(5);
460
        end
461
462
        %State 11
463
        mdot(11) = mdot(10);
464
        P(11) = P(10);
465
        T(11) = T(20) + DCHP;
466
        temp=waterprops('PT', [P(11),T(11)], ['D', 'H', 'S']);
467
        rho(11) = temp(1);
468
        h(11) = temp(2);
469
        s(11) = temp(3);
470
471
        %State 12
472
        mdot(12) = mdot(11);
473
        h(12) = h(11);
474
        P(12) = P(3);
475
        temp=waterprops('PH', [P(12), h(12)], ['T', 'D', 'S']);
476
        T(12) = temp(1);
477
        rho(12) =temp(2);
478
        s(12) = temp(3);
479
480
        %State 4
481
        mdot(4) = mdot(12) + mdot(3);
482
        P(4) = P(3);
483
        h(4) = 1/mdot(4) * (mdot(3) * h(19) + mdot(12) * h(12));
                                                                      %m4*h4=m3*h3+m12*h12
484
        temp=waterprops('PH', [P(4), h(4)], ['T', 'D', 'S']);
485
        T(4) = temp(1);
486
        rho(4) =temp(2);
487
        s(4) = temp(3);
488
```

```
489
```

```
%Check state 5
490
        h5s=waterprops('PS',[P(5),s(4)],'H');
491
        h(5) = (h5s-h(4)) / etabfp+h(4);
                                              %etabfp=(h5_s-h4)/(h5-h4)
492
        temp=waterprops('PH', [P(5), h(5)], ['T', 'D', 'S']);
493
        Tnew=temp(1);
494
        rho(5) = temp(2);
495
        s(5) = temp(3);
496
        err=abs((T51-Tnew)/T51);
497
        if(err>tol)
498
             T51=Tnew;
499
        else
500
             T(5) = Tnew;
501
        end
502
   end
503
504
   %State 5sol
505
   mdot (20) = mdot (4);
506
   P(20) = P(5);
507
   if(strcmp(SX, 'HP')&&FWHno<3)</pre>
508
        h(20) =qsolhp/mdot(5) +h(5); %qsol=mdot*(h5sol-h5)
509
        temp=waterprops('PH', [P(20), h(20)], ['T', 'D', 'S']);
510
        T(20) =temp(1);
511
        rho(20) =temp(2);
512
        s(20) = temp(3);
513
   else
514
        h(20) = h(5);
515
        T(20) = T(5);
516
        rho(20) = rho(5);
517
        s(20) = s(5);
518
   end
519
520
   %State 6
521
522 mdot(6) = mflow;
523 P(6)=PBFP;
h(6) = mdot(10) / mdot(6) * (h(10) - h(11)) + h(20);
  temp=waterprops('PH', [P(6), h(6)], ['T', 'D', 'S']);
525
526 T(6) = temp(1);
527 rho(6) = temp(2);
   s(6)=temp(3);
528
529
530 %State 6sol
```

```
531 mdot (21) = mdot (6);
532
   P(21)=P(6);
   if(strcmp(SX, 'HP')&&FWHno==3)
533
        h(21)=qsolhp/mdot(6)+h(6); %qsolhp=mdot6sol*(h6sol-h6)
534
        temp=waterprops('PH', [P(21), h(21)], ['T', 'D', 'S']);
535
        T(21) = temp(1);
536
        rho(21) = temp(2);
537
        s(21) = temp(3);
538
   else
539
        h(21) = h(6);
540
        T(21) = T(6);
541
        rho(21) = rho(6);
542
        s(21) = s(6);
543
   end
544
545
   %% T-s Data storage
546
   % Tmain=[T(1:9),T(13),T(17),T(1)];
547
   % smain=[s(1:9),s(13),s(17),s(1)];
548
549
   2
   % TSmodel_main=[Tmain; smain];
550
   00
551
   % %HP FWH
552
   % Thpfwh=[T(8),T(10:12),T(4)];
553
   % shpfwh=[s(8),s(10:12),s(4)];
554
   % Tsmodel_hpfwh=[Thpfwh; shpfwh];
555
   8
556
   % %LP FWH
557
   % Tlpfwh=[T(13:16),T(1)];
558
   % slpfwh=[s(13:16),s(1)];
559
   % Tsmodel_lpfwh=[Tlpfwh;slpfwh];
560
   00
561
   % txtname='Huntmod_mainloop.txt';
562
   % fid=fopen(txtname, 'w');
563
   % options='%16.15f %16.15f\r\n';
564
   % fprintf(fid,options,[TSmodel_main,[0;0]]);
565
   % fprintf(fid, options, [Tsmodel_hpfwh, [0;0]]);
566
   % fprintf(fid,options,[Tsmodel_lpfwh,[0;0]]);
567
   00
568
   % fclose(fid);
569
570
   %% Output/Performance Parameters
571
```

