BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

Phase II Direct Testimony of Kevin C. Higgins

on behalf of

UAE

Docket No. 22-057-03

September 15, 2022

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	OVERVIEW AND CONCLUSIONS	1
III.	CLASS COST-OF-SERVICE STUDY	4
Spli	itting Up the TS Class	4
Cor	rection to TS and TBF Current DNG Revenue	5
Der	nand-Related Cost Allocation Generally	6
Des	ign-Day / Throughput Weighting in Allocation Factor 230	7
Lar	ge Diameter IHP Mains Allocation	1
Mag	gna LNG Facility Allocation	13
Cos	t Allocation Summary1	17
IV.	REVENUE ALLOCATION CONSIDERATIONS	19
V.	TS, IS AND TBF RATE DESIGN	20

EXHIBITS

UAE Exhibit COS 2.0	Direct Testimony of Kevin C. Higgins
UAE Exhibit COS 2.1	NARUC Manual Excerpt
UAE Exhibit COS 2.2	UAE Cost-of-Service Results
UAE Exhibit COS 2.3	UAE LNG Plant Rate Base Calculation
UAE Exhibit COS 2.4	DEU Responses to Data Requests

1		DIRECT TESTIMONY OF KEVIN C. HIGGINS
2		
3	I.	INTRODUCTION
4	Q.	Please state your name and business address.
5	A.	My name is Kevin C. Higgins. My business address is 111 East Broadway, Suite
6		1200, Salt Lake City, Utah, 84111.
7	Q.	By whom are you employed and in what capacity?
8	A.	I am a Principal in the firm of Energy Strategies, LLC. Energy Strategies is a
9		private consulting firm specializing in economic and policy analysis applicable to
10		energy production, transportation, and consumption.
11	Q.	Are you the same Kevin C. Higgins who prefiled Phase I direct testimony on
12		behalf of the Utah Association of Energy Users Intervention Group ("UAE")
13		in this proceeding?
14	A.	Yes, I am.
15		
16	II.	OVERVIEW AND CONCLUSIONS
17	Q.	What is the purpose of your Phase II direct testimony in this proceeding?
18	A.	My testimony addresses Dominion Energy Utah's ("DEU") class cost-of-service
19		study, the appropriate rate spread among classes, and rate design for the
20		Transportation Service ("TS"), Interruptible Sales ("IS"), and Transportation
21		Bypass Firm ("TBF") classes. The absence of comment on my part regarding

22		other issues does not signify support for (or opposition to) the Company's filing
23		with respect to the non-discussed issues.
24	Q.	Please summarize your conclusions and recommendations.
25	A.	My testimony offers the following recommendations:
26	1)	While I don't believe it is necessary to split up the TS class in order to improve
27		alignment with cost, I have utilized DEU's recommended TS Small ("TSS"), TS
28		Medium ("TSM"), and TS Large ("TSL") groupings in my cost-of-service
29		analysis.
30	2)	I correct the depiction of current Distribution Non-Gas ("DNG") revenue among
31		the TSS, TSM, TSL, and TBF classes.
32	3)	I support DEU's use of Design-Day demand to allocate demand-related costs and
33		concur with DEU that interruptible customers should not be allocated peak
34		demand responsibility.
35	4)	I recommend that the Throughput weighting for Allocation Factor 230 (the
36		weighted Design-Day/Throughput allocator) be based on the system load factor,
37		consistent with the guidance provided in the Gas Distribution Rate Design
38		Manual ("NARUC Manual") published by the National Association of Regulatory
39		Utility Commissioners.
40	5)	I recommend that the allocation of large-diameter intermediate high-pressure
41		("IHP") mains incorporate a Distribution Design-Day component, instead of
42		allocating these costs solely on Distribution Throughput. I recommend weighting
43		the Distribution Throughput component of this factor in a manner that is

- 44 consistent with the allocation of the feeder-line system, i.e., based on system load45 factor.
- 6) DEU appropriately recommends that the cost of its Magna liquified natural gas
 ("LNG") facility be allocated to firm sales customers only. However, the
 Company's cost-of-service study understates the rate base associated with the
 LNG facility and overstates the rate base associated with its non-LNG plant. My
- recommended cost-of-service study corrects this error so that the LNG facility
 rate base can be appropriately allocated to firm sales customers.
- 7) The Commission should consider implementing a rate mitigation plan among the
 new TS classes that would limit the extent of any rate reduction to the TSS class
 while mitigating the increases on TSL and TSM.
- 8) I recommend that any reduction in the volumetric revenue requirement for the
 TSS, TSL or IS class compared to DEU's proposal be applied on an equal
 percentage basis to each of DEU's proposed volumetric rates for the respective
 class.
- I recommend that the TBF volumetric rates be calculated by applying an equal
 percentage discount to the TSL volumetric rate for each block in order to achieve
 the targeted TBF volumetric revenue requirement.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 4 of 23

62 III. CLASS COST-OF-SERVICE STUDY

63 Q. What is the purpose of conducting class cost-of-service analysis?

- A. Class cost-of-service analysis is conducted to assist in determining appropriate
- ⁶⁵ rates for each customer class. The analysis involves assigning revenues,
- 66 expenses, and rate base to each customer class. Through this process, each class
- 67 is allocated a share of responsibility for the utility's costs, and the revenue change
- needed for each customer class to produce an equalized rate of return is identified.

