BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

)

)

)

)

)

IN THE MATTER OF THE APPLICATION OF DOMINION ENERGY UTAH TO INCREASE DISTRIBUTION RATES AND) CHARGES AND MAKE TARIFF MODIFICATIONS

Docket No. 22-057-03

PHASE II DIRECT TESTIMONY OF BRADLEY G. MULLINS

ON BEHALF OF

NUCOR STEEL-UTAH, A DIVISION OF NUCOR CORPORATION

September 15, 2022

Nucor Exhibit 1.0

TABLE OF CONTENTS TO THEPHASE II DIRECT TESTIMONY OF BRADLEY G. MULLINS

I.	Introduction and Summary	1			
II.	Background				
III.	Transportation Service Rate Class	6			
IV.	Cost of Service Study	10			
	a. Account 376 – Feeder Mains	11			
	b. Distribution Depreciation Expenses	14			
V.	Transportation Service Rate Design	15			

EXHIBIT LIST

Nucor Exhibit 1.1:	Regulatory Appearances of Bradley G. Mullins
Nucor Exhibit 1.2:	Recommended Cost of Service Study Results
Nucor Exhibit 1.3:	Proposed Transportation Service Rate Design

1		I. INTRODUCTION AND SUMMARY
2	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
3	A.	My name is Bradley G. Mullins, and my business address is Lummintie 13, Oulu, Finland
4		FI-90640.
5 6	Q.	PLEASE STATE YOUR OCCUPATION AND ON WHOSE BEHALF YOU ARE TESTIFYING.
7	A.	I am an independent energy and utilities consultant representing energy consumers before
8		state regulatory commissions, primarily in the Western United States. I am appearing in
9		this matter on behalf of Nucor Steel-Utah, a Division of Nucor Corporation ("Nucor"), a
10		transportation service customer of Dominion Energy Utah ("Dominion").
11	Q.	PLEASE SUMMARIZE YOUR EDUCATION AND WORK EXPERIENCE.
12	A.	I have a Master of Accounting degree from the University of Utah. After obtaining my
13		master's degree, I worked at Deloitte Tax in San Jose, California. I later worked at
14		PacifiCorp performing power cost modeling. I currently provide independent consulting
15		services to utility customers on matters such as revenue requirement, power cost
16		forecasting, and rate spread and design. I have sponsored expert testimony in regulatory
17		jurisdictions around the United States, including before the Public Service Commission
18		of Utah. A list of cases where I have submitted testimony can be found in Nucor Exhibit
19		1.1.
20	Q.	WHAT IS THE PURPOSE OF YOUR PHASE II DIRECT TESTIMONY?
21	A.	I evaluate the class cost of service model, rate spread, and rate design Dominion has

proposed in the Direct Testimony of witness Austin Summers, including the proposal to

22

23		split the Transportation Service ("TS") rate class into three separate rate schedules. ¹ I
24		present and discuss alternative class cost of service study assumptions, the results of
25		which are attached as Nucor Exhibit 1.2. Finally, I discuss and analyze alternative rate
26		design approaches for the TS rate class, which are attached as Nucor Exhibit 1.3.
27 28	Q.	PLEASE SUMMARIZE YOUR PRINCIPAL RECOMMENDATIONS AND CONCLUSIONS.
29	A.	If approved, Dominion's proposals related to the TS rate class, including its proposal split
30		the TS rate class into three schedules, would result in a subset of Dominion's largest
31		customers receiving extraordinary rates increases. Dominion has proposed staggering
32		rate increases for large industry that is otherwise being subject to increased gas
33		commodity cost and increased cost for nearly every other input to their production
34		processes. A cost of service study can be constructed in many different ways and is not
35		the only factor to consider when evaluating the reasonableness of how revenues are
36		spread to individual rate classes. Other factors, such as consistency, gradualism, fairness,
37		economy, and practicality, are also necessary to consider when evaluating the spread of
38		revenue requirement to rate classes. To avoid such severe rate impacts, I request the
39		Commission adopt a rate spread and rate design for the TS class that will have a more
40		balanced impact on all customers. Specifically, I recommend the Commission:
41		1) Decline to modify the long-standing composition of the TS rate schedule;
42 43		2) Adopt an allocation for core distribution mains in the class cost of service study using a 100% design-day demand ;

¹ *See* DEU Exhibit 4.0, Direct Testimony of Austin C. Summers for Dominion Energy Utah at 18-26 (May 2, 2022) ("DEU Exhibit 4.0").