```
%HP
572
   Whp=mdot(8) \star (h(7) -h(8));
573
                                                %kW
574
   %IP
575
576 Wip=mdot(9) * (h(9) -h(13));
                                        %kW
  %Option 2
577
578 Wipex=0;
   %Option 3
579
   % Wipex=mdot(10) * (h(9) -h(10));
580
581
   %LP
582
   Wlpbleed=mdot (14) * (h(13) - h(14));
                                                   %kW
583
   Wlp=mdot(17) * (h(13) - h(17));
                                              %k₩
584
585
   %Pumping
586
   Wcp=mdot(1) * (h(2) - h(1));
587
   Wbfp=mdot(5) * (h(5) -h(4));
588
   Win=(Wcp+Wbfp) *10^-3;
589
590
   %Heating
591
   Qin=mdot(6) * (h(7) - h(21)) + mdot(9) * (h(9) - h(8));
592
   Qin=Qin/etaboil*10^-3;
593
   Qsav=Q0-Qin;
594
595
   Wout=(Whp+Wip+Wipex+Wlp+Wlpbleed) *10^-3;
                                                            %MW
596
   Wnet=Wout-Win;
597
   Werr=(Wnet-511.237)/511.237;
598
   eff=Wnet/(Qin+qs/1000);
599
   etaII=Wnet/((1-Td/Tk) *Qin+(1-Td/Tsun) *qs/1000);
                                                                   % CORRECT THIS TO USE THE INCIDENT RA
600
   Wsol=Solar_Contribution([T', P', h', s', mdot'])
601
602
   % disp_tab=table(k,qs,Qin,Wnet,eff,etaII);
603
   % disp_tab.Properties.VariableNames={'k','q_solar','Q_boiler','W_net','eta_th','eta_II'};
604
   % disp(disp_tab)
605
   end
606
607
   %% Functions
608
   %function to convert a temperature in degF to Kelvin
609
   function [TK]=temperature(T)
610
        TK = (T - 32) * 5 / 9 + 273.15;
611
612 end
```

```
613
   % Correlations
614
   615
616
   function [rhp]=php_corr(ps1)
617
618
619 a=10.7364;
  b=-0.8295;
620
621
   rhp=a*ps1^b;
622
   end
623
624
   function [rip]=rip_corr(ps1)
625
626
e27 a=0.2335;
  b=-0.0756;
628
629
   rip=a*ps1+b;
630
631
   end
632
   function [rf6]=rf6_corr(ps1)
633
634
635 a=0.3525;
b=-1.0165;
   c=1.8055;
637
638
  rf6=a*ps1^b+c;
639
   end
640
641
   function [rf2]=rf2_corr(ps1)
642
643
a = -11.6573;
645 b=-0.4057;
646 c=16.099;
647
  rf2=a*ps1^b+c;
648
   end
649
650
   function [rf1]=rf1_corr(ps1)
651
   if ps1>8
652
       rf1=148.48;
653
```

```
654 else
        a=16.8364;
655
        b = -0.5346;
656
657
        rf1=a*ps1+b;
658
   end
659
   end
660
661
   function [rf3]=rf3_corr(ps1)
662
663
664 a=-3.7496;
665 b=-0.5717;
666 c=6.2739;
667
   rf3=a*ps1^b+c;
668
   end
669
670
   function [mdot]=mdot_corr(ps1)
671
672
   a=28.977;
673
   b=10.1666;
674
675
   mdot=a*ps1+b;
676
677
   end
678
   function [mda]=mda_corr(ps1)
679
680
   a=25.894;
681
   b=8.6345;
682
683
   mda=a*ps1+b;
684
   end
685
686
   function [p]=pbfp_corr(ps1)
687
688
   a=0.9954;
689
690 b=0.8236;
  c=10.8932;
691
692
693 p=a*ps1^b+c;
694 end
```

```
695
   function [rf5]=rf5_corr(ps1)
696
        a=1.5162;
697
        b=-1.0184;
698
        c=2.5692;
699
700
        rf5=a*ps1^b+c;
701
702
   end
703
   function [rda]=rda_corr(ps1)
704
        a=1.3776e4;
705
        b=-7.4916;
706
        c=2.4598;
707
708
        rda=a*ps1^b+c;
709
   end
710
711
   function [rrh]=rrh_corr(ps1)
712
        a=0.1011;
713
        b=-1.2086;
714
        c=1.07411;
715
716
        rrh=a*ps1^b+c;
717
   end
718
719
   function [eta]=eta_solve(etafwh,mdot)
720
        mf=mdot./sum(mdot);
721
        eta=sum(mf.*etafwh);
722
   end
723
724
   function [eta]=eta7_corr(P)
725
        a = -1.2936;
726
        b = -0.1537;
727
        c=1.6859;
728
        eta=a*P^b+c;
729
730
   end
731
   function [eta]=eta6_corr(P)
732
        if(P>10)
733
             eta=0.7436;
734
        else
735
```

```
eta=0.7484;
736
        end
737
   end
738
739
   function [eta]=eta5_corr(P)
740
        a=-0.2603;
741
        b=-0.9235;
742
        c=0.9108;
743
        eta=a*P^b+c;
744
   end
745
746
   function [eta]=etaip_corr(P)
747
        if(P>10)
748
            eta=0.8689;
749
        else
750
             eta=0.8358;
751
        end
752
   end
753
754
   function [eta]=etada_corr(P)
755
        a = -1.5309;
756
        b=-2.0704;
757
        c=0.5134;
758
        eta=a*P^b+c;
759
   end
760
761
   function [eta]=eta3_corr(P)
762
        a=0.4879;
763
        b=-0.2938;
764
        c=0.5004;
765
        eta=a*P^b+c;
766
   end
767
768
   function [eta]=eta2_corr(P)
769
        a=0.2868;
770
        b=-0.3894;
771
        c=0.7320;
772
        eta=a*P^b+c;
773
   end
774
775
776 function [eta]=eta1_corr(P)
```

777 a=0.3765; 778 b=0.4210; 779 c=-0.4775; 780 eta=a*P^b+c; 781 end

H-23

H.3 Solar Contribution