69 Q. What class cost-of-service information is presented by DEU?

- 70 A. The Company's class cost-of-service results are presented in the Direct Testimony
- of DEU witness Mr. Austin C. Summers. The Company also made its cost-of-
- service model available to the parties in this case.¹
- 73

74 Splitting Up the TS Class

75 Q. What is DEU's proposal to split up the TS class?

- A. The Company proposes to divide the TS class into three classes: TS Small
- 77 ("TSS") for customers using up to 25,000 Dth/year, TS Medium ("TSM") for
- customers using between 25,000 and 250,000 Dth/year and TS Large ("TSL") for
- customers using over 250,000 Dth/year.² DEU proposes that the same firm
- 80 demand charge, administrative fees, and basic service fees³ apply to all TS
- 81 classes, but proposes different volumetric blocking and rates for each TS class.

¹ The cost-of-service model is a component of DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022.

² Direct Testimony of Austin C. Summers, lines 108-112.

³ Different basic service fees apply based on meter capacity.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 5 of 23

82	Q.	What is your response to DEU's proposal?		
83	A.	While I don't believe it is necessary to split up the TS class in order to improve		
84		alignment with cost, I have utilized DEU's recommended TSS, TSM, and TSL		
85		groupings in my cost-of-service analysis. The Company also provided an		
86		alternate breakpoint between TSM and TSL in response to a scenario requested b		
87		UAE as part of the cost-of-service Task Force following the last general rate		
88		case. ⁴ While I appreciate DEU's willingness to provide this alternative analysis,		
89		have accepted DEU's proposed TSS, TSM, and TSL groupings for the purpose of		
90		my analysis.		
91				
92	Corr	ection to TS and TBF Current DNG Revenue		
92 93	Corr Q.	ection to TS and TBF Current DNG Revenue Do you have any initial corrections to DEU's cost-of-service study?		
93	Q.	Do you have any initial corrections to DEU's cost-of-service study?		
93 94	Q.	Do you have any initial corrections to DEU's cost-of-service study? Yes. DEU's depiction of current DNG revenue for the individual TSS, TSM,		
93 94 95	Q.	Do you have any initial corrections to DEU's cost-of-service study? Yes. DEU's depiction of current DNG revenue for the individual TSS, TSM, TSL, and TBF classes is inconsistent with the current revenue for these classes		
93 94 95 96	Q.	Do you have any initial corrections to DEU's cost-of-service study? Yes. DEU's depiction of current DNG revenue for the individual TSS, TSM, TSL, and TBF classes is inconsistent with the current revenue for these classes shown in its rate design. ⁵ While this has only a negligible impact on the revenue		
93 94 95 96 97	Q.	Do you have any initial corrections to DEU's cost-of-service study? Yes. DEU's depiction of current DNG revenue for the individual TSS, TSM, TSL, and TBF classes is inconsistent with the current revenue for these classes shown in its rate design. ⁵ While this has only a negligible impact on the revenue requirement for each class, it distorts the depiction of the <i>change</i> in revenue		
93 94 95 96 97 98	Q.	Do you have any initial corrections to DEU's cost-of-service study? Yes. DEU's depiction of current DNG revenue for the individual TSS, TSM, TSL, and TBF classes is inconsistent with the current revenue for these classes shown in its rate design. ⁵ While this has only a negligible impact on the revenue requirement for each class, it distorts the depiction of the <i>change</i> in revenue required for each class to achieve its full cost of service. The sum of the current		

 ⁴ Direct Testimony of Austin C. Summers, lines 670-678.
 ⁵ See DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022, COS Sum TS Split tab, numbered row 3 compared to the current revenues on the Rate Design tab.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 6 of 23