- Allocate deprecation expenses for individual FERC Accounts in a manner consistent with the allocation of the underlying plant accounts; and
 - 4) Adopt a rate design for the TS rate class that recovers the TS revenue requirement sufficiency or deficiency through an equal percentage change to the volumetric blocks and the demand charge, with no change to the administrative and basic service fees.
- 51

44

45

46

47

48

49 50

II. BACKGROUND

52Q.WHAT REVENUE REQUIREMENT DEFICIENCY HAS DOMINION HAS53PROPOSED TO RECOVER IN THIS PROCEEDING?

- 54 A. In its revenue requirement and class cost of service models, Dominion has proposed to
- 55 increase its rates by \$70,511,689 or an increase of approximately 16.3%.² In its rate
- 56 design model, however, Dominion has designed rates to produce an \$87,884,317 revenue
- 57 increase, or an increase of approximately 21.1%.³ I was unable to verify the source of
- 58 the variance between these two models, although the difference may be driven by the
- 59 treatment of the conservation energy tariff ("CET") revenues and the treatment of
- 60 customers migrating to the Transportation Bypass Firm ("TBF") schedule. While Nucor
- 61 is not advocating for a revenue requirement adjustment for these differences, it is
- 62 necessary for the rate design to tie to the ultimate revenue requirement change calculated
- 63 in Phase I of this docket.

² See, e.g., DEU Exhibit 4.20, Workpaper "323863DEUExh4.20ElctrncMdl5-2-2022," Tab "Report." Percentage calculated as \$70,511,689, divided by jurisdictional sales of \$433,402,504.

³ *Id.* at Tab "Rate Design," Excel Row "292." Represents the difference between \$503,914,193 in proposed jurisdictional sales and \$416,029,876 in current jurisdictional sales.

64 Q. WHAT RATE SPREAD HAS DOMINION PROPOSED?

- 65 Table 1, below, details the revenue spread based on both the cost of service study model A.
- and the rate design model.⁴ **Table 1** also separately details the impact of splitting the TS 66
- 67 rate class into three classes.

		Rev	. Req. / Cos	st of Service			Rate Desi	gn Model	
		No TS Sp	lit	TS Spli	t	No TS Sp	lit	TS Spli	t
		\$	%	\$	%	\$	%	\$	%
1	General Sales	57,909,354	15.1%	57,909,354	15.2%	75,132,513	20.6%	75,132,513	20.6%
2	N.G. Vehicles	549,647	21.1%	549,647	21.1%	652,598	26.1%	652,598	26.1%
3	Firm Sales	1,173,453	41.6%	1,173,453	42.0%	1,245,154	45.7%	1,245,154	45.7%
4	Interr. Sales	(14,449)	-5.5%	(14,449)	-5.5%	(9,570)	-3.7%	(9,570)	-3.7%
5	Transp. Bypass	1,765,581	37.2%	1,765,581	38.1%	8,722	0.1%	8,722	0.1%
6	Lake Side		Not Stu	died		-	0.0%	-	0.0%
7	Munin. Transp.	6,664	23.1%	6,594	22.9%	2,711	9.4%	2,711	9.4%
8	Transportation	9,121,438	23.1%			10,920,754	29.3%		0.0%
9	TS Small		\backslash	(1,542,423)	-10.9%		\backslash	(1,446,643)	-10.3%
10	TS Medium		\	3,160,206	22.9%			4,267,938	33.6%
11	TS Large			7,503,726	67.9%			8,030,894	76.4%
12	Total	70,511,689	16.3%	70,511,689	16.3%	87,952,882	21.1%	87,884,317	20.7%

Table 1
Dominion Revenue Deficiency By Rate Schedule
Revenue Requirement vs. Rate Design

68

As can be seen from Table 1, there are material differences between the allocation 69 of the revenue deficiency in the cost of service model versus the rate design model. For 70 example, the rate design model allocates a 29.3% rate increase to transportation 71 customers, while the cost of service model only allocates a 23.1% rate increase. 72 Similarly, the rate design model would result in virtually no rate increase being allocated 73 to transportation bypass customers, whereas the cost of service study results in a 37.2% 74 rate increase.