```
1 % Function to calculate the solar contribution of the hybrid CSP and coal
2 % power plant
3 % Created 5/13/2020 by Joseph Furner (joseph.furner@gmail.com)
4
5 % Inputs:
                            21x5 matrix (i.e. [484.02,5.99,3135.3,2.7,470.0;460,2.5,1055.4,2.9
6 % Nodes
               -type:
7 %
                            state point properties. Colums are in order from
              meaning:
              left to right: Temperature [K], pressure [MPa], enthalpy
8 %
9 %
              [kJ/kg], entropy [kJ/kg-K], mass flow rate [kg/s]. Rows are in
10 %
              order from node 1 to node 17 where the last rows are solar echange outlets.
11 % Outputs:
             -type:
                         double
12 % Wsol
13 🔗
              meaning: Solar contribution [MW]
14 💡
15 function [Wsol,eD,sprpo,esol] = Solar_Contribution(Nodes)
16
17 state = Nodes(1:17,:);
18 sol = Nodes(18:end,:);
19
20 T0 = 298;
21 T = state(:, 1);
22 P = state(:, 2);
23 H = state(:, 3);
24 S = state(:,4);
25 mdot = state(:,5);
26
27
28 % Subsystem 1
29 \text{ in}\{1\} = [H(7) \ S(7) \ mdot(7); H(5) \ S(5) \ mdot(5)];
30 out{1} = [H(8) S(8) mdot(9);H(6) S(6) mdot(6);H(11) S(11) mdot(11)];
31 % Subsystem 2
32 in{2} = [H(9) S(9) mdot(9); H(3) S(3) mdot(3); H(11) S(11) mdot(11)];
33 \text{ out}\{2\} = [H(13) S(13) \text{ mdot}(13); H(5) S(5) \text{ mdot}(5)];
34 % Subsystem 3
s_{35} in{3} = [H(13) S(13) mdot(13); H(2) S(2) mdot(2)];
36 out{3} = [H(14) S(14) mdot(17);H(3) S(3) mdot(3);H(15) S(15) mdot(15)];
37 % Subsystem 4
38 in{4} = [H(14) S(14) mdot(17); H(15) S(15) mdot(15)];
```

```
39 \text{ out}\{4\} = [H(2) \ S(2) \ mdot(2)];
40
  if sol(1, 4) = S(2)
41
      used = 1;
42
      Hsol = [H(2) sol(1,3)];
43
      Ssol = [S(2) sol(1, 4)];
44
      in{3}(2,1:2) = [Hsol(2) Ssol(2)];
45
46
      msprpo = [mdot(7) mdot(9) mdot(2)];
  elseif sol(2, 4) ~= S(3)
47
      used = 2;
48
      Hsol = [H(3) sol(2,3)];
49
      Ssol = [S(3) sol(2, 4)];
50
      in{2}(2,1:2) = [Hsol(2) Ssol(2)];
51
      msprpo = [mdot(7) mdot(9) mdot(3)];
52
  elseif sol(3, 4) ~= S(5)
53
      used = 3;
54
      Hsol = [H(5) sol(3,3)];
55
      Ssol = [S(5) sol(3, 4)];
56
      in{1}(2,1:2) = [Hsol(2) Ssol(2)];
57
      msprpo = [mdot(7) mdot(9) mdot(5)];
58
  elseif sol(4, 4) ~= S(6)
59
      used = 4;
60
      Hsol = [H(6) sol(4,3)];
61
      Ssol = [S(6) sol(4, 4)];
62
      msprpo = [mdot(7) mdot(9) mdot(6)];
63
  end
64
65
67 Ssprpo = [Ssol(1) Ssol(2) sol(4,4) S(7) S(8) S(9)];
68 \text{ mO} = \text{mdot}(7);
69 Ps = P(7);
70 Prh = P(9);
71 Pw = [Ps Prh];
72 Sthtl = [S(8) S(10)];
73 Tthtl = [T(8) T(10)];
74 Pcs = [P(6) P(10) P(13) P(14) P(17)];
75 TS = zeros(1, length(Ssprpo));
76 for i = 1:length(Pcs)
      for j = 1:length(Ssprpo)
77
          TS(i,j) = waterprops('PS', [Pcs(i), Ssprpo(j)], 'T');
78
            if Pcs(i) <= Psol(1)
79 %
```

```
TS(i,j) = waterprops('PS', [Pcs(i), Ssprpo(j)], 'T');
80 %
81
   00
              else
                   if j > 2
   00
82
                   TS(i,j) = waterprops('PS', [Pcs(i), Ssprpo(j)], 'T');
   8
83
                   else
   8
84
                        TS(i,j) = Tsol(j);
   00
85
   00
                   end
86
87
   8
              end
        end
88
  end
89
90 WHPT = (H(7) - H(8)) * mdot(7);
91 WIPT = (H(9) - H(13)) * mdot(9);
92 WLPT1 = (H(13) - H(14)) * mdot(13);
93 WLPT2 = (H(14) - H(17)) * mdot(17);
94 WBFP = mdot (4) * (H(5) - H(4));
95 WCP = mdot(1) * (H(2) - H(1));
  Qcon = (mdot(17) * H(17)) + (mdot(16) * H(16)) - (mdot(1) * H(1));
96
   Xwq = [WHPT,WIPT - WBFP,WLPT1,WLPT2 + ((1 - (T0/T0))*Qcon) - WCP];
97
98
99
100
101 eD = zeros(1, 4);
   sprpo = zeros(1, 4);
102
   for i = 1:4
103
        if i > 2
104
           Sthtl = [0 \ 0];
105
           Tthtl = [0 \ 0];
106
        end
107
        if used == 1
108
            if i < 4
109
                 sprpo(i) = 0;
110
            else
111
                 [sprpo(i)] = Solar_Prop([Pcs(i), Pcs(i+1)], msprpo, Ssprpo, Pw, TS(i:i+1,:), Sthtl, T
112
            end
113
        elseif used == 2
114
            if i < 3
115
                 sprpo(i) = 0;
116
            else
117
                 [sprpo(i)] = Solar_Prop([Pcs(i), Pcs(i+1)], msprpo, Ssprpo, Pw, TS(i:i+1,:), Sthtl, T
118
            end
119
        elseif used == 3
120
```