102		I corrected this depiction of current DNG revenue for TSS, TSM, TSL,
103		and TBF as an initial step so that the impact of each of my other cost allocation
104		recommendations can be accurately reflected. I set the current DNG revenue for
105		TSS, TSM, and TSL to exactly match the rate design current DNG revenue for
106		each class. I then attributed the balance of the TS and TBF combined current
107		DNG revenue to the TBF class, a result which approximates TBF's rate design
108		current DNG revenue. ⁶ This correction is revenue neutral on a total system basis
109		and has a minimal impact on the total revenue requirement for each class. The
110		results of DEU's cost-of-service study at DEU's revenue requirement
111		incorporating this correction are shown in UAE Exhibit COS 2.2, page 1, Table 2.
112		
112 113	Dema	and-Related Cost Allocation Generally
	Dema Q.	and-Related Cost Allocation Generally Do you support DEU's use of Design-Day usage to allocate demand-related
113		
113 114		Do you support DEU's use of Design-Day usage to allocate demand-related
113 114 115	Q.	Do you support DEU's use of Design-Day usage to allocate demand-related costs?
 113 114 115 116 	Q.	Do you support DEU's use of Design-Day usage to allocate demand-related costs? Yes. I concur with DEU that it is appropriate to allocate demand-related costs
113114115116117	Q.	Do you support DEU's use of Design-Day usage to allocate demand-related costs? Yes. I concur with DEU that it is appropriate to allocate demand-related costs based on Design-Day usage and that interruptible customers should not be
 113 114 115 116 117 118 	Q.	Do you support DEU's use of Design-Day usage to allocate demand-related costs? Yes. I concur with DEU that it is appropriate to allocate demand-related costs based on Design-Day usage and that interruptible customers should not be allocated peak demand costs. ⁷ The demand-related infrastructure put in place by

⁶ The TBF current DNG revenue in my cost-of-service study is \$30,061 less than its current DNG rate design revenue. It is reasonable for a small difference to exist for this class because of assumed rate migration to TBF.

⁷ Direct Testimony of Austin C. Summers, pp. 11-15.

122		manner that reflects the expected usage on the Design-Day. I also agree with Mr.	
123		Summers' reasoning that interruptible load will be curtailed in an actual Design-	
124		Day event and, therefore, should not be assigned peak demand responsibility. ⁸	
125		However, I disagree with several aspects of the Company's cost-of-service	
126	analysis, which are discussed in the following subsections of my testimony.		
127			
128	Desigr	a-Day / Throughput Weighting in Allocation Factor 230	
129	Q.	What is Allocation Factor 230?	
130	A.	As described in DEU Exhibit 4.02, page 1, Allocation Factor 230 is used to	
131		allocate the feeder system, compressor station, and measuring and regulating	
132		station costs. Allocation Factor 230 is designed to be a weighted blend of Design-	
133		Day and Throughput factors, presumably because these facilities are viewed as	
134		providing both peak-related and throughput-related services. The weighting	
135		proposed by DEU for Allocation Factor 230 is 60% Design-Day and 40%	
136		Throughput. DEU also uses Allocation Factor 230 to allocate the FT1-L	
137		(Lakeside) revenue credits to customer classes.	
138	Q.	What is your disagreement regarding the weighting DEU used for Allocation	
139		Factor 230?	
140	A.	Allocating costs for particular facilities on both a peak basis and a throughput	
141		basis is an application of a method generally referred to as the "Average and	

⁸ Direct Testimony of Austin C. Summers, p. 12.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 8 of 23

142	Peak" method. ⁹ In using the Average and Peak method, the weighting assigned to
143	the Average, or Throughput component should be no greater than the system load
144	factor. ¹⁰ This is because the Throughput component is intended to allocate costs
145	that are associated with base-load-type usage, and system load factor is a
146	generally-accepted standard for measuring the portion of facilities associated with
147	the provision of base load service. The use of system load factor for this
148	weighting is clearly prescribed in the NARUC Manual.
149	The 40% weighting assigned by DEU to Throughput in the composition of
150	Allocation Factor 230 exceeds DEU's load factor and thus overstates the
151	reasonable assignment of cost responsibility to Throughput. While the 40%
152	weighting used by DEU is consistent with the Commission's Order in Docket No.
153	19-057-02, it is not tied to any system utilization metric, and is highly subjective.
154	In contrast, my recommended weighting is based on a nationally recognized
155	standard, which DEU accepted in its rebuttal filing in its last general rate case. ¹¹
156	Based on DEU's Design-Day demand of 1,459,679 Dth and normalized annual
157	throughput of 172,905,622 Dth, the system load factor is approximately 32.5%. ¹²
158	

¹¹ Docket No. 19-057-02, Rebuttal Testimony of Austin C. Summers, lines 72-78.

⁹ The term "Average" in "Average and Peak" refers to average use, and this component is allocated to classes based on Throughput (Factor 220 in DEU's cost-of-service study). The "Peak" component is apportioned to classes based on the Design-Day factor (Factor 210 in DEU's cost-of-service study). ¹⁰ See, for example, the discussion of the Average and Peak Demand Method in the NARUC Manual (June 1989), pp. 27-28, included in UAE Exhibit COS 2.1. The NARUC Manual specifies that the system's load factor is used to determine the capacity costs associated with average use and apportioned to classes on an annual volumetric basis.

 $^{^{12}(172,905,622 \}div 365) \div 1,459,679 = 32.45\%$.

