BEFORE THE PUBLIC SERVICE COMMISSION OF UTAH

Phase II Surrebuttal Testimony of Kevin C. Higgins

on behalf of

UAE

Docket No. 22-057-03

November 3, 2022

TABLE OF CONTENTS

I.	INTRODUCTION		
II.	OVERVIEW AND CONCLUSIONS	1	
III.	RESPONSES TO COST ALLOCATION ISSUES	5	
Des	ign-Day Versus Actual Peak-Day Factor	5	
Incl	uding Interruptible Load in the Peak-Day Factor	7	
Des	ign-Day / Throughput Weighting	8	
Larg	Large-Diameter IHP Mains Allocation9		
Magna LNG Facility Rate Base			
Distribution Depreciation Expense Allocation			
IV.	TS RATE DESIGN 1	3	
V.	COST-OF-SERVICE RESULTS SUMMARY AND REVENUE ALLOCATION	[
CONSIDERATIONS			

EXHIBITS

UAE Exhibit COS 6.0 UAE Exhibit COS 6.1 Surrebuttal Testimony of Kevin C. Higgins DEU Response to UAE Data Request 3.1

1		SURREBUTTAL TESTIMONY OF KEVIN C. HIGGINS
2		
3	I.	INTRODUCTION
4	Q.	Please state your name and business address.
5	А.	My name is Kevin C. Higgins. My business address is 111 East Broadway, Suite
6		1200, Salt Lake City, Utah, 84111.
7	Q.	By whom are you employed and in what capacity?
8	А.	I am a Principal in the firm of Energy Strategies, LLC. Energy Strategies is a
9		private consulting firm specializing in economic and policy analysis applicable to
10		energy production, transportation, and consumption.
11	Q.	Are you the same Kevin C. Higgins who prefiled Phase I direct, rebuttal and
12		surrebuttal testimony and Phase II direct and rebuttal testimony on behalf of
13		the Utah Association of Energy Users Intervention Group ("UAE") in this
14		proceeding?
15	A.	Yes, I am.
16		
17	II.	OVERVIEW AND CONCLUSIONS
18	Q.	What is the purpose of your Phase II surrebuttal testimony in this
19		proceeding?
20	A.	My testimony responds to the Phase II rebuttal testimonies of Dominion Energy
21		Utah ("DEU") witness Mr. Austin C. Summers, Division of Public Utilities
22		("Division") witness Dr. Abdinasir M. Abdulle, Office of Consumer Services

23		("Office") witness Mr. James W. Daniel, Nucor Steel-Utah ("Nucor") witness Mr.
24		Bradley G. Mullins, and American Natural Gas Council ("ANGC") witness Mr.
25		Timothy B. Oliver.
26	Q.	Please summarize your conclusions and recommendations.
27	A.	My testimony offers the following recommendations:
28	1)	I continue to recommend that Design-Day usage be used to allocate demand-
29		related costs. I agree with the rebuttal testimony of Mr. Summers that feeder line
30		mains, compressor stations, and measuring/regulation stations were designed and
31		installed to meet customer demand on a Design-Day. ¹ Dr. Abdulle's and Mr.
32		Daniel's proposals to use actual peak-day usage rather than Design-Day usage to
33		allocate demand-related costs should be rejected.
34	2)	I continue to recommend that Dr. Abdulle's and Mr. Daniel's proposals to
35		allocate peak demand costs to interruptible load be rejected because interruptible
36		loads do not contribute to DEU's Design-Day demand costs and would be
37		curtailed on a Design-Day.
38	3)	I continue to recommend using a 67.5% Design-Day / 32.5% Throughput
39		weighting for Allocation Factor 230, with the throughput weighting based on the
40		system load factor calculated using the Design-Day. I agree with Mr. Summers'
41		rebuttal testimony that my proposal carries the most analytical weight of all the
42		alternatives offered by other parties. ² Furthermore, I believe my proposal is more
43		appropriate than DEU's 60/40 weighting because my load factor weighting is

 ¹ Rebuttal Testimony of Austin C. Summers, lines 52-58.
 ² Rebuttal Testimony of Austin C. Summers, lines 157-158.