4 See generally id.

75		The rate increase Dominion has proposed in this case is already large, and using
76		either modeling approach, Dominion also has recommended that TS customers, overall,
77		receive an above average system rate increase. Notwithstanding, under the TS Split
78		alternative, Dominion proposes that TSL customers receive an even larger rate increase
79		of 3.7 to 4.1 times the average, depending on the model used. As I discuss below,
80		however, this approach is not consistent with my cost of service study recommendation
81		and will have exceptional impacts on the 29 customers that happen to be classified into
82		the proposed TSL rate class. Such impacts qualify as "rate shock" and therefore should
83		appropriately be mitigated.
84 85	Q.	PLEASE PROVIDE AN OVERVIEW OF THE RESOLUTION OF COST OF SERVICE ISSUES IN DOCKET NO. 19-057-02.
86	A.	Dominion's cost of service study was an issue addressed in Docket No. 19-057-02,
87		Dominion's 2019 General Rate Case ("GRC"). Among other things, parties raised issues
88		regarding the composition of and cost of service calculations for the TS rate class. Given
89		the above average rate increase attributed to the TS rate class in that docket, the
90		Commission, in its February 25, 2020 Report and Order, ordered a gradual, phased-in
91		rate implementation for the TS class and required parties to engage in a collaborative
92		working group to address and resolve these rate design issues prior to Dominion next
93		GRC, which is this docket. Dominion convened the working group in Docket No. 20-
94		057-11 and held several working group meetings in 2020 and 2021.

95 Q. WHAT WAS THE RESULT OF THE WORKING GROUP DISCUSSIONS?

- 96 A. While several workshops were held discussing various topics, no consensus was reached
- 97 with respect to cost of service or rate design issues.⁵

98 Q. WHAT HAS DOMINION PROPOSED IN THIS DOCKET?

- A. The cost of service study and rate spread Dominion has proposed was identified in the
- 100 Direct Testimony of witness Austin Sommers. Among other things, Dominion has
- 101 proposed to split the transportation rate class into three separate rate classes, including 1)
- 102 a Transportation Service Small ("TSS") class with throughput less than 25,000 dth/year;
- 103 2) a Transportation Service Medium ("TSM") class with throughput between 25,000
- 104 dth/year and 250,000 dth/year; and 3) a Transportation Service Large ("TSL") class with
- 105 throughput exceeding 250,000 dth/year.⁶ If the TS class is not split, however, Dominion
- still has proposed a rate design that will produce exceptional rate impacts for large
- 107 customers.

108III.**TRANSPORTATION SERVICE RATE CLASS**

109Q.HOW DO YOU RECOMMEND THE COMMISSION EVALUATE THE TS RATE110CLASS IN THIS PROCEEDING?

- 111 A. I recommend the Commission decline to split the transportation rate class in this docket
- and adopt a rate spread that produces more uniform rate impacts across customers in the
- 113 TS rate class. Splitting the TS rate class in the manner Dominion proposed results in rate
- 114 shock for certain customers, particularly those in the proposed TSL rate class. Other than
- their size, the load characteristics of the 29 large customers in the proposed TSL rate

⁵ Docket No. 20-057-11, *Cost of Service and Rate Design Issues for Dominion Energy Utah*, Summary Report of the Cost-of-Service and Rate Design Task Force at 3-4 (June 29, 2021).

⁶ DEU Exhibit 4.0 at 5:105-114.