159	Q.	What do you recommend to the Commission regarding the appropriate
160		Throughput weighting?
161	А.	I recommend that the Throughput weighting for Allocation Factor 230 be based
162		on DEU's system load factor of 32.5%. This produces a weighting for Allocation
163		Factor 230 of 67.5% Design-Day / 32.5% Throughput. This weighting is more
164		consistent with the proper application of the Average and Peak method upon
165		which Allocation Factor 230 is based.
166	Q.	Have you applied your recommended 67.5 % Design-Day / 32.5%
167		Throughput weighting elsewhere in the Company's cost-of-service study?
168	A.	Yes. DEU uses a weighted Design-Day / Throughput factor to allocate the cost
169		share of the TBF discount to other classes. ¹³ TBF is a firm transportation rate
170		schedule that is charged less than its fully allocated cost of service and is intended
171		to provide an incentive for these customers to remain on DEU's distribution
172		system, thus reducing the likelihood that these customers will connect directly to
173		an interstate pipeline and bypass the DEU system. The TBF class is set to recover
174		60% of its full revenue requirement based on DEU's proposal. ¹⁴
175		DEU utilizes a modified version of Allocation Factor 230 that excludes
176		the TBF class to allocate to the non-TBF classes the portion of costs that would
177		otherwise be recovered from the TBF class. For consistency, I have incorporated

¹³ To allocate the TBF discount to the non-TBF classes, Allocation Factor 230 is modified to exclude the TBF class.

¹⁴ Direct Testimony of Austin C. Summers, lines 411-414.

my recommended 67.5% Design-Day / 32.5% Throughput weighting into the
allocation of funding the TBF discount.

180 Q. Do you present the results of the cost-of-service study incorporating your

A. Yes, these results are shown in UAE Exhibit COS 2.2. In Table 1 on page 1 of
that exhibit, columns (c) and (d) present the DNG rate revenue change by class
that would be necessary for each class to earn an equalized rate of return at
DEU's proposed revenue requirement. Columns (e) and (f) include the impact of
the TBF discount described above. I also incorporate the correction to DEU's
depiction of current DNG revenues for the TSS, TSM, TSL and TBF classes
discussed above.

Table 2 on page 1 of UAE Exhibit COS 2.2 presents the results of DEU's 189 cost-of-service study for comparison purposes. Table 2 also incorporates the 190 191 correction to current DNG revenues so that it is directly comparable to Table 1. Table 3 on page 1 presents the impact on the cost-of-service results of using my 192 recommended Design-Day/Throughput weighting for Allocation Factor 230. 193 194 Page 2 of UAE Exhibit COS 2.2 presents this same information at an overall revenue requirement that incorporates the adjustments totaling 195 (\$39,865,719) recommended in my Phase I direct testimony. 196

197

199 Large Diameter IHP Mains Allocation

200 Q. What are large diameter IHP mains?

- A. According to Mr. Summers, these mains are intermediate-high pressure main lines
- 202 greater than 6 inches in diameter. Mr. Summers explains that these large diameter
- 203 IHP main lines installed within the IHP system are typically designed to move gas
- from the high-pressure feeder-line system to the smaller distribution lines.¹⁵

Q. How does DEU allocate the cost of large diameter IHP mains?

- A. DEU allocates these costs to classes using the Distribution Throughput factor,
- which is based on the annual volumes delivered through the IHP distribution
 system.¹⁶

Q. Do you believe it is appropriate to allocate the cost of large diameter IHP
mains solely based on distribution throughput?

- A. No. The large diameter IHP mains are designed to meet a Design-Day scenario as
- 212 well as to deliver volumes of gas to the small-diameter mains. I therefore
- 213 recommend that allocation of large diameter IHP mains incorporate a peak-related
- 214 component based on the Distribution Design-Day, which represents the Design-
- 215 Day load expected to be delivered through the IHP system.

¹⁵ Direct Testimony of Austin C. Summers, lines 252-258.

¹⁶ This method excludes customers directly connected to the feeder-line system or Upstream Pipeline. *See* Direct Testimony of Austin C. Summers, lines 252-269; DEU Exhibit 4.04.

217	Q.	How have you calculated your recommended allocation factor for large
218		diameter IHP mains?
219	A.	I used the Distribution Design-Day information provided by DEU in discovery ¹⁷
220		to calculate a weighted Distribution Design-Day / Distribution Throughput
221		allocation factor. ¹⁸ I used the same 67.5% / 32.5% weightings that I recommend
222		for Allocation Factor 230 to weight the Distribution Design-Day and Distribution
223		Throughput components, respectively. ¹⁹
224	Q.	What is the impact of your large diameter IHP mains allocation
225		recommendation on the cost-of-service results?
226	A.	These results are shown in UAE Exhibit COS 2.2, pages 3 and 4. Table 7 on page
227		3 of that exhibit presents the results of the cost-of-service study using my
228		recommendations regarding Allocation Factor 230 (discussed above and shown in
229		Table 1 on page 1 of UAE Exhibit COS 2.2) and large diameter IHP mains
230		allocation, at DEU's proposed revenue requirement. Table 8 on page 3 shows the
231		incremental impact of my recommended large diameter IHP mains allocation.
232		Page 4 of this exhibit presents this same information at the revenue requirement
233		recommended in my Phase I direct testimony.
234		

 ¹⁷ DEU Response to UAE Data Request 3.02, UAE 3.02 Attachment 1, included in UAE Exhibit COS 2.4.
 ¹⁸ This allocation factor is included in 22-057-03 UAE Direct RR & COS Model, COS Alloc Factors TS Split tab, and is numbered "260."

