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FINAL MODELING RESULTS 
 
 
Linear Programming Optimization Model 

 
Questar Gas has utilized for a number of years, a computer-based linear-programming 

optimization (LPO) model to evaluate both supply-side and demand-side resources.  This 
software product, marketed under the name of “SENDOUT,” is maintained by Ventyx 
headquartered in Atlanta, Georgia.  Ventyx is owned by ABB, a global power and 
automation technology group headquarted in Zurich, Switzerland with approximately 
117,000 employees.  SENDOUT is used by more than 100 energy companies for gas supply 
planning and portfolio optimization. 

 
SENDOUT has the capability of performing Monte Carlo simulations thereby 

facilitating risk analysis.  The Monte Carlo method utilizes repeated random sampling to 
generate probabilistic results.  It is best applied where relative frequency distributions of key 
variables can be developed or where draws can be made from historic data.  Because of the 
need for numerous random draws, this method has been facilitated by the availability of 
high-speed computer technology. 

 
Questar Gas is using a new release of SENDOUT this year, Version 14.0.0.  This 

version was installed during February of 2011.  SENDOUT Version 14.0.0 utilizes more 
powerful database tools, Microsoft SQL Server or SQL Server Express.  In previous 
versions, Microsoft Access was used.  SENDOUT Version 14.0.0 also has the capability of 
defining logical pricing relationships (baskets) within the model. 

 
In performing gas supply modeling, Questar Gas representatives work closely with 

consultants from Ventyx. The Ventyx consultants are very familiar with the gas supply 
modeling approach of the Company and they are comfortable with how the Company utilizes 
and configures the SENDOUT model.   

 
 
Constraints and Linear Programming 

 
 While the concepts of linear programming date back to at least the early 19th century, 
it was not until the middle of the 20th century that this approach began to be more widely 
accepted as a method for achieving optimal solutions in practical applications.  In summary, 
linear programming problems involve the optimization of a linear objective function subject 
to linear constraints.  Constraints are necessary in the determination of a maximum or 
minimum solution.  Constraints must be linear functions and can either represent equalities or 
inequalities.  An example of an inequality constraint in the natural gas business would be that 
the quantity of natural gas that can be transported over a certain segment of an interstate 
pipeline must be “less than or equal to” a certain level previously contracted for with that 
pipeline company.  Another example of an inequality constraint would be the production 
available from a group of wells providing cost-of-service natural gas.  The levels of this 
resource that can be taken can never exceed the maximum level available as production 
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naturally declines over time.  All resources are defined by constraints including purchased 
gas.  Some peaking contracts have minimum levels that must be taken during an agreed-upon 
period of time which would be translated into a “greater than or equal to” constraint.  
Constraints must be carefully defined to accurately reflect the problem being solved.  The 
arbitrary removal of required constraints results in an inaccurate solution.  For example, if the 
constraint on how quickly the Company’s capacity at the Clay Basin storage facility can be 
refilled were to be removed, the model would assume that it could be done instantaneously, 
resulting in an unrealistic solution.  The removal of all constraints in a linear programming 
problem results in no solution being obtained.  Questar Gas periodically reevaluates the 
constraints in its SENDOUT model to determine if they accurately reflect the realities of the 
problem being solved.   
 
 
Monte Carlo Method 
 
 When performing Monte Carlo analysis, the length of computer run times can 
become an issue.  To have a meaningful simulation, it is important to have a sufficient 
number of draws (typically hundreds).  Each draw consists of one deterministic linear 
programming computer run.  With the complexity of the Company’s modeling approach, one 
simulation usually takes several days to run.  The base Monte Carlo simulation developed by 
the Company this year utilized 1,198 draws. 
 
 When the developers of SENDOUT incorporated the Monte Carlo methodology, they 
limited the number of variables for which stochastic analysis can be applied to avoid 
excessive computer run times.  The two variables which they appropriately determined 
should be included are price and weather (within SENDOUT demand is modeled as a 
function of weather).  No other variables have a more profound impact on the cost 
minimization problem being solved by SENDOUT than these two. 
 
