

IRP Workshop

April 2, 2014

2014 IRP

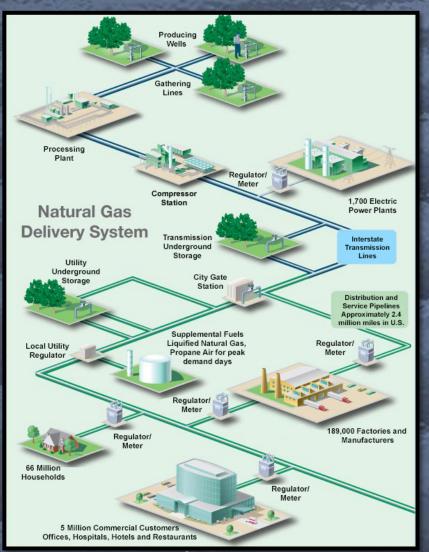
- February 25th
 - IRP Schedule
 - Review of IRP Order
 - December 5th Weather Event
 - Wexpro II

2014 IRP Schedule

- April 2nd
 - Master Planning of System
 - Gas Control Coordination
 - Monticello Event

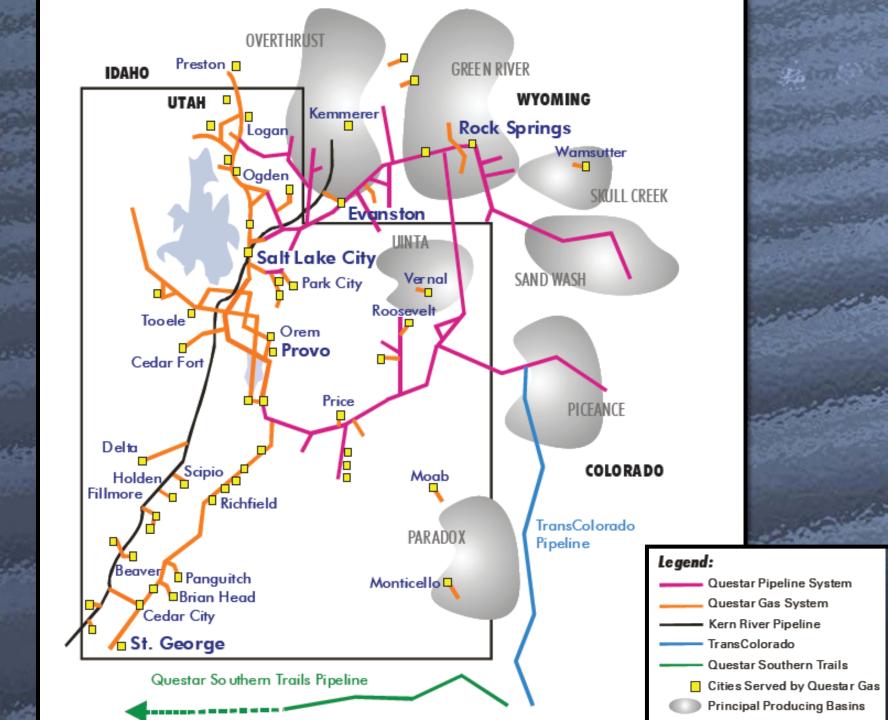
2014 IRP Schedule

- April 30th 10am- Noon
 - Heating Season Review
 - Review RFP
 - Annual Demand & Peak Day Forecasting (Impact of Energy Efficiency)
 - Clean Air
 - Report on Lakeside II
- June 25th
 - Present IRP to Utah PSC



System Planning and Analysis

- Natural Gas Delivery Systems
- Predicting Flow
- Gas Network Model
 Verification
- Pipe Sizing
- Model Utilization
- Master Planning Model