- 44 based on the proper application of the Peak and Average method as described in
 45 the NARUC Manual.
- 4) I continue to recommend a 67.5% Distribution Design-Day / 32.5% Distribution 46 Throughput allocation for large-diameter intermediate high pressure ("IHP") 47 mains, with both of these components representing the load delivered through the 48 large-diameter IHP system. Mr. Summers misunderstands my proposal and 49 incorrectly states that I recommend using the same allocation method for large-50 diameter IHP mains and feeder lines.³ On the contrary, my recommended 51 allocation method for large-diameter IHP mains appropriately excludes load 52 directly connected to the feeder line system or Upstream Pipeline, as does DEU's 53 54 Distribution Throughput allocation.
- 55 5) Mr. Summers' rebuttal testimony accepts my recommended corrections to the
 Magna Liquified Natural Gas ("LNG") rate base in concept but provides a more
 precise reclassification of LNG plant by FERC account.⁴ I incorporated the
 FERC account information provided by Mr. Summers into my surrebuttal cost-of service study.
- 60 6) In his rebuttal testimony, Mr. Summers responds to a proposal by Nucor-Steel
 61 Utah witness Mr. Mullins to allocate distribution depreciation expense based on
 62 the underlying asset allocation. Mr. Summers acknowledges that allocating
 63 depreciation expense in the same manner as the underlying assets could be
 64 justified but argues that DEU's gross plant allocation factor is reasonable and

³ Rebuttal Testimony of Austin C. Summers, lines 193-205.

⁴ Rebuttal Testimony of Austin C. Summers, lines 290-332.

65		does not need to be changed. ⁵ I believe that Mr. Mullins' proposal is justified and
66		that allocating distribution depreciation expense consistent with the underlying
67		plant would better represent cost causation than DEU's method. Therefore, my
68		surrebuttal cost-of-service study reflects an allocation of distribution depreciation
69		expense based on the specific allocation of the underlying plant.
70	7)	Mr. Oliver's criticism of my comments regarding TS rate design is misplaced.
71		My comments were made in the interest of rational rate design rather than to
72		advantage one rate class over another, as Mr. Oliver implies.
73	8)	I provide a summary of the class cost-of-service study results using my
74		recommended allocation methods as updated in this Phase II surrebuttal
75		testimony, at the overall revenue requirement I recommended in my Phase I
76		rebuttal testimony. ⁶ I recommend that these results be used to guide the revenue
77		allocation to classes at the overall revenue requirement that the Commission
78		approves in this case, prior to taking rate mitigation into account.
79	9)	The Commission should consider implementing a rate mitigation plan that would
80		temper the dramatic impacts that would otherwise be experienced by certain
81		classes. The need for rate mitigation would be even more critical if certain cost
82		allocation proposals made by Dr. Abdulle or Mr. Daniel are adopted.
83		
84		

 ⁵ Rebuttal Testimony of Austin C. Summers, lines 283-288.
 ⁶ My recommended revenue requirement in my Phase I surrebuttal testimony was unchanged from my Phase I rebuttal testimony.

85	III.	RESPONSES TO COST ALLOCATION ISSUES
86	Desig	n-Day Versus Actual Peak-Day Factor
87	Q.	Do you support DEU's use of the Design-Day factor to allocate demand-
88		related costs?
89	A.	Yes, I agree with the rebuttal testimony of Mr. Summers that feeder line mains,
90		compressor stations, and measuring/regulation stations were designed and
91		installed to meet customer demand on a Design-Day. ⁷ The Design-Day is
92		therefore the most reasonable basis on which to allocate the demand-related costs
93		of these facilities.
94	Q.	Do Dr. Abdulle and Mr. Daniel continue to advocate that demand-related
95		costs be allocated using actual peak-day usage rather than the Design-Day in
96		their rebuttal testimonies?
97	A.	Yes. Dr. Abdulle and Mr. Daniel oppose DEU's use of the Design-Day to
98		allocate peak demand-related costs. Dr. Abdulle recommends using a 3-year
99		average of the actual peak-day demands,8 whereas Mr. Daniel recommends using
100		the test year actual peak-day demand. ⁹
101		

 ⁷ Rebuttal Testimony of Austin C. Summers, lines 52-58.
 ⁸ Rebuttal Testimony of Abdinasir M. Abdulle, lines 110-126.
 ⁹ Rebuttal Testimony of James W. Daniel, lines 58-60.