```
if i < 2
121
                sprpo(i) = 0;
122
            else
123
                [sprpo(i)] = Solar_Prop([Pcs(i), Pcs(i+1)], msprpo, Ssprpo, Pw, TS(i:i+1,:), Sthtl, T
124
            end
125
       elseif used == 4
126
            if i < 1
127
                sprpo(i) = 0;
128
129
            else
                [sprpo(i)] = Solar_Prop([Pcs(i), Pcs(i+1)], msprpo, Ssprpo, Pw, TS(i:i+1,:), Sthtl, T
130
            end
131
       end
132
       ein = sum((in{i}(:,1) - T0.*(in{i}(:,2))).*in{i}(:,3));
133
       eout = sum((out{i}(:,1) - T0.*(out{i}(:,2))).*out{i}(:,3));
134
       eD(i) = (ein - eout - Xwq(i))/m0;
135
136
137 end
138
139 esol = (msprpo(3)/m0)*((Hsol(2) - Hsol(1)) - T0*(Ssol(2) - Ssol(1)));
140 Wsol = 0.001*m0*(esol - sum(eD.*sprpo));
141 end
```

H.4 Solar Data

```
1 %% Header
2 % Created by Aaron Bame (aaron.bame@gmail.com)
3 % v1: 12/3/2019
4
  8
      Script to scrub multiple years of solar resource data downloaded from
      NREL's NSRDB (https://maps.nrel.gov/nsrdb-viewer)
  00
5
  00
      Assumes downloading data for:
7
      yr | month | day | hr | min | DHI | DNI | Clearsky DNI | humid | Temp
  2
8
0
  00
      Currently assumes every 30 minutes
10
11
12 % v2: 12/6/2019-Aaron Bame
      Update downloaded data order:
 8
13
      yr | month | day | hr | min | DNI | CSDNI | zenith | Temp | Pressure
  8
14
      Calculate average daily zenith, correspondingly correct indices
  00
15
16
17 %% Set up calendar array %calendar=[month; date; DNI; CSDNI; theta; Dayhrs]
18 calendar=zeros([365,6]);
19 begin=1;
20 %January (31 day)
21 jan=31;
22 calendar(begin:(begin+jan-1),1)=1;
23 calendar(begin:(begin+jan-1),2)=[1:1:jan];
24 begin=begin+jan;
25 %February(28 day)
26 feb=28;
27 calendar(begin:(begin+feb-1),1)=2;
28 calendar(begin:(begin+feb-1),2)=[1:1:feb];
29 begin=begin+feb;
30 %March (31 day)
31 mar=31;
32 calendar(begin:(begin+mar-1),1)=3;
33 calendar(begin:(begin+mar-1),2)=[1:1:mar];
34 begin=begin+mar;
35 %April (30 day)
36 apr=30;
37 calendar(begin:(begin+apr-1),1)=4;
38 calendar(begin:(begin+apr-1),2)=[1:1:apr];
```

```
39 begin=begin+apr;
40 %May (31 day)
41 may=31;
42 calendar(begin:(begin+may-1),1)=5;
43 calendar(begin:(begin+may-1),2)=[1:1:may];
44 begin=begin+may;
45 %June (30 day)
46 jun=30;
47 calendar(begin:(begin+jun-1),1)=6;
48 calendar(begin:(begin+jun-1),2)=[1:1:jun];
49 begin=begin+jun;
50 %July (31 day)
51 jul=31;
s2 calendar(begin:(begin+jul-1),1)=7;
s3 calendar(begin:(begin+jul-1),2)=[1:1:jul];
54 begin=begin+jul;
55 %August (31 day)
56 aug=31;
57 calendar(begin:(begin+aug-1),1)=8;
s8 calendar(begin:(begin+aug-1),2)=[1:1:aug];
59 begin=begin+aug;
60 %September (30 day)
61 sep=30;
62 calendar(begin:(begin+sep-1),1)=9;
63 calendar(begin:(begin+sep-1),2)=[1:1:sep];
64 begin=begin+sep;
65 %October (31 day)
66 oct=31;
67 calendar(begin:(begin+oct-1),1)=10;
calendar(begin:(begin+oct-1),2)=[1:1:oct];
69 begin=begin+oct;
70 %November (30 day)
71 nov=30;
r2 calendar(begin:(begin+nov-1),1)=11;
r3 calendar (begin: (begin+nov-1), 2) = [1:1:nov];
74 begin=begin+nov;
75 %December (31 day)
76 dec=31;
rn calendar(begin:(begin+dec-1),1)=12;
r8 calendar(begin:(begin+dec-1),2)=[1:1:dec];
79 begin=begin+dec;
```
```
80
   months=[jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec];
81
82
   %% Import the data
83
84
   % Asks the user to select file(s)
85
   % May select multiple files, must be from the same folder
86
   [names,path]=uigetfile('*.csv', 'MultiSelect', 'on');
87
   files=length(names);
88
89
   % Repeat for each year of data
90
   for i=1:files
91
92
       % Combine the file path and name into a single file name
93
       f=fullfile(path,names(i));
94
       % Convert filename to a character variable
95
       filename=char(f);
96
       %Begin reading data from A4 of the .csv file
97
       data=csvread(filename, 3, 0);
98
99
       % Assign imported array to column variable names
100
       year = data(:,1);
101
       month = data(:, 2);
102
       day = data(:, 3);
103
       hour = data(:, 4);
104
       minute = data(:, 5);
105
       DNI = data(:,6); %W/m^2
106
       CSDNI = data(:,7); %W/m^2
107
       thetaz = data(:, 8);
108
       Temp = data(:, 9);
109
       Press = data(:, 10);
110
111
       % Clear temporary variables
112
       clearvars data f;
113
114
                                           %Number of readings in one day (Automate?)
115
       N=48;
116
       %% Data Analysis
117
       % Find the average for each day and then average across the whole month
118
       for j=1:365 %Iterate through each day
119
120
```