¹⁹ It would also be reasonable to apply a 28.4% weight to Distribution Throughput (71.6% to Distribution Design-Day) based on the load factor for load connected to the IHP system. I am using my recommended Allocation Factor 230 weightings for the sake of simplicity.

236 Magna LNG Facility Allocation

237	Q.	Please describe the Magna LNG facility.
-----	----	---

- A. The Magna LNG facility is an on-system LNG storage and liquification facility
- which was preapproved in Docket No. 19-057-13.²⁰ According to the Direct
- 240 Testimony of Mr. Kelly B. Mendenhall, the Commission approved the project
- costs of approximately \$210.2 million in that docket, but the project is now
- expected to cost \$218.6 million, plus additional Thermal Exclusion Area costs.²¹
- 243 DEU expects that the facility will be in service on October 28, 2022.²²

Q. How does DEU propose to allocate the costs of the LNG facility?

- A. DEU allocates these costs to firm sales customers only, using a new "Firm Sales
- less NGV" allocation factor. This allocation factor allocates costs between the
- ²⁴⁷ General Service and Firm Sales Service classes based on Throughput.²³

Q. Do you agree that the cost of the LNG facility should not be allocated to

- 249 transportation customers?
- A. Yes. As Mr. Mendenhall's Direct Testimony in Docket 19-057-13 explained:
- This facility is being built and used for the sole benefit of sales customers.
 As a result, none of these costs will be allocated to transportation
 customers. As transportation customers are responsible for their own
 supply reliability they will not have access to this facility during a supply
 disruption.²⁴

²⁰ Docket No. 19-057-13, Order Issued October 25, 2019.

²¹ Direct Testimony of Kelly B. Mendenhall, pp. 8-10. My cost allocation recommendations do not impact the Thermal Exclusion Area component of costs.

²² DEU Response to OCS Data Request 3.05, included in UAE Exhibit COS 2.4.

²³ DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022, COS Alloc Factor TS Split tab; DEU Response to OCS Data Request 6.08, included in UAE Exhibit COS 2.4.

²⁴ Docket No. 19-057-13, DEU Exhibit 1.0, lines 449-452.

256		It is entirely appropriate that transportation customers be excluded from the
257		allocation of these costs.
258	Q.	Does DEU's cost-of-service study properly identify the costs of the LNG
259		facility so that these costs can be appropriately allocated?
260	А.	No. DEU's cost-of-service study understates the rate base associated with the
261		LNG facility by approximately \$63.3 million and overstates the rate base
262		associated with its non-LNG plant by the same amount. Table KCH-1, below, is
263		an estimate of the LNG-related rate base included in DEU's revenue requirement,
264		compared to the rate base that is treated as LNG-related in the cost-of-service
265		study. This is shown in greater detail in UAE Exhibit COS 2.3.
266		Table KCH-1

267

Table KCH-1Comparison of LNG Plant Rate Base Balances

	Based on DEU Rev. Req.	Identified in COS	Error in COS
Rate Base Components	(a) 25	$(b)^{26}$	(b) - (a)
Gross Plant	\$218,063,414	\$203,886,326	(\$14,177,088)
Accumulated Depreciation	(\$3,444,026)	(\$40,481,826)	(\$37,037,800)
ADIT	(\$3,914,671)	(\$16,045,091)	(\$12,130,419)
Net Rate Base	\$210,704,716	\$147,359,410	(\$63,345,306)

268

According to Mr. Mendenhall's Direct Testimony, DEU has included

²⁶⁹ \$218.6 million in LNG facility capital expenditures in its revenue requirement.²⁷

²⁵ See UAE Exhibit COS 2.3 for a detailed calculation of these amounts.

²⁶ DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022 – Gross Plant: COS Detail TS Split tab, numbered rows 980 and 985; Accumulated Depreciation/Amort. (Accounts 108 & 111) and ADIT (Accounts 282 & 283), Dist Plant tab, Excel rows 5 and 6.

²⁷ Direct Testimony of Kelly B. Mendenhall, p. 10 table.