102	Q.	Do you continue to disagree with Dr. Abdulle's and Mr. Daniel's proposals to
103		use actual peak-day usage rather than Design-Day usage to allocate peak-
104		related costs?
105	A.	Yes. The peak-related infrastructure put in place by DEU is designed to ensure
106		that firm customers can continue to receive service on an extremely cold day.
107		Since the Design-Day capacity is built to meet firm requirements under extreme
108		conditions, it is entirely appropriate that the peak-related costs of the system be
109		allocated in a manner that reflects the expected usage on the Design-Day.
110		As I explained in my Phase II rebuttal testimony, the actual peak-day
111		demands utilized by Dr. Abdulle and Mr. Daniel are 30-32% less than the Design-
112		Day demand. This additional capacity comes at a cost. DEU incurs these
113		additional costs to ensure that DEU's system can continue to provide much-
114		needed natural gas service to firm sales customers on an extremely cold day. If
115		those costs are prudently incurred, the customers who require that this additional
116		capacity be available should pay for it, which means that the capacity costs should
117		be allocated based on the Design-Day. ¹⁰
118		Dr. Abdulle's and Mr. Daniel's proposals to use actual peak-day usage
119		rather than Design-Day usage to allocate demand-related costs should be rejected
120		by the Commission because their approaches do not properly allocate cost
121		responsibility for DEU's system as designed.
122		

¹⁰ Phase II Rebuttal Testimony of Kevin C. Higgins, lines 89-136.

123	Inclu	ding Interruptible Load in the Peak-Day Factor
124	Q.	Do you agree with DEU that interruptible volumes should not be included in
125		the peak-day factor?
126	A.	Yes. I agree with the rebuttal testimony of Mr. Summers that interruptible
127		volumes should not be allocated demand-related costs. ¹¹ I concur that
128		interruptible volumes should not be assigned peak demand cost responsibility
129		because interruptible load does not contribute to DEU's Design-Day demand
130		costs and would be curtailed on a Design-Day. As Mr. Summers correctly points
131		out, this is consistent with guidance in the NARUC Manual that interruptible
132		customers should generally not be allocated coincident demand-related costs. ¹²
133	Q.	In addition to being inappropriate from a cost causation standpoint, would
134		allocating demand-related costs to interruptible load present any rate design
135		challenges?
136		
	А.	Yes. Under the current Transportation Service ("TS") Rate Schedule (and the
137	A.	Yes. Under the current Transportation Service ("TS") Rate Schedule (and the proposed TS Small, Medium, and Large rate schedules), demand-related costs are
137 138	A.	Yes. Under the current Transportation Service ("TS") Rate Schedule (and the proposed TS Small, Medium, and Large rate schedules), demand-related costs are recovered through the Firm Demand Charge, which is applicable to contracted
137 138 139	A.	Yes. Under the current Transportation Service ("TS") Rate Schedule (and the proposed TS Small, Medium, and Large rate schedules), demand-related costs are recovered through the Firm Demand Charge, which is applicable to contracted firm demand only. If increased demand-related costs are allocated to the TS class
137 138 139 140	A.	Yes. Under the current Transportation Service ("TS") Rate Schedule (and the proposed TS Small, Medium, and Large rate schedules), demand-related costs are recovered through the Firm Demand Charge, which is applicable to contracted firm demand only. If increased demand-related costs are allocated to the TS class based on interruptible load, there would not be an efficient means of collecting
137 138 139 140 141	A.	Yes. Under the current Transportation Service ("TS") Rate Schedule (and the proposed TS Small, Medium, and Large rate schedules), demand-related costs are recovered through the Firm Demand Charge, which is applicable to contracted firm demand only. If increased demand-related costs are allocated to the TS class based on interruptible load, there would not be an efficient means of collecting those costs from the interruptible load under the current rate structure. Not only is

¹¹ Rebuttal Testimony of Austin C. Summers, lines 341-355.