116		class are not materially different than those of any other customer in the proposed TSM
117		or TSS rate classes. The cost of service study results that I have prepared in Nucor
118		Exhibit 1.2 do not support a finding that there is a significant intra-class inequity in the
119		TS rate class, and to the extent that the Commission desires to address perceived intra-
120		class inequities in the TS rate class, splitting the TS rate class is not necessary. Prior to
121		undertaking the effort to split the TS rate class, it is most appropriate to undertake steps
122		to modify the rate design. Splitting the rate class produces many unintended
123		consequences and results in severe rate impacts for a small subset of customers and,
124		therefore, is not desirable in this case. In contrast, taking steps to modify rate design can
125		still achieve the same objectives as splitting the rate class, while producing more
126		balanced impacts on individual customers. Where possible, maintaining a consistent and
127		stable set of rate classes over-time is generally advantageous.
128 129	Q.	WHAT JUSTIFICATION HAS DOMINION PROVIDED FOR SPLITTING THE TS RATE CLASS?
130	A.	Dominion cited a study it performed in the 2019 GRC, which Dominion believes shows
131		that small customers were subsidizing large customers in the TS rate class. ⁷ Dominion
132		also identified the results of the study it performed in this proceeding where it has
133		calculated a larger rate increase for medium and large transportation customers than small

134 commercial customers.

⁷ DEU Exhibit 4.0 at 19:500-509.

135 Q. **DO YOU AGREE WITH DOMINION'S JUSTIFICATION?**

- 136 No. The cost of service study assumptions that I discuss below do not support a finding A.
- 137 that small customers are subsidizing large customers in the TS rate class. Rather, it is the
- 138 medium-sized customers receiving a modest subsidy in my cost of service study.
- 139

Q. WILL SPLITTING THE TRANSPORTATION CLASS ELIMINATE INTRA-140 **CLASS SUBSIDIES?**

- 141 A. No. There are winners and losers in every cost of service method and rate design
- 142 approach. Splitting the rate class might address some perceived inequities, but in doing
- 143 so, new inequities would be created. It might be possible, for example, to perform a
- 144 further cost study and develop separate rates for even smaller subsets of customers in
- 145 order to eliminate all perceived subsidies. In doing so, one might discover that small
- 146 customers in the proposed TSM class are subsidizing large customers in the TSM class,
- 147 warranting a further split into a TSM small and a TSM large rate class. This sort of
- 148 analysis could be performed iteratively, potentially down to each individual customer,
- 149 increasingly splitting the classes until every perceived inequity is resolved. This exercise,
- 150 however, would be contrary to the concerns of practicality and fairness.

151 HOW DID DOMINION DETERMINE THE THRESHOLD FOR THE THREE TS **Q**. **RATE CLASSES?** 152

153 Dominion has established thresholds of less than 25,000 dth/year for the proposed TSS A.

- 154 rate class, less than 250,000 dth/year for the proposed TSM rate class, and greater than
- 155 250,000 dth/year for the proposed TSL rate class. Dominion cites several factors it
- 156 considered in setting these thresholds, including evaluation of the similarity of customers

in a rate class, the size of the rate class, potential borderline customers, and
 administrative burden.⁸

159 Q. HOW MANY CUSTOMERS ARE IN THE PROPOSED TS RATE CLASSES?

- 160 A. In the proposed TSL rate class there are only 29 customers. In the proposed TSM rate
- 161 class there are 226 customers. In the proposed TSS rate class there are 891 customers.
- 162 This difference in the number of customers is a problem with Dominion's proposal.
- 163 Allocating costs based on the throughput of just 29 customers has the potential to result
- 164 in the costs being influenced by one or two major customers in that class. If, for
- 165 example, a large customer decides to install a new facility or close an old facility, and
- 166 materially changes its throughput, such decisions could have a material impact on the
- 167 cost of service rates paid by all other customers in the class.

168 Q. HOW WILL DOMINION ADMINISTER THESE THRESHOLDS?

- 169 A. The process for administering the transition of customers from one rate schedule to
- another will result in increased administrative burden and potential controversy.
- 171 Customers will have an incentive to remain on the proposed TSS rate schedule, even
- though they may qualify for the proposed TSM rate class.