270	Since \$1 million of this total represents projected 2023 capital expenditures,
271	average 2023 LNG gross plant is \$218.1 million. ²⁸
272	However, the gross plant identified as LNG-related in DEU's cost-of-
273	service study is \$203.9 million, consisting of \$189.4 million of LNG Plant in
274	Account 364 and \$14.5 million of LNG Land in Account 364.1. ²⁹ It appears that
275	this error occurred because DEU understated the December 31, 2021 gross
276	balance of its LNG-related plant by \$14.2 million and overstated its non-LNG
277	gross plant by the same amount. ³⁰
278	At the same time, DEU has overstated the accumulated depreciation
279	associated with its LNG plant and understated the accumulated depreciation
280	associated with its non-LNG plant. DEU's cost-of-service study attributes \$40.5
281	million in accumulated depreciation to its LNG plant, ³¹ despite the fact that less
282	than a full year of accumulated depreciation will accrue during the average 2023
283	test year, based on the expected October 2022 in-service date.
284	This error occurs because DEU uses its gross distribution plant balances to
285	allocate its total distribution accumulated depreciation, as well as its distribution
286	accumulated deferred income taxes ("ADIT") and distribution regulatory
287	liabilities. Since the gross LNG plant included in DEU's cost-of-service study

 ²⁸ This consists of \$186.8 million in cap. ex. through 2021, \$30.7 million in 2022, and \$500,000 in 2023 (average). See DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022, 101_106
 PROJECTION tab, and DEU Response to OCS Data Request 8.20, included in UAE Exhibit COS 2.4.
 ²⁹ DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022, COS Detail TS Split tab, numbered rows 980 and 985.

³⁰ DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022, 101_106 PROJECTION tab, Excel rows 51 and 56 show LNG-related cap. ex. of \$186.8 million through 2021. However, the 2021 LNG Plant and LNG Plant-Land balances, Excel rows 14 and 15, sum to \$172.6 million instead of \$186.8 million.
³¹ DEU Exhibit 4.20 Summers Testimony - Electronic Model 5-2-2022, Dist Plant tab, Excel rows 5 and 6.

288		represents 5.4% of its total Utah distribution plant, DEU assigns 5.4% of its total
289		Utah distribution accumulated depreciation to the LNG facility, dramatically
290		overstating the actual accumulated depreciation attributable to the LNG plant. It
291		is important that the LNG-related rate base be separately accounted for so that
292		these costs can be properly allocated.
293	Q.	What are the consequences of understating LNG-related rate base in the
294		cost-of-service study?
295	A.	DEU's understatement of LNG-related rate base shifts the understated portion of
296		LNG-related rate base to non-LNG-related rate base, where it is allocated, in part,
297		to transportation customers. This cost shift is improper. For example, by
298		overstating LNG-related accumulated depreciation by \$37 million, DEU
299		understates accumulated depreciation for non-LNG-related plant by the same
300		amount, causing non-LNG rate base to be overstated.
301	Q.	Have you corrected the LNG-related rate base in your cost-of-service study?
302	A.	Yes, I have increased the LNG-related rate base to be consistent with the amounts
303		shown in Table KCH-1, column (a), above. I have also decreased the non-LNG
304		distribution rate base by the same amount such that this adjustment is neutral on a
305		total revenue requirement basis. ³² This correction also decreases the amount of
306		distribution regulatory liabilities attributed to the LNG facility, which is
307		appropriate since DEU has not demonstrated that these regulatory liabilities are
308		associated with the LNG facility. I also made a minor adjustment to depreciation

³² It is possible that correcting this error may have minor revenue requirement impacts resulting from DEU's mis-categorization of LNG versus non-LNG rate base.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 17 of 23

309		expense allocation to ensure that the depreciation expense that is directly
310		attributable to the LNG plant is allocated consistent with the underlying plant.
311	Q.	What is the impact of your correction to LNG-related and non-LNG-related
312		rate base?
313	A.	These results are shown in UAE Exhibit COS 2.2, pages 5 and 6. Table 11 on
314		page 5 of that exhibit presents the results of the cost-of-service study
315		incorporating all of my cost allocation recommendations at DEU's proposed
316		revenue requirement. Table 12 of page 5 presents the incremental impact of the
317		correction to LNG-related and non-LNG-related rate base at DEU's proposed
318		revenue requirement. Table 13 on page 5 presents the cumulative impact of all of
319		my cost allocation recommendations (again using DEU's proposed revenue
320		requirement), which is also shown in Table KCH-2, below. Page 6 of UAE
321		Exhibit COS 2.2 presents this same information at the revenue requirement
322		recommended in my Phase I direct testimony.
323		
324	Cost A	Allocation Summary
325	Q.	Please summarize the cost-of-service results incorporating your allocation
326		recommendations.
327	A.	These results are summarized in Tables KCH-2 and KCH-3, below. Table KCH-
328		2, columns (c) and (d), present the DNG rate revenue change by class that would
329		be necessary for each class to earn an equalized rate of return at DEU's proposed
330		revenue requirement. Columns (e) and (f) include the impact of the TBF discount.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 18 of 23

- 331
 Table KCH-3 presents this same information at the revenue requirement
- recommended in my Phase I direct testimony.
- 333
- 334