¹² See the description of the Coincident Demand Method in the Gas Distribution Rate Design Manual published by the National Association of Regulatory Utility Commissioners, p. 27, which was provided in UAE Exhibit COS 2.1 to my Phase II direct testimony.

143		causation standpoint, there is also no specific mechanism to collect these costs
144		from TS interruptible load in the current tariff.
145		
146	Desig	n-Day / Throughput Weighting
147	Q.	How did DEU respond to parties' positions regarding the appropriate Peak /
148		Throughput weighting for Allocation Factor 230?
149	A.	In Mr. Summers' rebuttal testimony, he addresses the Allocation Factor 230
150		weightings proposed by other parties, which I have summarized in Table KCH-
151		1S, below. Mr. Summers concludes that of all the proposals by other parties, my
152		recommended 67.5% Design-Day / 32.5% Throughput allocation carries the most
153		analytical weight. Mr. Summers argues that my proposal is the most reasonable
154		alternative to the Company's proposal, but he stops short of adopting my
155		recommended weighting instead of the Company's 60/40 weighting. ¹³

Table KCH-1S	
Parties' Recommended Allocation Factor 230	Weightings

Nucor ¹⁴	100% Design Day
Federal Executive Agencies ¹⁵	100% Design Day
American Natural Gas Council ¹⁶	68% Design Day / 32% Throughput
UAE	67.5% Design-Day / 32.5% Throughput
DEU ¹⁷	60% Design Day / 40% Throughput
Division ¹⁸	54% 3-Year Av. Actual Peak-Day / 46% Throughput
Office ¹⁹	52% Actual Peak-Day / 48% Throughput

¹³ Rebuttal Testimony of Austin C. Summers, lines 157-164.
¹⁴ Rebuttal Testimony of Bradley G. Mullins, lines 13-15.
¹⁵ Rebuttal Testimony of Brian C. Collins, page 4, lines 1-10.

¹⁶ Rebuttal Testimony of Austin C. Comils, page 4, intes 1710.
¹⁶ Rebuttal Testimony of Austin C. Summers, lines 1464-467.
¹⁷ Rebuttal Testimony of Abdinasir M. Abdulle, lines 161-164.

¹⁹ Rebuttal Testimony of James W. Daniel, lines 187-188.

158	Q.	Do you continue to recommend a 67.5% Design-Day / 32.5% Throughput
159		weighting for Allocation Factor 230?
160	A.	Yes. My recommended 32.5% throughput weighting is based on DEU's system
161		load factor calculated using the Design-Day. Measuring system load factor
162		relative to the Design-Day is appropriate since the distribution system must be
163		sized to meet the Design-Day capacity. The throughput allocation component
164		should be no greater than the load factor, based on the average utilization of the
165		system relative to the Design-Day. I therefore continue to recommend a 67.5%
166		Design-Day / 32.5% Throughput weighting for Allocation Factor 230.
167		
168	Large	e-Diameter IHP Mains Allocation
169	Q.	By way of background, what is your recommended allocation method for
170		large diameter IHP mains?
171	A.	As I explained in my Phase II direct ²⁰ and rebuttal ²¹ testimonies, I recommend
172		using a 67.5% Distribution Design-Day / 32.5% Distribution Throughput
173		allocation for large diameter IHP mains instead of DEU's 100% Distribution
174		Throughput allocation. Importantly, my recommended method and DEU's
175		current method are both based on the load delivered through the large-diameter
176		IHP system and exclude load directly connected to the feeder line system or
177		Upstream Pipeline.
178		

²⁰ Phase I Direct Testimony of Kevin C. Higgins, lines 199-233.
²¹ Phase II Rebuttal Testimony of Kevin C. Higgins lines 409-422.