Natural Gas Delivery System

Image from AGA.org

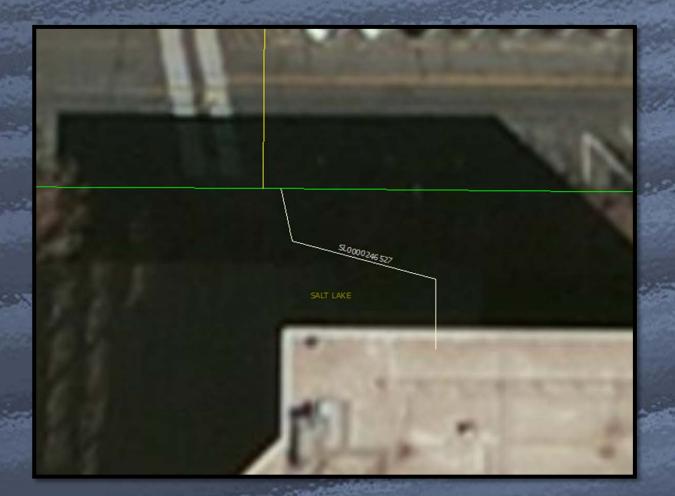
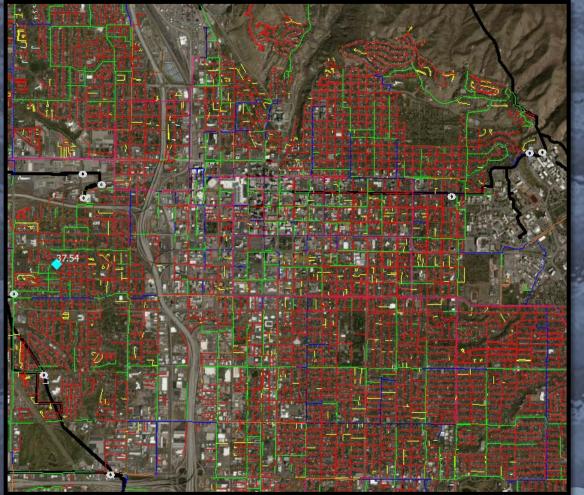
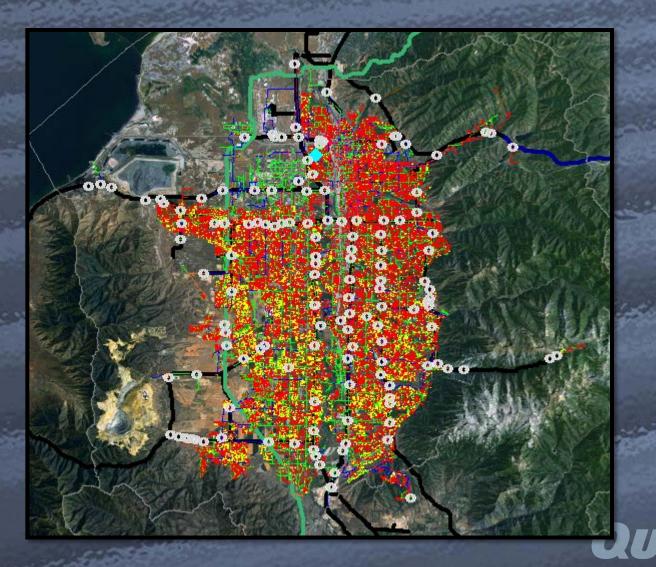

Customer Meter

Image from Google Earth

Service Line



Intermediate High Pressure Mains


QUESTAR

Regulator Stations

High Pressure Pipes

System Planning and Analysis

STAR[®]

Transmission Lines

Wells and Production

Image from Wikipedia

Fundamental Flow Equation

100	$Q = (n+1) 77.54 \frac{T_b}{R} D^{2.5} e$	$\left(P_{1}^{2}-P_{2}^{2}-\left(\frac{0.0375G(h_{2}-h_{1})P_{a}^{2}}{ZT_{a}}\right)\right)^{0}$
	$Q = (n+1)^{7/1.54} \frac{1}{P_b} D^{-1} e^{-1}$	$\boxed{ GT_a LZf }$

and a	A CONTRACTOR OF			C. P. L. C. L. C. P. L. C.
	D	=	Pipe internal diameter	in
	е	=	Pipeline efficiency	dimensionless
	f	=	Pipeline friction factor	dimensionless
	G	=	Gas specific gravity relative to air	dimensionless
	h1	=	Upstream node elevation	ft
	h2	=	Downstream node elevation	ft
	L	=	Pipe length	mi
2	n	=	Number of additional pipes in parallel	dimensionless
6.5	P1	=	Upstream node pressure	psia
	P2	=	Downstream node pressure	psia
2	Ра	=	Average pipeline pressure	psia
2	Pb	=	Base pressure of the standard gas state	psia
	Q	=	Flow rate	SCFD (Klb/hr for steam)
	Та	=	Average gas flowing temperature for a pipe	°R
	Tb	=	Base temperature of the standard gas state	°R
	Z	=	Gas compressibility factor	dimensionless