335

Table KCH-2
Cost-of-Service Results with UAE COS Recommendations
At DEU Proposed Revenue Requirement

		DNG Revenue Change to Achieve Equalized ROR		DNG Revenue Change Plus TBF Discount	
	Current DNG	\$ Increase/	% Increase/	\$ Increase/	% Increase/
Class	Revenue	(Decrease)	-Decrease	(Decrease)	-Decrease
(a)	(b) ³³	(c)	(d)	(e)	(f)
GS	\$383,506,941	\$58,720,760	15.31%	\$62,164,190	16.21%
FS	\$2,822,045	\$1,067,136	37.81%	\$1,120,286	39.70%
IS	\$264,568	(\$64,683)	-24.45%	(\$62,378)	-23.58%
TSS	\$14,170,736	(\$2,005,261)	-14.15%	(\$1,810,250)	-12.77%
TSM	\$12,873,715	\$2,526,733	19.63%	\$2,795,681	21.72%
TSL	\$10,685,465	\$5,597,144	52.38%	\$5,937,867	55.57%
TBF	\$6,473,467	\$4,159,771	64.26%	(\$148,300)	-2.29%
NGV	\$2,605,568	\$510,089	19.58%	\$514,593	19.75%
Total	\$433,402,504	\$70,511,689	16.27%	\$70,511,689	16.27%

336

337

338 339

Table KCH-3 Cost-of-Service Results with UAE COS Recommendations At UAE Recommended Revenue Requirement

		DNG Revenue Ch Equalize	0	DNG Rever Plus TBF	ue Change Discount
	Current DNG	\$ Increase/	% Increase/	\$ Increase/	% Increase/
Class	Revenue	(Decrease)	-Decrease	(Decrease)	-Decrease
(a)	(b) ³⁴	(c)	(d)	(e)	(f)
GS	\$383,506,941	\$23,575,338	6.15%	\$26,748,329	6.97%
FS	\$2,822,045	\$756,516	26.81%	\$805,492	28.54%
IS	\$264,568	(\$78,853)	-29.80%	(\$76,729)	-29.00%
TSS	\$14,170,736	(\$2,938,143)	-20.73%	(\$2,758,449)	-19.47%
TSM	\$12,873,715	\$1,306,995	10.15%	\$1,554,820	12.08%
TSL	\$10,685,465	\$4,310,276	40.34%	\$4,624,239	43.28%
TBF	\$6,473,467	\$3,313,903	51.19%	(\$655,821)	-10.13%
NGV	\$2,605,568	\$399,938	15.35%	\$404,088	15.51%
Total	\$433,402,504	\$30,645,970	7.07%	\$30,645,970	7.07%

³³ Reflects a redistribution of Current DNG Revenue among the TSS, TSM, TSL and TBF classes based on the rate design current revenue for each of these classes.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 19 of 23

340 IV. REVENUE ALLOCATION CONSIDERATIONS

Q. The class cost allocations presented in Tables KCH-2 and KCH-3 show that 341 certain classes would receive substantial rate reductions if their rates were 342 set equal to cost, whereas other classes would receive substantial increases. 343 Should the Commission consider any form of rate mitigation in this case? 344 A. Yes. It would not be unreasonable for the Commission to limit the extent to 345 which rate reductions are approved for any customer class in the interest of 346 applying the principle of gradualism to classes experiencing significant rate 347 increases. As is evident by comparing Tables KCH-2 and KCH-3, the degree of 348 rate impact to specific classes will vary with the overall revenue requirement that 349 is ultimately approved by the Commission. It will also vary depending on the 350 cost allocation method approved by the Commission. But under any revenue 351 requirement, it is clear that the break-up of the TS class would result in a major 352 redistribution of revenue deficiencies among TS customers at parity, with the new 353 TSS class showing a substantial revenue sufficiency and the new TSL class (and 354 to a lesser extent, the TSM class) showing a substantial deficiency. In light of 355 these impacts, the Commission should consider implementing a rate mitigation 356 plan among the new TS classes that would limit the extent of any rate reduction to 357 the TSS class while mitigating the increases on TSL and TSM. 358

359

361

V. TS, IS AND TBF RATE DESIGN

362 Q. Do you have any concerns with DEU's proposed rate design for the TS 363 classes?

A. Yes, I have several concerns. As a threshold matter, DEU's proposed volumetric
rates for TSS and TSM do not reflect a logical relationship between the two
classes.