 The output reports generated from the SENDOUT modeling results consist primarily 
of data and graphs.  Most of the graphs are frequency distribution profiles from a Monte 
Carlo simulation.  Many of the numerical-data reports show probability distributions for key 
variables in a simulation run.  The heading “max” in these reports refers to the value of the 
draw in a simulation with the highest quantity.  The heading “min” refers to the value of the 
draw in a simulation with the lowest quantity.  The heading “med” refers to the median draw 
(or the draw in the middle of all draws).  Questar Gas believes that the mean and median 
values are good indicators of likely occurrence, given the underlying assumptions in a 
simulation.  Many exhibits in this report also include a base case number to show how the 
base case compares to the mean and median.  The base case will be discussed in more detail 
later in this section.  Also in these data reports are the headings “p95,” “p90,” “p10,” and 
“p5.”  The label “p95” on an output report means, based on input assumptions, that a 95 
percent confidence exists that the resulting variable will be less than or equal to that number.  
Likewise, a “p10” number suggests that there is a 10 percent likelihood that a variable will be 
less than or equal to that number.  These statistics and/or the shape of a frequency curve help 
define the range and likelihood of potential outcomes. 
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Natural Gas Price 
 

The price for which natural gas supplies can be purchased in the future is extremely 
difficult to model with any level of accuracy. It is not uncommon for the best industry 
forecasts to be off by more than a factor of two or less than a factor of 0.5. Most of the 
natural gas purchased by Questar Gas is tied contractually to one or more of ten area price 
indices. Three of those indices are published first-of-month prices for deliveries to the 
following interstate pipeline systems; KRGT, Questar Pipeline, and Northwest Pipeline.  The 
remaining are published daily indices for KRGT (3), Questar Pipeline (2), Southern 
California Gas (1), Northwest Pipeline (1),  and one basket combining KRGT, Northwest 
Pipeline and Questar Pipeline indices. To develop a future probability distribution, Questar 
Gas assembled historical data and determined the means and standard deviations associated 
with each price index. Questar Gas then utilized the average of two price forecasts developed 
by PIRA1 (19 months) and CERA2 (252 months) as the basis for projecting the stochastic 
modeling inputs. Forecasted standard deviations have been scaled up a pro rata based on 
prices to more accurately mirror reality. Exhibits 9.1 through 9.36 show, for the first model 
year, the resulting monthly price distribution curves for the first-of-month prices and the 
daily prices for each of the price indices used in the base simulation. 
 
 
Weather and Demand 
 
 In addition to the price of natural gas, the other single most unpredictable variable in 
natural gas resource modeling is weather induced demand.   Questar Gas makes available to 
the SENDOUT model 82 years of weather data.  It should be noted that when forecasting 
future demands, heating degree days are stochastic with a mean and standard deviation by 
month.  This number, along with usage-per-customer-per-degree-day and the number of 
customers, is used to calculate the customer demand profile used by the model.  The 
stochastic nature of the heating-degree-days creates a normal plot for degree days based on 
the 1,198 draws. For each month of simulation, the model randomly selects a monthly-
degree-day standard-deviation multiplier to create a draw-specific monthly-degree-day total.  
It then scans through 82 years of monthly data to find the closest matching month.  Then the 
model allocates daily degree-day values according to the degree-days in this historic month 
pattern.  Exhibits 9.37 through 9.49 show first the annual and then the monthly demand 
distribution curves for the first year of the base simulation.  Exhibit 9.50 shows the annual 
heating-degree-day distribution. 
 
 In prior years, before Questar Gas utilized Monte Carlo modeling techniques, a high 
demand and a low demand scenario were modeled as part of a sensitivity analysis.  
Currently, with the use of a Monte Carlo modeling approach, the wide variability in weather-

                                                 
1 PIRA Energy Group, Inc. (PIRA) is an international energy consulting firm with expertise in energy market 
analysis and intelligence.  PIRA’s client base exceeds 550 entities in over 60 countries. 
2 Cambridge Energy Research Associates, Inc. (CERA) is a leading advisor to international energy companies, 
governments, financial institution, and technology providers.  CERA has a staff of 200 employees in nine 
offices worldwide.  
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induced demand resulting from historical weather data is broader than any reasonable range 
of load growth scenarios.  This year there are 1,198 deterministic cases in the Monte Carlo 
simulation, each with a different demand level, thus obviating the need to model just one 
high and one low demand case.    
 