Pipe Properties

Salt Lake Model ~128,000 Pipes

Attribute	Value	Unit
Active State	Active	
Ambient Temperature	60	deg.F
Average Pressure	33.2	psig
Control Node Name		
Diameter	3.71	in
Efficiency	0.9	
Flow	19.492	mscfh
Flow Absolute	19.492	mscfh
Friction Factor	0.0179	
From-Node Name	No80610	
From-Node Pressure	33.26	psig
Heat Transfer Coefficient	0.22	btu/hr-ft^2-deg.F
Length	183.91	ft
Linepack	0	mmscf
Load	4.982	mscfh
Material	P-AL	
Multiple Identical Pipes	0	
Name	201831	
Result Downstream Temperature	60	deg.F
Result Downstream Velocity	23.08	ft/s
Result From-Node Temperature	60	deg.F
Result Heat Loss Per Length	0	kbtu/hr-ft
Result Higher Heating Value	1000	btu/scf
Result Lower Heating Value	905.5	btu/scf
Result Pressure Change	0.11	psig
Result Pressure Change Per Unit Length	3.13	psi/mi
Result Pressure Drop Squared Per Unit Length	284.7	psi^2/mi
Result Pressure Ratio	1.002	
Result Specific Gravity	0.6	
Result Subsystem ID	3	
Result To-Node Temperature	60	deg.F
Result Upstream Velocity	23.02	ft/s
Reynolds Number	127189	
Roughness	0.00048	in
Service State	Enabled	
Specific Gravity	0.6	
Status	Known	
Steam Energy Loss	0	btu/hr
Super Heat	0	deg.F
Supercompressibility	0.993	
Symbol Name	Default Pipe	
Temperature	60	deg.F
Thermal Flow	0.5	kdth/d
To-Node Name	No80611	
To-Node Pressure	33.15	psig