```
begin=j*N-47;
121
122
            midnight=j*N;
123
            rise=find(CSDNI(begin:midnight)>0,1,'first');
124
            set=find(CSDNI(begin:midnight)>0,1,'last');
125
126
127
            % Daily flux average
128
            a=begin+rise-1;
129
            b=begin+set-1;
130
            calendar(j,3)=calendar(j,3)+avg(DNI(a:b));
131
            calendar(j,4)=calendar(j,4)+avg(CSDNI(a:b));
132
            calendar(j, 5) = calendar(j, 5) + avg(thetaz(a:b));
133
            calendar(j, 6) = calendar(j, 6) + (set-rise+1)/2;
134
135
136
       end
137
   end
138
139
   % Calculate the average for each day
140
   calendar(:,3)=calendar(:,3)/files;
141
   calendar(:,4)=calendar(:,4)/files;
142
   calendar(:,5)=calendar(:,5)/files;
143
   calendar(:,6)=calendar(:,6)/files;
144
145
   %% Data presentation
146
   % Yearly average flux [W/m^2]
147
   yearavg=sum(calendar(:,3))/length(calendar(:,3))
148
   % Clear sky yearly average (Maximum solar condition) [W/m^2]
149
   CSyearavg=sum(calendar(:,4))/length(calendar(:,4))
150
   % Average hours of daylight [hrs]
151
152 hrs=sum(calendar(:,6))/length(calendar(:,6))
   % Yearly average energy [kWh/m<sup>2</sup>]
153
   yrly_energy=yearavg*hrs/1000
154
155
   %% Trap Rule Integration
156
   function [sum]=traps(light_data)
157
       N=length(light_data);
158
       sum=light_data(1);
159
       for i=2:(N-1)
160
           sum=sum+2*light_data(i);
161
```

```
end
162
       sum=sum+light_data(N);
163
       sum=sum/4;
                                           % When dx=0.5 hrs, dx/2=1/4
164
   end
165
166
   %% Daily average
167
   function [result]=avg(flux)
168
       N=length(flux);
169
       result=sum(flux)/N;
170
171 end
```

H.5 Solar Field Simulation

```
Created by Aaron Bame (aaron.bame@gmail.com)
 8
1
     v1 (4/1/20): Create script-simulate solar field design
2
  2
3
  4
     Simulate a possible solar field configuration given a required thermal%
  8
5
     output and maximum row length.
                                                              2
  00
     1) Calculate maximum possible solar collection assemblies (SCA)
                                                              8
 8
7
  0
        per row(Nc)
                                                              2
8
 0
     2) Calculate minimum SCA required (SCAmin)
                                                              2
9
     3) Find modulus of SCAmin/Nc (SCAmod)
  0
10
  %
     4) If SCAmod > (Nc/2)
11
        4a) Increase SCAmin (SCAmin=SCAmin+(Nc-SCAmod))
  %
12
 8
     5) If SCAmod<(Nc/2)
13
  00
        5a) Decrement maximum SCA per row (Nc=Nc-1)
                                                              2
14
        5b) Repeat 3-5
  2
                                                              2
15
     6) Assuming rows are of consistent length for a rectangular field
16
  0
                                                              2
        (Nr=SCAmin/Nc)
17
 0
                                                              2
 18
  19
           Integer denoting which technology will be used
  0
     tech:
                                                            0
20
  0
           1-PTC
                                                            8
21
           2-LFR
  8
                                                            %
22
           Solar thermal load passed into power plant [kW]
  8
     qsol:
                                                            2
23
 24
25
 26
     Nr: Number of rows (integer)
                                         %
  2
27
     Nc: Number of assemblies per row (integer)
  8
                                         00
28
        PTC-Assume 3 collectors per assembly
  %
                                         %
29
        LFR-<UNSURE>
                                         8
  2
30
     Ar: Final receiver area resulting from plant%
  00
31
 8
        layout simulation
                                         0
32
 0
     A: Total land used for solar field
                                         0
33
35 function [Nr, Na, Ar, A]=solfield(tech, qsol)
36
37 Lrec=10;
                  8
                    Receiver tube length [m]
38 d=0.08;
                  0
                     Receiver tube diameter [m]
```

```
39 Lmax=330;
                         %
                            Maximum field size [m]
40 epsilon=0.9;
                         00
                             Solar exchange efficiency []
  DNI=542;
                         00
                             Direct Normal Insolation [W m<sup>-2</sup>]
41
42
  if tech==1
                         8
                             PTC
43
       Nmodule=3;
44
       Lsca=Nmodule*Lrec;
45
       W=5.6;
46
       Ls=15;
                             % Row pitch
47
                             Collection efficiency
       eta=0.63;
                         00
48
       rc=20;
49
50
  elseif tech==2
                        8
                             LFR
51
       Nmodule=1;
52
       Lsca=Nmodule*Lrec;
53
       W=15;
54
       Ls=20;
                             % Row pitch
55
       eta=0.405;
                        00
                            Solar exchange efficiency
56
       rc=60;
57
58
  end
59
60
  Areq=qsol*1000/(epsilon*rc*DNI*eta);
61
62
  SCAmin=(Areq/(pi*d))/Lsca;
63
64 Na=ceil(Lmax/Lsca);
  FLAG=1;
65
66
  while(FLAG)
67
       extra=mod(SCAmin,Na);
68
       if extra==0
69
           FLAG=0;
70
           Nr=SCAmin/Na;
71
       elseif extra>(Na/2)
72
           FLAG=1;
73
           SCAmin=SCAmin+(Na-extra);
74
       else
75
           FLAG=1;
76
           Na=Na-1;
77
       end
78
79 end
```