 
Peak Day and Base Load Purchase Contracts 
 
 An important consideration in the modeling process is the need to have adequate 
resources sufficient to meet a design-peak day.  The design-peak day for the 2011/2012 
winter-heating season has been determined to be 1.28 million Dth per day at the city gates.  
The design-peak day for many years has been defined to be a 1-in-20-year weather 
occurrence.  The most likely day for a design peak to occur is on January 2, although, the 
probability of a design peak occurring on any day between mid-December and mid-February 
is relatively flat.  Even though it is unlikely that a design-peak day will occur this year, the 
Company must be prepared to meet such a need should it occur.  Selecting a draw from a 
Monte Carlo simulation that utilizes on the maximum demand day a level of resources 
approximately equaling the design-peak day has proven to be problematic in that the 
SENDOUT model selects too much base-load purchased gas for a typical weather year.  The 
draws which have a design-peak-day occurrence also tend to be much colder than normal 
throughout the entire year.   The solution to this dilemma is to perform a statistical clustering 
analysis of all the Monte Carlo draws for first-year peak demand versus the median level of 
first-year annual demand.3  The result of this clustering exercise is a scatter plot that shows 
groups of draws.  These cluster points or groups represent draws that are most closely alike 
in terms of peak-day requirements and annual demand.  A cluster point is then chosen that 
we believe will meet both a realistic annual demand and peak day.   
 
 A second SENDOUT scenario is then executed, with the unused RFP packages 
removed, and only those “cluster point” packages remaining.  One of the purposes of this run 
is to verify that adequate purchased gas resources at the least cost will be available in the 
remote event that a design-peak day were to occur.  The optimizing nature of the SENDOUT 
model helps to make this happen.  This year, of the 1,198 draws generated in this process, 8 
draws would exceed the design peak-day requirement of 1.28 MMDth.  In other words, this 
scenario has enough resources to meet a peak-day event.  Most of the base-load purchased-
gas resources, with their associated time-availabilities, must be committed, during the 
springtime, prior to the beginning of the gas supply year, to be ready for cold weather in the 
fall.  Patterns of usage for storage resources, spot gas, and cost-of-service gas do not need to 
be committed to before the gas year begins.  This modeling approach also lends itself to 
performing operational analysis periodically during the year as natural gas prices change.     
 
 Exhibit 9.51 shows the resources utilized to meet the design-peak day.  Exhibit 9.52 
shows the firm-peak-day demand distribution for the base simulation for the first plan year.  
Understandably, the design-peak day for Questar Gas is in the upper tail of the curve.   
 
                                                 
3 See the cluster analysis discussion in the Modeling Issues subsection of the Purchased Gas section of this 
report. 
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Base Case Identification 
 

Whenever one draw of a stochastic analysis is identified as a base case, there is a 
general tendency to assume that there is a greater likelihood of all the attributes of that draw 
occurring than actually exists. Nevertheless, it is useful to identify a base case for ease of 
discussion and to facilitate the measurement of deviations.  
 

In determining a base case, Questar Gas made available to the SENDOUT model, all 
of the optimal purchase gas resources selected to meet the design-peak day occurrence as 
described previously.  Then, another Monte Carlo simulation was performed.  Re-running the 
simulation allowed the model for each draw to size the appropriate level of purchased-gas 
resources from packages which, for the most part, will actually be under contract.  Inevitably, 
when purchased-gas RFP responses are made, a few of the deals will fall through for a 
variety of reasons.  These deals can usually be replaced under fairly similar terms. 

 
There are a number of criteria, however, that could probably be used to determine a 

base case from the simulation. The draw with the median demand level could be used, for 
example, but that draw will not be the same as a draw with the median price for any one of 
the price distributions used and vice versa.  Questar Gas developed an algorithm to 
systematically select its base case.  Using the distributions for 21-year total cost, first year 
demand, first-year purchase gas and first-year cost-of-service gas, each distribution was 
ordered from least to greatest result value.  Then, in the stated order above, starting with the 
median value, a window of draws was selected centered at the median.  Those selected draws 
were then taken as the starting point to look in the second distribution with the same size 
matching draws.  If matches were found, then those were taken to the third distribution as the 
starting point.  The first draw that was found within the window and that existed in all 
distributions was selected as the base case.  When no match was found from one distribution 
to the next, the process started over and the bounds of the window were increased to include 
the next highest and next lowest draws.    
 