High Pressure Model

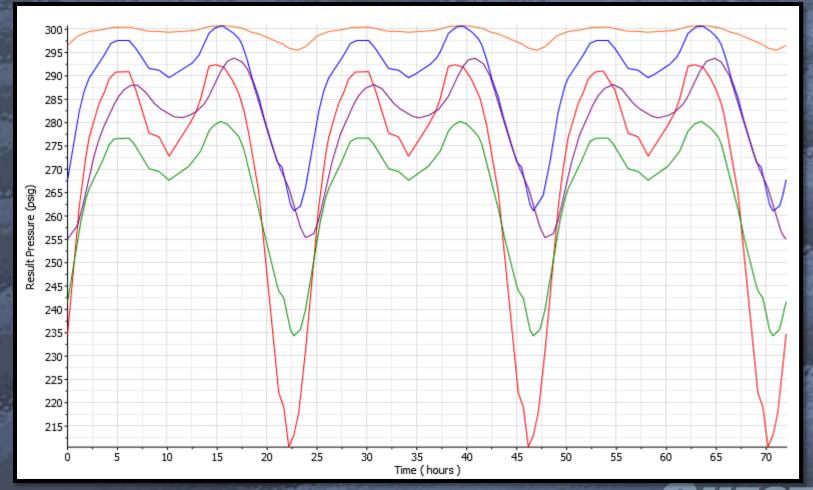
000

Approximate Values

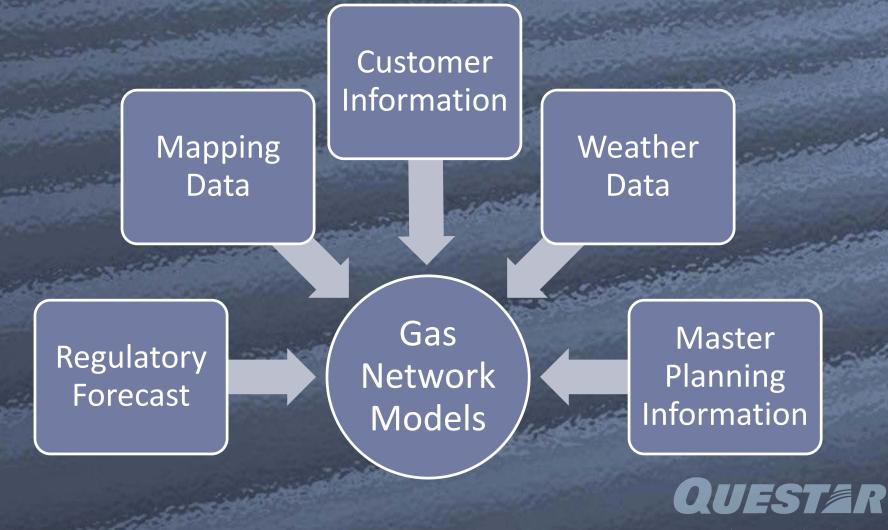
• 4,300 pipes

1,200 Regulator Stations
100 Industrial Customers

200 Supply Points


 30 Unique Inlet Pressures
 12 MAOP Zones

System Planning and Analysis


8000 **60**00

Unsteady-State

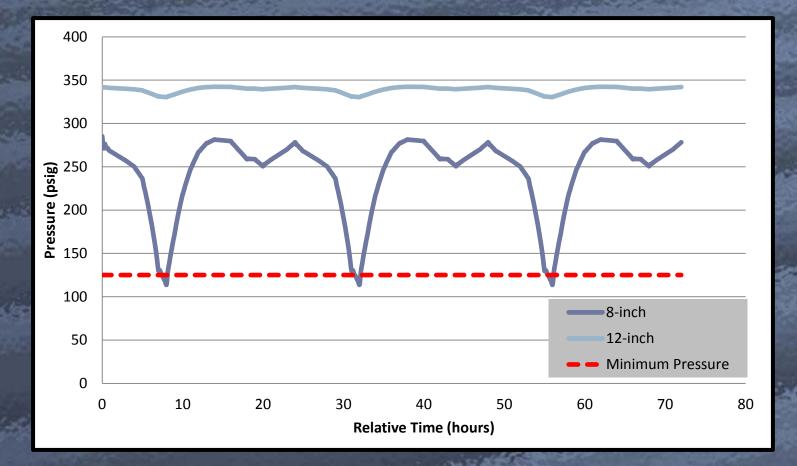
QUESTAR

Gas Network Model Data

Model Verification

Goal

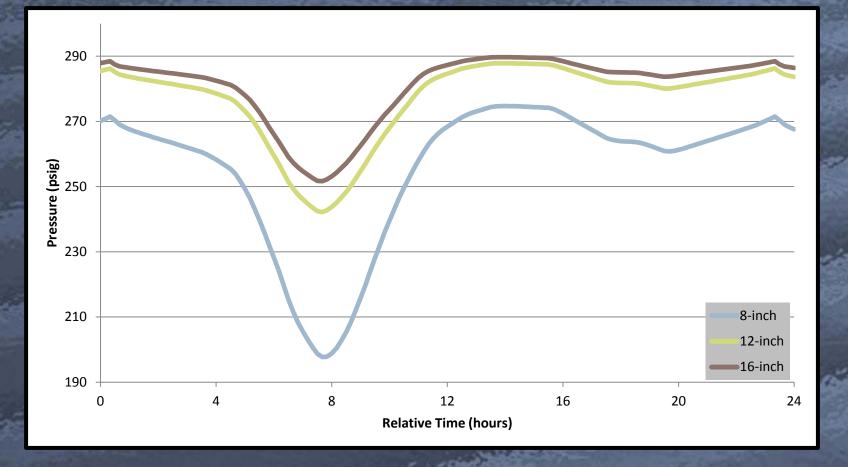
- Verify that models accurately (+/-7%) predict system pressures given a set of conditions
- Variables
 - Heating Degree Days (Temperature)
 - Customer usage
 - Station pressures and volumes
 - Taken from analog charts and SCADA


How Much Capacity Does an 8-inch Pipe Have?

It depends...

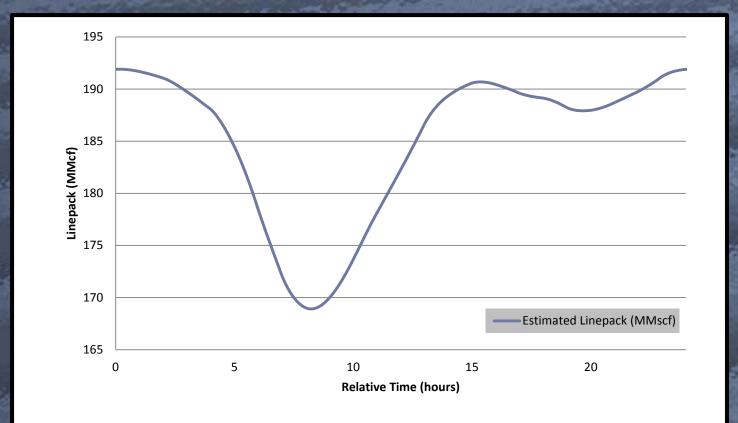
- What is the inlet pressure to the pipe?
- What is the required pressure at the end of the pipe?
- Does the amount of expected flow impact other areas of the system?