173 Q. WHAT DO YOU RECOMMEND?

A. I recommend against splitting the TS rate class in this docket. I also recommend against

- 175 the dramatic rate design changes that Dominion has proposed for the TS rate class,
- assuming it is not split. Rather, considering the cost of service study assumptions
- 177 discussed below, I recommend adopting a more balanced rate design for the TS rate class.

⁸ DEU Exhibit 4.0 at 21:542-22:555

178IV.COST OF SERVICE STUDY

179 Q. WHAT GENERAL PRINCIPLES DO YOU RECOMMEND THE COMMISSION 180 APPLY WHEN EVALUATING CLASS COST OF SERVICE?

181 A. There are many principles that the Commission may consider when evaluating the 182 reasonableness of a cost of service study and the associated rate spread. Foremost, 183 however, it is important to recognize that no cost of service study is perfect. While it is 184 possible to establish a precise revenue requirement using known and measurable 185 accounting data, allocating that revenue requirement to individual customer classes relies 186 on high-level economic assumptions, many of which might be viewed differently by 187 different experts. Recognizing this imprecision, I recommend cost allocation follow the 188 principle of cost causation. Under the principle of cost causation, it is the consumer that 189 causes a cost to exist that pays for the costs. Determining which consumers caused a 190 particular cost is a difficult and imprecise exercise. To allocate costs, it is therefore 191 necessary to make high-level assumptions that costs of a particular cost category are 192 caused by consumers in proportion to some metric. For instance, Dominion's study 193 assumes that the cost of core distribution mains is caused by consumers in proportion to a 194 metric calculated as 60% design day demand and 40% throughput. This sort of approach, 195 however, is judgment informed and does not necessarily correspond to the cost that any 196 particular customer might cause from using the core distribution system.

Further, other factors are also equally important to consider the reasonableness of a revenue spread to individual customer classes. It would be inappropriate to rely solely on an allocation method when doing so produces unreasonable results. Accordingly, factors such as consistency, gradualism, and practicality all must be considered when evaluating the rate spread calculated in a cost of service model. For example, where a

202		cost allocation method produces rate impacts that would otherwise result in rate shock for
203		certain customers, mitigating the rate increase for that customer class is appropriate.
204 205	Q.	WHAT CHANGES DO YOU RECOMMEND TO DOMINION'S COST OF SERVICE STUDY?
206	A.	I recommend the Commission make two changes when evaluating the cost of service
207		study Dominion has proposed. First, I recommend that the core distribution main costs
208		be allocated using 100% design day demand. Second, I recommend that depreciation
209		expenses be allocated based on the specific depreciation expenses accrued for each FERC
210		account, rather than allocating the expense in proportion to gross plant. Cost of service
211		study results supporting these recommendations may be found in Nucor Exhibit 1.2.
212		a. <u>Account 376 – Feeder Mains</u>
213 214	Q.	WHAT METHOD DOES DOMINION USE TO ALLOCATE CORE DISTRIBUTION MAINS?
215	A.	Dominion allocates core distribution mains, which it refers to as feeder mains, using a
216		variation of the peak and average method. Specifically, Dominion allocates 60% of the
217		cost of core distribution mains using design day demand and 40% using throughput.
218		Core distribution mains represents one of the largest plant accounts on Dominion's
219		system. Since these plant values are a driver in the allocation of other costs, such as
220		O&M and depreciation expenses, the allocation method used for core distribution mains
221		has a material impact on the overall cost of service for each rate class.
222	Q.	WHAT IS THE BASIS FOR THE 60%/40% SPLIT DOMINION PROPOSED?
223	A.	In the context of the peak and average allocation factor, the "peak," design day
224		throughput is generally referred to as the demand component, whereas the average is
225		sometimes referred to as the energy component. It is common for the split in a peak and

average method to be derived by the design-day load factor, although often these
weightings are judgement informed. Thus, the firm system load factor, representing the
relationship between demand and energy on the utility's system, sometimes is used as a
guide for determining a reasonable demand energy split in a peak and average method.