UAE Exhibit COS 6.0 Surrebuttal Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 10 of 17

179 Q. Did DEU respond to your proposal in rebuttal?

A. Yes. Mr. Summers responds to my proposal as well as that of Federal Executive
Agencies' witness Mr. Brian C. Collins, who proposes to allocate large-diameter
IHP mains based 100% on Design-Day. Mr. Summers contends that DEU's use of
the 100% Distribution Throughput allocation is superior to the alternatives I and
Mr. Collins propose.

However, Mr. Summers misunderstands an important aspect of my 185 186 proposal. Mr. Summers claims that I am recommending the same 67.5% Design-Day / 32.5% Throughput allocation that I recommend for feeder lines.²² This is 187 incorrect. As I explained in my Phase II direct testimony, my recommended 188 189 allocation method for large-diameter IHP mains is based on the load served through the IHP system,²³ rather than the entire load that is the basis of the feeder 190 line allocation. This is appropriate because load that is directly served by the 191 192 feeder line system or Upstream Pipeline should not be allocated costs of the largediameter IHP system. Any allocation method approved by the Commission for 193 large diameter IHP mains should exclude load that is directly served by the feeder 194 195 line system or Upstream Pipeline. The cost-of-service results that Mr. Summers presents related to my 196

197 proposal should be disregarded because Mr. Summers misinterpreted my

recommendation. The impact of my recommended large diameter IHP mains

²² Rebuttal Testimony of Austin C. Summers, lines 195-196.

²³ Phase II Direct Testimony of Kevin C. Higgins, lines 209-223.

199	allocation is presented in UAE Exhibit COS 2.2, pages 3 and 4 to my Phase II
200	direct testimony.

Q. Did any other parties respond to your large diameter IHP mains allocation
 method in rebuttal?

- A. Yes. Nucor witness Mr. Mullins agrees that the large diameter IHP allocation
 should include the Design-Day, excluding high pressure service. However, Mr.
- 205 Mullins recommends a 100% Design-Day allocation.²⁴
- 206 Conversely, Mr. Daniel recommends that my proposed allocation be
- rejected because he claims that it is contrary to what DEU says the large diameter
 mains are designed for.²⁵
- Q. Do you continue to recommend that the large diameter IHP mains allocation
 incorporate a Distribution Design-Day component?
- A. Yes. I continue to recommend using a 67.5% Distribution Design-Day / 32.5%
- 212 Distribution Throughput allocation method for large diameter IHP mains. As
- 213 DEU acknowledges in discovery, its entire distribution system is design to meet a
- 214 Design-Day scenario.²⁶ My recommended method appropriately balances these
- 215 Design-Day considerations with the Distribution Throughput component upon
- which DEU's current allocation method is based.
- 217
- 218

²⁴ Rebuttal Testimony of Bradley G. Mullins, lines 27-39.

²⁵ Rebuttal Testimony of James W. Daniel, lines 216-226.

²⁶ DEU response to UAE Data Request 3.01, included in UAE Exhibit COS 6.1.

219 Magna LNG Facility Rate Base

Q. Did DEU respond to your recommended corrections to the LNG facility
 gross plant, accumulated depreciation and accumulated deferred income
 taxes ("ADIT")?

Yes. Mr. Summers conceptually agrees with my recommended corrections but 223 A. offers more precise information about the specific FERC accounts in which the 224 gross plant balances were recorded.²⁷ I have incorporated this FERC account 225 information as a refinement to my adjustment, which is included in my surrebuttal 226 cost-of-service study. I note that I effectuated this adjustment by increasing the 227 balance in Account 364 (LNG Plant) and decreasing the balances in the specified 228 FERC accounts by the same amount. I consider this adjustment to be provisional 229 for the purpose of this case, and recommend that DEU separately track its LNG-230 related plant in the proper FERC accounts going forward. I also recommend that 231 232 the LNG-related accumulated depreciation and ADIT be tracked separately from the non-LNG-related balances to facilitate the proper allocation of these rate base 233 components. 234

²⁷ Rebuttal Testimony of Austin C. Summers, lines 289-332.