```
80
81 A=(Na*Nmodule*Lrec)*(W*Nr+(Ls-W)*(Nr-1));
82 Ar=pi*d*Lsca*Nr*Na;
83
84 % N=[Nr,Na,Ar,A];
85
86 end
```

H.6 Financial Model

```
1 function [LCOE,CC,PBT1,PBT2,FE] = LCOE_Calc_v4(Ar,tech,Wsol,Esav)
2
4 % FILE:
            LCOE_Calc.m
5 % AUTHOR: Joseph Furner
           5/20/2019
6 % DATE:
7 %
8 % PURPOSE: Calculate the LCOE of a hybrid CSP and coal plant.
9 %
10 %
11 % INPUTS:
12 % Ar
                      double (i.e. 900.0)
          -type:
13 %
           meaning:
                      Total heat absorbtion area of the reciever tubes [m2]
14 % tech
           -type:
                      index (i.e. 1)
15 %
           meaning:
                       Indicates the technology type,
16 %
                       1 = parabolic trough,
                       2 = linear fresnel
17 %
                       double(i.e. 18.05)
18 % Wsol
           -type:
           meaning:
                       Solar contribution [MW]
19 💡
                      double(i.e. 220.1)
20 % Esav
           -type:
21 %
           meaning:
                      Energy reduction beeing transferred into the boiler [MW]
22 %
23 %
24 % OUTPUT:
25 % LCOE
           -type:
                      double (i.e. 0.001)
26 %
           meaning:
                      Real Levelized Cost of Electricity [USD/kWh]
27 % CC
                      double (i.e. 6000000)
           -type:
28 %
                      Total capital cost for solar portion of project [USD]
           meaning:
29 % PBT1
                       double (i.e. 10.5)
           -type:
30 %
           meaning:
                       Time required for cumulative cash flow to equal zero [yrs]. If PBT1 .
           greater than 50 years, the function will return 50.
31 %
32 % PBT2
           -type:
                       double (i.e. 10.5)
                       Time required for cumulative fuel savings to equal the
33 %
           meaning:
34 %
            investment cost [yrs]
                      double (i.e. 1000000)
35 % FE
           -type:
            meaning: Total amount saved from fuel savings after 50 years [USD]
36 %
37 %
38 % NOTES:
```

```
39 %
40 %
41 % VERSION HISTORY
42 % V1 - Original
43 % V2 - Set default variables, and added capital cost calculation
44 % V3 - Commented sections, and abreviated variables.
45 % V4 - Included payback time calculation
46 % V5 - Extended payback time to allow for values less than 50, but greater
47 %
       than the project life.
48 % V6 - Included conditions for linear fresnel, and added the input
         variables "tech" and "k". Changed Ap calculation to use rc.
49 %
so % V7 - Adjust comments to make it easier to understand. Change Esav to be
         an input value rather than a default.
51 %
52 % V8 - Implement correlation class structure (Aaron Bame)
53 % V9 - Adjusted carbon tax to be subtraced from the costs rather than be
54 % added to the savings.
55 %
57
58 % Default values for project parameters
59 N = 30;
                                        % Analysis period [years]
60 Wnetp = 515000;
                                        % Energy system's nameplate capacity [kW]
61 Wsol = Wsol * 1000;
62 %
63
64 % Default values for system costs autamtically defaults to parabolic
65 % trough, if tech = 2, the cost values will be changed to be consistent
66 % with linear fresnel.
67 if tech == 1
     FSI = 25;
                                        % Site improvements [USD/m2]
68
      FSF = 150;
                                        % Solar field [USD/m2]
69
      FHTF = 60;
                                        % HTF system [USD/m2]
70
      FFOM = 12;
                                        % Fixed O&M Costs [USD/kW-yr]
71
      FVOM = 4;
                                        % Variable O&M costs [USD/MW]
72
      rc = 20;
                                        % Concentration ratio of aperture area to reciever as
73
74 else
75
      FSI = 20;
                                       % Site improvements [USD/m2]
      FSF = 150;
                                        % Solar field [USD/m2]
76
      FHTF = 35;
                                       % HTF system [USD/m2]
77
                                        % Fixed O&M Costs [USD/kW-yr]
      FFOM = 12;
78
      FVOM = 4;
                                        % Variable O&M costs [USD/MW]
79
```

```
H-37
```

```
% Concentration ratio of aperture area to reciever a
80
   rc = 60;
81 end
82
_{83} CHX = 1782445.50;
                                            % Cost unit and installation of heat exchanger [USD]
st rcont = 7;
                                            % Contingency [% of direct cost]
s_{5} rEPC = 13;
                                            % Engineer-procure-construct and owner costs [% of d.
86 Ftsal = 80;
                                            % Sales tax basis [% of Capital Cost]
87 \text{ rtsal} = 5;
                                            % Sales tax rate [%]
88
89
90 rITC = 10;
                                            % United States Investment Tax Credit [% of CC]
91 rins = 0.5;
                                            % Insurance rate [% of CC]
92 \text{ rtprp} = 0.6;
                                            % Property tax rate [% of basis]
93 Ftprp = 100;
                                            % Property tax basis [% of CC]
94 rSALV = 0;
                                            % Salvage Percentage [% of CC]
  00
95
96
97
98 % Default Values for LCOE calculator
99 ri = 2.5;
                                            % Inflation rate [%/year]
100 rtst = 5;
                                            % State tax rate [%/year]
101 rtFed = 21;
                                            % Fedreral tax rate [%/year]
102 SCdep = [20 32 19.2 11.52 11.52 5.76]; Bepreciation schedule 5-yr MACRS [% of capital cost
103 \text{ FL} = 50;
                                            % Project term debt fraction [% of capital cost]
104 rint = 5;
                                            % Nominal debt interest rate [%/year]
105 P = 30;
                                            % Loan term [years]
106 \text{ rrd} = 6.4;
                                            % discount rate (real) [%/year]
107 %
108
109
110 % Default Values for fuel savings used in payback time calculation
                                            % Cost of coal [USD/sh.tn.]
111 FF = 36.31;
112 HVF = 22.037;
                                            % Heating value of hard black coal [MJ/kg]
113 rtCO2 = correlations.rtCO2;
                                           % Carbon tax [USD/sh.tn.of CO2]
114  % rtCO2 = 20;
                                            % CO2 emitted to coal burned ratio
115 Fcc = 2.86026;
116 Suse = correlations.hsun;
                                                            % Time solar field is in use [h]
117 %
118
119
120 % Conversion of Percentages into decimals
```