230 Q. WHAT IS DOMINION'S DESIGN DAY LOAD FACTOR?

A. In Dominion's cost of service model, Utah jurisdictional design day throughput was
1,459,679 dth, whereas average daily throughput was 473,714 dth.⁹ Thus, if such an
approach were used in this docket, the result would be a 68%/32% split.

234 Q. DO YOU AGREE WITH USING A PEAK AND AVERAGE METHOD TO 235 ALLOCATE MAINS?

A. No. I recommend that all core distribution investments be allocated on the basis of

237 demand. While I understand the peak and average method has been used in the past,

allocating 40% of core distribution mains on the basis of throughput is not consistent with

cost causation. Consumers cause costs on the core gas distribution system by having the

240 capacity available to deliver sufficient natural gas to satisfy their individual requirements.

241 Consumers do not cause more costs on the core distribution system in proportion to the

volumes delivered. A consumer that reserves 100 dth/day of firm capacity causes the

same amount of costs, whether it ultimately consumes 100 dth/day or zero dth/day, on

244 average. If distribution capacity has been built to serve a particular customer, it is not

- 245 equitable to provide the consumer a discount if it uses that capacity less frequently.
- 246 While a customer with lower throughput will pay reduced commodity costs, there is no

relationship between the commodity costs of natural gas and the cost of the gas

247

9

DEU Exh. 4.20, Tab "COS Input.,"

248 distribution system which warrants splitting the allocation of mains between demand and249 energy.

Another principal problem with a peak and average approach is that the peak used in the calculation already encompasses the average firm throughput. This results in a double weighting of throughput in the allocation factor. The peak day throughput, by definition, already encompasses the average daily throughput.

Q. IS THE CORE DISTRIBUTION SYSTEM BUILT FOR AVERAGE GAS FLOWS?

256 No. Accordingly, using a peak and average method is not reasonable approach for A. 257 allocating core distribution mains. For a gas distribution system, there is no trade-off 258 between demand and energy. The cost of the core distribution system does not decline if 259 consumers consume less gas, while still requiring the same level of peak or design day 260 capacity. The system is built to meet all firm gas requirements under design day 261 conditions, not based on averages. As new additions are made to the distribution system, 262 for example, those additions do not enhance the ability of ratepayers to consume more 263 than the design-day requirements of the system. Therefore, it is the design requirements 264 that are the primary driver of costs for the core distribution system, not throughput. This 265 is why most major inter-state pipelines, such as Northwest Pipeline, establish cost 266 responsibility solely based on firm demand charges, rather than volumetric rates.

200

267 Q. WHAT DO YOU RECOMMEND?

A. I recommend allocating core distribution mains using 100% design day demand. In
Nucor Exhibit 1.2, I have prepared an alternative cost of service study analysis using
100% design day demand to allocate the cost of core distribution mains. The result of
that study is detailed in Table 2 below.

Table 2

Cost of Service Impact of Design Day Allocator for Core Distribution Mains

				~~						
				GS	FS	IS	TS	TBF	NGV	
		10	0% Design Day D	emand 18 5%	27 7%	53 7%	7 1%	25 2%	18.0%	
			Xate mercase	10.370	21.170	-33.770	-7.470	23.270	18.070	l
272		Thu	s, as can be seen	n in Table	2 , the us	se of desig	gn day d	emand ir	ndicates th	nat it is
273		necessary to	reduce TS cus	tomer rate	s.					
274			b. <u>Dist</u>	ribution D	<u>Deprecia</u>	tion Exp	<u>enses</u>			
275 276	Q.	HOW HAS EXPENSE	DOMINION S?	ALLOCA	TED DI	STRIBU	TION I	DEPREC	CIATION	I
277	A.	Distribution	deprecation ex	penses are	e allocate	d in prop	ortion to	allocate	d gross	
278		distribution plant.								
279	Q.	DO YOU A	GREE WITH	THAT A	PPROA	CH?				
280	A.	No. Each d	istribution plan	t account ł	nas a diff	erent dep	reciatior	n rate and	l a differe	nt
281		allocation.	Long-lived pla	nt accounts	s such as	Account	576 – M	lains tend	d to have I	lower
282		depreciatior	rates, whereas	other acco	ounts hav	ve shorter	deprecia	ation rate	es. Furthe	r, each
283		of those acc	ounts have disc	rete alloca	tion fact	ors. Bala	inces in .	Account	364 - LN	G Plant,
284		for example	, are allocated of	only to sale	es custon	ners. Wit	th Domin	nion's ap	proach, h	owever,
285		the LNG de	preciation expe	nses are al	located t	o all cust	omers in	n proporti	ion to allo	ocated
286		distribution	plant balances.							
287	Q.	WHAT DO	YOU RECON	MMEND?						
288	A.	I recommen	d that deprecat	ion expens	es be cal	culated f	or each H	FERC pla	ant accour	nt and