UAE Exhibit COS 6.0 Surrebuttal Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 13 of 17

236	Distribution Depreciation Expense Allocation			
237	Q.	How did DEU respond to Mr. Mullins' proposal to allocate distribution		
238		depreciation expense in the same manner as the underlying plant by FERC		
239		account?		
240	A.	Mr. Summers acknowledges that allocating depreciation expense in the same		
241		manner as the underlying assets could be justified but does not adopt Mr. Mullins'		
242		proposal. ²⁸ Instead, Mr. Summers continues to utilize the gross plant allocator to		
243		allocate distribution depreciation expense.		
244	Q.	Do you believe that Mr. Mullins' proposal has merit?		
245	A.	Yes. Allocating distribution depreciation expense in a more precise manner		
246		consistent with the underlying plant better aligns with cost causation. I have		
247		incorporated this more granular allocation of distribution depreciation expense		
248		into my surrebuttal cost-of-service study.		
249				
250	IV.	TS RATE DESIGN		
251	Q.	In your direct testimony you expressed concerns about the relationship		
252		between DEU's proposed TSS and TSM volumetric charges. ANGC witness		
253		Mr. Oliver is critical of your comments. Do you wish to respond?		
254	A.	Yes. In my direct testimony I noted that a customer transporting 2,000 Dth/month		
255		(a relatively large TSS customer or a relatively small TSM customer) would pay a		
256		far lower volumetric charge under DEU's proposed TSS rates than under DEU's		

²⁸ Rebuttal Testimony of Austin C. Summers, 284-288.

UAE Exhibit COS 6.0 Surrebuttal Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 14 of 17

257	proposed TSM rates for the same level of usage. Since the new TS classes would
258	be differentiated by size, we should expect that some customers whose gas
259	consumption is near the boundary of the usage level defining the rate class will
260	end up migrating from one class to another based solely on variations in their
261	usage. For this reason, we should prefer that the rate design provide a smooth
262	transition from one class to the other. As I noted in my direct testimony, DEU's
263	volumetric rate design falls far short of this objective. Although I noted this
264	problem, I did not attempt to redesign DEU's TSS and TSM volumetric rates, as I
265	believe that responsibility rests first and foremost with DEU.
266	Mr. Oliver takes issue with my commentary and speculates that my
267	analysis "appears designed to block needed equity improvements for TSS
268	customers by creating a specter of a flaw in the Company's rate design." ²⁹ This is
269	nothing more than gratuitous conjecture on Mr. Oliver's part. Rate design is
270	important for ensuring rational rate relationships. Under DEU's proposed rate
271	design, a TSS customer that experiences a very small increase in usage that causes
272	it to migrate to the TSM class will experience a nearly 50% increase in its
273	volumetric charge. I expect there will be some disgruntled customers when this
274	occurs. I am not "creating a specter of a flaw." The potential impact speaks for
275	itself. I am simply pointing it out.
276	

²⁹ Rebuttal Testimony of Timothy B. Oliver, lines 656-658.

UAE Exhibit COS 6.0 Surrebuttal Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 15 of 17

277	Q.	Are there examples of rate design improvements for which UAE has
278		advocated that have benefitted the TSS class?
279	A.	Yes. UAE participated in the cost of service and rate design workshops that were
280		ordered by the Commission at the conclusion of DEU's last general rate case. As
281		part of that effort, UAE pointed out certain flaws in DEU's calculation of its TS
282		demand charge. To DEU's credit, the Company adopted in this case the
283		improvements recommended by UAE, which resulted in a decrease in the demand
284		charge for all TS classes. This change produces a significant benefit to the
285		customers populating the TSS class even if the TS class were not split up, because
286		on the whole, a higher proportion of service to smaller customers is firm. UAE,
287		which has members in all three proposed TS classes, did not recommend the
288		improvement in the demand charge calculation in order to advantage one class
289		over another, but rather in the interest of good rate design. My discussion of rate
290		design issues in this case in consistent with UAE's long-term advocacy for good
291		rate design practice.