```
121 rcont = rcont/100;
122 \text{ rEPC} = \text{rEPC}/100;
123 Ftsal = Ftsal/100;
124 rtsal = rtsal/100;
125 \text{ rITC} = \text{rITC}/100;
126 ri = ri/100;
127 rtst = rtst/100;
_{128} rtFed = rtFed/100;
129 SCdep = SCdep./100;
130 \text{ FL} = \text{FL}/100;
131 rint = rint/100;
132 rins = rins/100;
133 rtprp = rtprp/100;
134 Ftprp = Ftprp/100;
135 rSALV = rSALV/100;
136 \text{ rrd} = \text{rrd}/100;
   00
137
138
139
140 % Calculation of nominal discount rate
   rnomd = ((ri + 1) * (rrd + 1) - 1);
141
   00
142
143
144
145
146
   % Calculation of Aperture Area
147
148 Ap = Ar*rc;
149
   %
150
151
152 % Capital cost calculation
  % Calculate Direct Capital Cost
153
154 Subtotal = (FSI*Ap) + (FSF*Ap) + (FHTF*Ap) + CHX;
   CDC = Subtotal * (1 + rcont);
155
156
   00
157
158
159 % Calculate Indirect Capital Cost
160 CIC = (rEPC*CDC) + (Ftsal*rtsal*CDC);
161 %
```

```
162
163
   % Calculate Total Capital Cost
164
   CC = CDC + CIC;
165
   00
166
167
168
169
   % Year by year cost analysis
170 Project_life = 1:N;
                                                    % Project life is a vector from 1 to N
171 E = Wnetp * 8760;
                                                    % Conversion of capacity from kW to kWh by mul-
172 E = zeros(1, N) + E;
   0
173
174
175
   % Annual Expenses calculation
176
177 CFOM = zeros(1,N) + FFOM*(1+ri).^(Project_life-1)*Wsol;
178 CVOM = zeros(1,N) + FVOM/1000.*(Wsol*8760).*(1+ri).^(Project_life-1);
179 Cins = zeros(1,N) + CC*rins.*(1+ri).^(Project_life-1);
180 Property_value = zeros(1,N) + CC*Ftprp;
181 Ctprp = zeros(1,N) + rtprp.*Property_value;
182 CSALV = zeros(1, N);
183 CSALV(N) = CC*rSALV;
   EXP = CFOM + CVOM + Cins + Ctprp - CSALV;
184
   2
185
186
187
   % Loan Payments
188
189 DEBTamt = CC*FL;
190 Equity = CC - DEBTamt;
191 CPI = zeros(1,N) + ((DEBTamt*(rint*(1+rint)^P))/((1+rint)^P-1));
192 CPI(P+1:N) = 0;
193 DEBT = zeros(1, P+1);
194 INT = zeros(1, N);
195 PRN = zeros(1, N);
   DEBT(1) = DEBTamt;
196
   for i = 1:P
197
198
       INT(i) = rint*DEBT(i);
199
       PRN(i) = CPI(1) - INT(i);
200
       DEBT(i+1) = DEBT(i) - PRN(i);
201
202 end
```

```
203 Pretax_cashflow = -(CPI + EXP);
   8
204
205
206
207 % State income tax
208 taxable_income = zeros(1,N);
209 ITCbas = CC;
210 DEPbas = ITCbas - 0.5 \star (rITC \star CC);
211 STATE_DEP = zeros(1, N);
212 STATE_DEP(1:length(SCdep)) = (SCdep*DEPbas);
213 STATE_total_Deductions = EXP + INT + STATE_DEP;
214 STATE_without_deductions = taxable_income-STATE_total_Deductions;
215 STATE = rtst*STATE_without_deductions;
216 STATEsav = 0 - STATE;
217
   00
218
219
220 % Fedreral income tax
221 DEPbas = ITCbas - 0.5 \star (rITC \star CC);
222 FED_DEP = zeros(1, N);
223 FED_DEP(1:length(SCdep)) = (SCdep*DEPbas);
224 FED_total_Deductions = EXP + INT + FED_DEP + STATE;
225 FED_without_deductions = taxable_income-FED_total_Deductions;
226 FED = rtFed*FED_without_deductions;
227 FED_ITC = rITC*ITCbas;
228 FEDsav = 0 - FED;
229 \text{ FEDsav}(1) = 0 + (\text{FED_ITC}) - \text{FED}(1);
230 %
231
232 % Fuel savings and carbon tax calculation
                                                   % Conversion from USD/sh.tn. to USD/kg
_{233} FF = FF/977.4216;
_{234} HVF = HVF/3.6;
                                                   % Conversion from MJ/kg to kWh/kg
235 Esav = Esav*1000*Suse*365;
                                                   % Conversion from MW to kWh. 365 days/yr
_{236} rtCO2 = rtCO2 * Fcc;
                                                   % Conversion from USD/sh.tn.CO2 to USD/sh.tn coa
_{237} rtCO2 = rtCO2/977.4216;
                                                   % Conversion from USD/sh.tn to USD/kg
238 FS = FF*Esav/HVF;
                                                   % Calculates fuel savings [USD]
239 TAX = rtst+rtFed*(1-rtst);
                                                   % Calculates effective tax rate
240 CO2TAXsav = (rtCO2*Esav/HVF)*(1-TAX);
  8
241
242
243 % Calculation of after tax costs
```