allocated using the same allocation factor that is used for underlying FERC account.

289

290 Q. WHAT IS THE IMPACT OF THIS RECOMMENDATION?

- A. **Table 3** below details the impact on the total rate increase by class of this
- recommendation in addition to using the 100% design day factor for core distribution
- 293 mains detailed above.

Table 3
Impact of Fully Allocated Distribution Expenses

	GS	FS	IS	TS	TBF	NGV	
100% Design Day Demand + Allocated Distr. Exp.							
Rate Increase	18.6%	27.1%	-52.4%	-7.6%	23.9%	17.8%	

294V.**TRANSPORTATION SERVICE RATE DESIGN**

295 Q. HOW DO YOU RECOMMEND THE COMMISSION ADDRESS 296 TRANSPORTATION SERVICE RATE DESIGN?

A. As noted above, I recommend that the Commission decline to split the TS rate class, as

the split is not supported by my cost of service study recommendation. As a matter of

fairness, I recommend that the Commission avoid abrupt changes that will result in

300 excessive rate impacts between customers in the TS rate class. The existing rate structure

- 301 has been in place for many years and, as demonstrated above, disturbing it in one single
- 302 action could have severe consequences for certain customers. Rather, it is more
- 303 reasonable to continue the existing rate structure, making gradual changes to rebalance
- 304 the rate class over time, as necessary.

305Q.DOES YOUR COST OF SERVICE STUDY SUPPORT A FINDING THAT306SMALL TS CUSTOMERS ARE SUBSIDIZING LARGE TS CUSTOMERS?

- A. No. As can be seen from Page 2 of Exhibit Nucor 1.2, the TS rate reduction using my
 cost of service assumptions was -12.49% for small transportation customers, -2.55% for
- 309 medium-sized transportation customers, and -7.72% for large transportation customers.

310		Thus, to the extent that a subsidy does exist, it is being provided to the medium-sized
311		transportation customers, not the large transportation customers. The differences
312		between these amounts, however, are not significant enough to warrant dramatic changes
313		to rate structure or rate design for the TS rate class. Further, even if the Commission
314		were to disagree with the using design day as the allocator for core distribution mains in
315		the overall cost of service study, one may still consider the effects of using the design day
316		allocator when evaluating cost responsibility within the TS rate class and determining
317		whether an unreasonable subsidy exists.
318	Q.	WHAT SPECIFICALLY DO YOU RECOMMEND?
319	A.	I recommend the Commission adopt the TS rate design presented in Nucor Exhibit 1.3.
320		Specifically, I recommend the Commission adopt a balanced rate spread for the TS rate
321		class that recovers the allocated revenue requirement sufficiency or deficiency through an
322		equal percentage increase to the volumetric charges and demand charges, with

- 323 Dominion's proposed reductions to the administrative fees. This will result in all
- 324 transportation customers receiving a similar rate reduction or rate increase, with small
- 325 customers receiving a greater benefit from the declining administrative charges.

326 Q. DOES THIS CONCLUDE YOUR PHASE II DIRECT TESTIMONY?

327 A. Yes.