293 V. COST-OF-SERVICE RESULTS SUMMARY AND REVENUE

- 294 ALLOCATION CONSIDERATIONS
- 295 Q. Have you prepared an updated summary of the class cost-of-service results
- using the allocation methods you are recommending in this surrebuttal
- 297 testimony, at the revenue requirement you recommended in your Phase I
- 298 rebuttal testimony?³⁰
- A. Yes, these results are summarized in Table KCH-2S, below. I recommend that
- 300 these results be used to guide the revenue allocation to classes at the overall
- 301 revenue requirement that the Commission approves in this case, prior to taking
- 302 rate mitigation into account, as I discuss below.
- 303
- 304 305

Table KCH-2S Cost-of-Service Results with UAE Surrebuttal COS Recommendations At UAE Phase I Rebuttal Revenue Requirement

		DNG Revenue Change to Achieve Equalized ROR		DNG Revenue Change Plus TBF Discount	
	Current DNG	\$ Increase/	% Increase/	\$ Increase/	% Increase/
Class	Revenue ³¹	(Decrease) ³²	-Decrease	(Decrease)	-Decrease
(a)	(b)	(c)	(d)	(e)	(f)
GS	\$383,506,941	\$33,427,425	8.72%	\$36,673,394	9.56%
FS	\$2,822,045	\$796,430	28.22%	\$846,532	30.00%
IS	\$264,568	(\$72,227)	-27.30%	(\$70,054)	-26.48%
TSS	\$14,170,736	(\$2,654,939)	-18.74%	(\$2,471,111)	-17.44%
TSM	\$12,873,715	\$1,717,916	13.34%	\$1,971,442	15.31%
TSL	\$10,685,465	\$4,634,240	43.37%	\$4,955,425	46.38%
TBF	\$6,473,467	\$3,528,581	54.51%	(\$532,446)	-8.23%
NGV	\$2,605,568	\$397,973	15.27%	\$402,219	15.44%
Total	\$433,402,504	\$41,775,400	9.64%	\$41,775,400	9.64%

³⁰ My recommended revenue requirement in my Phase I surrebuttal testimony was unchanged from my Phase I rebuttal testimony.

³¹ Reflects the correction to the TS and TBF classes' current revenues as I discussed in my Phase II direct testimony, lines 92-111, which has not been rebutted by any party, to the best of my knowledge.

³² The overall increase differs slightly (-\$45) from the increase recommended in my Phase I rebuttal testimony due to minor jurisdictional allocation impacts resulting from my LNG rate base correction.

UAE Exhibit COS 6.0 Surrebuttal Testimony of Kevin C. Higgins UPSC Docket 22-057-03 Page 17 of 17

306	Q.	Do you believe that the Commission should consider applying rate mitigation
307		in this case?
308	A.	Yes, the Commission should consider implementing a rate mitigation plan that
309		would temper the dramatic impacts that would otherwise be experienced by
310		certain classes. In particular, the Commission should consider limiting the extent
311		to which classes can experience rate decreases while other classes receive
312		percentage increases that are substantially above the system average increase.
313		The need for rate mitigation would be even more critical if certain costs allocation
314		proposals of Dr. Abdulle or Mr. Daniel are adopted, which would exacerbate the
315		significant impacts on the TSM and TSL classes. Given the magnitude of the
316		potential class impacts, it may be necessary spread a portion of the revenue
317		shortfall resulting from the rate mitigation to the GS class rather than confining
318		the rate mitigation impact to the TS classes.
319	Q.	Does this conclude your Phase II surrebuttal testimony?
320	A.	Yes, it does.