For TSS, DEU proposes three volumetric blocks, with Block 1 applying to the first 200 Dth of a customer's monthly usage, Block 2 applying to the next 1,800 Dth, and Block 3 applying to usage over 2,000 Dth. This means that the first 2,000 Dth of a TSS customer's monthly usage would be billed under a combination of Blocks 1 and 2, with 10% billed under Block 1 (200/2,000) and 90% under Block 2 (1,800/2,000). The average proposed rate for the first 2,000 Dth of monthly usage for a TSS customer is \$0.81139/Dth.³⁵

For TSM, DEU proposes two volumetric blocks, with Block 1 applying to the first 2,000 Dth of a customer's monthly usage and Block 2 applying to usage over 2,000 Dth. DEU's proposed rate for TSM Block 1 is \$1.20760/Dth, which is approximately 49% more than the average proposed rate for the first 2,000 Dth of monthly usage under TSS. Table KCH-4, below, illustrates this disparity for a hypothetical customer using 2,000 Dth in a month billed under DEU's proposed rates for TSS compared to TSM.

 $^{^{35}([\$1.28083 \}times 200] + [\$0.75923 \times 1,800]) \div 2,000 = \$0.81139.$

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 21 of 23

Table KCH-4 Monthly Base Volumetric Bill for Customer Using 2,000/Dth/Month Under DEU Proposed TSS Rates Compared to TSM Rates

382

383

384

Volumetric Blocks	Rate	Monthly Usage (Dth)	Monthly Volumetric Bill	
	TSS Proposed I	Rates		
Block 1 - First 200 Dth	\$1.28083	200	\$256	
Block 2 - Next 1,800 Dth	\$0.75923	1,800	\$1,367	
Block 3 - Over 2,000 Dth	\$0.21016	0	<u>\$0</u>	
Total		2,000	\$1,623	
TSM Proposed Rates				
Block 1 - First 2,000 Dth	\$1.20760	2,000	\$2,415	
Block 2 - Over 2,000 Dth	\$0.65853	0	<u>\$0</u>	
Total		2,000	\$2,415	

This means that a customer using 2,000 Dth/month (a relatively large TSS 385 customer or a relatively small TSM customer) would pay far less under DEU's 386 proposed TSS rates than under DEU's proposed TSM rates for the same level of 387 388 usage. What conclusions do you draw regarding this TSS and TSM rate design Q. 389 issue? 390 391 A. This issue is a consequence of breaking up the TS class and using a declining block rate structure to recover each class's revenue requirement without reflecting 392 the declining marginal cost of delivering incremental volumes of gas in the cost-393 394 of-service study. I do not believe that this issue can be remedied without maintaining a single class for small and medium TS customers or overhauling 395 396 DEU's cost allocation approach.

UAE Exhibit COS 2.0 Direct Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 22 of 23

397		As I mentioned previously, I have accepted DEU's proposed TS class
398		groupings as the basis for my analysis. However, I am highlighting this issue to
399		demonstrate one of the pitfalls of splitting up the TS class.
400	Q.	Do you have any other observations regarding DEU's proposed rate design?
401	A.	Yes. DEU's rate design model calculates volumetric rates within each applicable
402		class based on a predefined absolute differential between each volumetric block.
403		This means that if the class volumetric revenue requirement is reduced from
404		DEU's proposal, each of DEU's proposed class volumetric rates is reduced on an
405		equal cents-per-Dth basis in the model. ³⁶ For certain classes, these mechanics
406		may result in an extremely low, or even negative, rate for the highest-usage block
407		(i.e., tailblock) at a lower revenue requirement. In particular, the resulting
408		tailblock rates for the TSS, TSL, IS, and TBF classes may be extremely low or
409		negative if DEU's proposed class revenue requirement is reduced.
410	Q.	What do you recommend regarding the calculation of volumetric rates if the
411		revenue requirement is reduced from DEU's request?
412	A.	I recommend that the reduction in the class volumetric revenue requirement
413		compared to DEU's proposal be applied on an equal percentage basis to each of
414		DEU's proposed volumetric rates for the TSS, TSL and IS classes. This will
415		result in an equal percentage reduction to each of DEU's proposed volumetric

³⁶ For GS, the volumetric block differential is applied separately to the Summer and Winter rates. I have not made any rate design changes to the GS class.

416 rates within these classes and will avoid an outsized reduction in the tailblock
417 rates.³⁷

418 Q. Do you have any recommendations regarding TBF rate design?

- A. Yes. I recommend that the TBF volumetric rates be calculated by applying an
 equal percentage discount to the TSL volumetric rate for each block in order to
 achieve the targeted TBF volumetric revenue requirement. This will resolve the
 TBF tailblock rate issue discussed above and establish a consistent relationship
 between the TBF and TSL rate structures. My TBF rate design recommendation
 will ensure that eligible TBF customers receive a proportionate discount relative
 to the standard TSL rate.
- 426 Q. Does this conclude your direct Phase II testimony?
- 427 A. Yes, it does.

³⁷ This recommendation is reflected in the Rate Design tab of 22-057-03 UAE Direct RR & COS Model, and can be activated on the UAE Adjustments tab. The proportionate approach could also be applied to TSM; however, DEU's absolute differentials are less of a concern for TSM because, unlike TSS, TSL, and IS, TSM is only proposed to have two blocks, neither of which is a "low-cost" tailblock.