Purchased-Gas Resources 
 
 Exhibits 9.53 through 9.64 show the probability distributions for purchased gas for 
each month of the first plan year from the base simulation.  Exhibit 9.65 shows the annual 
distribution from the simulation.  Exhibit 9.66 shows the numerical monthly data with 
confidence limits.  Purchased gas for the first plan year from the base case is approximately 
45.2 million Dth.  Questar Gas is confident that for a colder-than-normal year, sufficient 
purchased-gas resources will be available in the market.  Likewise, Questar Gas is confident 
that in the event of a warmer-than-normal year, it has not “over-bought” base-load purchase 
contracts.   
 
Cost-of-Service Gas 
 
 Another important output from the SENDOUT modeling exercise each year is a 
determination of the level of cost-of-service gas to be produced during the upcoming gas-
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supply year.  Exhibits 9.67 through 9.78 show the distributions for cost of service gas for 
each month of the first plan year from the base simulation.  Exhibit 9.79 shows the annual 
distribution from the simulation.  Exhibit 9.80 shows the numerical monthly data with 
confidence limits.  Cost-of-service production for the first plan year from the base case is 
approximately 70.1 million Dth.  
 
 
First-Year and Total System Costs 
 
 The linear-programming objective function for the SENDOUT model is the 
minimization of variable cost.  A distribution curve for first-year total cost from the base 
simulation is shown in Exhibit 9.81.  The first year total cost from the base case is 
approximately $634.86 million.  A similar curve for the total 21-year modeling time horizon 
is shown in Exhibit 9.82.  The base case cost for this time period is approximately $11.03 
billion. 
 
 
Gas Supply Plan 
 
 Exhibits 9.83 through 9.86 show additional planning detail for the first two years of 
the base case.  Monthly data for each category of cost-of-service gas and each purchase-gas 
package are listed.  Also included are injections into and withdrawals from each of the four 
storage facilities utilized by the Company.  Although no actual gas-supply year will ever 
perfectly mirror the plan, these exhibits are among the most useful products of the IRP 
process.  They are used extensively in making monthly and day-to-day nomination decisions. 
 
 One of the drawbacks of the base case, as well as all stochastic scenarios, is the lack 
of normal temperatures for an entire year.  This issue surfaced as the Company worked on 
data for its rate pass-through cases.   The Rate Department requested that a report be included 
in the IRP that showed numbers associated with a normal temperature scenario.  For this 
reason, the Company has decided to include this case which should not be confused with the 
base case.  In this document, the normal temperature scenario can be seen in normal case 
Exhibits 9.87 and 9.88.   
 
 
Gas Supply/Demand Balance 
 
 Exhibits 9.89 and 9.90 show monthly natural gas supply and demand broken out by 
geographical area, residential, commercial and the non-GS categories of commercial, 
industrial and electric generation. 

 
 This report is available in SENDOUT and is called “Natural Gas Requirements 

Versus Supply.”  The data in these exhibits represent the selected base case.  The SENDOUT 
report has been slightly adapted to show geographical areas and lost-and-unaccounted-for 
gas.  Because demand is measured at the customer meter and modeling occurs at the city 
gate, in years past the demand has been grossed up by the lost-and-unaccounted-for amount 
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to model natural gas demand at the city gate.  This year lost-and-unaccounted-for gas was 
modeled as a percent of the other demand classes and is shown as its own specific demand 
class. 
 
 Exhibit 9.89 of the report shows Requirements of the System.  Those are specifically 
Demand, Fuel Consumed, and Storage Injection.  This gives the total requirement at 131.92 
MMDth for the Base Case.  Exhibit 9.90 shows sources of supply which include purchased 
gas categories, cost-of-service gas, Clay Basin, and the Aquifers.  The total supply is 131.92 
MMDth for the Base Case.   
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