```
H-41
```

```
244 Ctot = FEDsav + STATEsav + CO2TAXsav + Pretax_cashflow;
245
   0
246
247
   % Calculation of LCOE
248
  Discounted_E = E./(1+rrd).^Project_life;
249
250 Discounted_C = Ctot./(1+rnomd).^Project_life;
251 LCOE = (Equity - sum(Discounted_C))/sum(Discounted_E);
   2
252
253
254
   % Calculation of payback time
255
256
257
258
   % Cash flow analysis for 50 years to allow for PBT1 to exceed the project life.
259
  % Note that lines 228-258 are a repeat of lines 149-206 except "PBT1" is linked to each va
260
261 \text{ N}_{PBT1} = 1:200;
262 CFOM_PBT1 = zeros(1,200) + CFOM(1)*(1+ri).^(N_PBT1-1);
263 CVOM_PBT1 = zeros(1,200) + CVOM(1).*(1+ri).^(N_PBT1-1);
264 Cins_PBT1 = zeros(1,200) + CC*rins.*(1+ri).^(N_PBT1-1);
265 Property_value_PBT1 = zeros(1,200) + CC*Ftprp;
266 Ctprp_PBT1 = zeros(1,200) + rtprp.*Property_value_PBT1;
_{267} CSALV_PBT1 = zeros(1,200);
268 CSALV_PBT1(N) = CC*rSALV;
269 EXP_PBT1 = CFOM_PBT1 + CVOM_PBT1 + Cins_PBT1 + Ctprp_PBT1 - CSALV_PBT1;
270 CPI_PBT1 = zeros(1,200) + ((DEBTamt*(rint*(1+rint)^P))/((1+rint)^P-1));
271 \text{ CPI_PBT1}(P+1:200) = 0;
272 INT_PBT1(1:N) = INT;
273 INT_PBT1 (N+1:200) = 0;
274 PRN_PBT1(1:N) = PRN;
275 \text{ PRN_PBT1}(N+1:200) = 0;
276 Pretax_cashflow_PBT1 = -(CPI_PBT1 + EXP_PBT1);
277 taxable_income_PBT1 = zeros(1,200);
278 STATE_DEP_PBT1 = zeros(1, 200);
279 STATE_DEP_PBT1(1:length(SCdep)) = (SCdep*DEPbas);
280 STATE_total_Deductions_PBT1 = EXP_PBT1 + INT_PBT1 + STATE_DEP_PBT1;
281 STATE_without_deductions_PBT1 = taxable_income_PBT1-STATE_total_Deductions_PBT1;
282 STATE_PBT1 = rtst*STATE_without_deductions_PBT1;
283 STATEsav_PBT1 = 0 - STATE_PBT1;
284 FED_DEP_PBT1 = zeros(1, 200);
```

```
285 FED_DEP_PBT1(1:length(SCdep)) = (SCdep*DEPbas);
  FED_total_Deductions_PBT1 = EXP_PBT1 + INT_PBT1 + FED_DEP_PBT1 + STATE_PBT1;
286
287 FED_without_deductions_PBT1 = taxable_income_PBT1-FED_total_Deductions_PBT1;
288 FED_PBT1 = rtFed*FED_without_deductions_PBT1;
289 FEDsav_PBT1 = 0 - FED_PBT1;
  FEDsav_PBT1(1) = 0 + (FED_ITC) - FED(1);
290
   Ctot_PBT1 = FEDsav_PBT1 + STATEsav_PBT1 + CO2TAXsav + Pretax_cashflow_PBT1;
291
292
   %
293
294
   % Calculation of PBT1
295
  FSV = zeros(1,200) + FS.*(1+ri).^(N_PBT1-1);
296
297 After_tax_benefit = FSV*(1-TAX);
298 After_tax_cashflow = Ctot_PBT1 + After_tax_benefit;
299 PBT1cost = After_tax_cashflow + PRN_PBT1 + INT_PBT1.*(1-TAX);
300 CUMcash = -CC;
301 PBT = 1;
302 \text{ PBT1} = 1;
  j = 0;
303
_{304} FE = 0;
   for i = 1:200
305
        Extra = -CUMcash/PBT1cost(i);
306
        CUMcash = CUMcash + PBT1cost(i);
307
        PBT = PBT + 1;
308
        if i == N
309
             FE = FE + CUMcash;
310
        end
311
        if CUMcash > 0 && j == 0
312
             PBT1 = PBT + Extra;
313
             j = i;
314
        end
315
        if PBT1 > 1 && FE > 0
316
             break;
317
        end
318
  end
319
_{320} PBT1 = PBT1-1;
  % Returns NaN when PBT1 exceeds 200 years
321
  if PBT1 <= 200 && CUMcash < 0
322
       PBT1 = 200;
323
324 end
   8
325
```

```
326
327
328 % Calculation of PBT2
329 PBT2 = log(((CC*ri)/(FS + CO2TAXsav))+1)/log(1+ri);
330 %
331
332 end
```