Ideal Sizing Analysis



Known Maximum Flow

System Planning and Analysis


EST R

Sizing Analysis Example

Current Flow / Projected Flow

System Line Pack

Increased Reliability, System Benefit (Pack and Capacity), and Flexibility

the rate

Model Utilization

Customer Analyses

- New Customer Feasibility
- Rate Change Analysis
- Interruption Analysis

System Analyses

- State of the System
- Feeder Line Replacement Sizing
- Joint Operations
- Gas Supply Requirements
- Construction Timeline
- Equipment Capacity
- Isolation
- Growth Identification
- Contingency Planning
- Long Term Planning

Master Planning Model

- Location Specific Growth
 - 5 Years
 - 25 Years
- Known High Pressure and Intermediate High Pressure Improvements
- Known Increased use for Industrial Customers
 Utilized for Sizing and Locating Future System Improvements

Master Planning Model

Central Tap

2A-inch

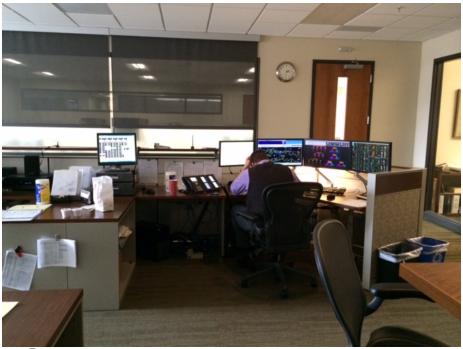
Required by 2018 in Projected Model

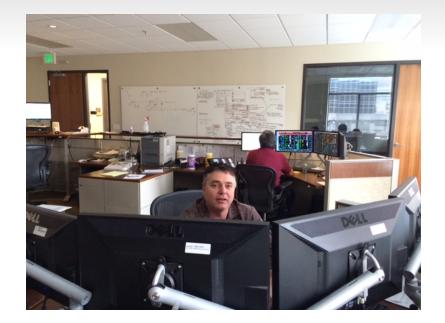
5 Year Master Planning Model Does not Require this Improvement (Pmin ~500 psig)

12-inch+

St George

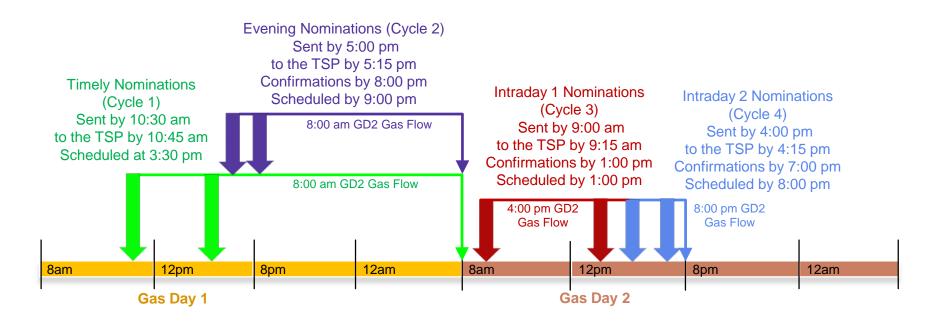
System Planning and Analysis


R


Questions

Introduction

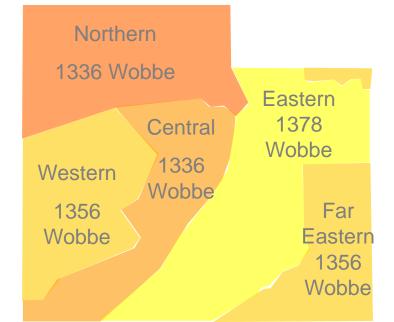
Greg Paige Jon Wheeler Ron Jorgensen


Gas Control Basics

- Shared Gas Control
 - Located in Questar Center (333 S. State)
 - Back-up locations and servers
 - Approx. 1/3 of Controllers time spent on QGC
- Supervisory Control and Data Acquisition (SCADA)
 - Several thousand QGC data points on SCADA
 - 20 control points (remote from Gas Control)
- Purpose and Need
 - Oversee real-time operations

Basic Gas Control Functionality

Meet scheduled nominations and demands daily (NAESB standards)

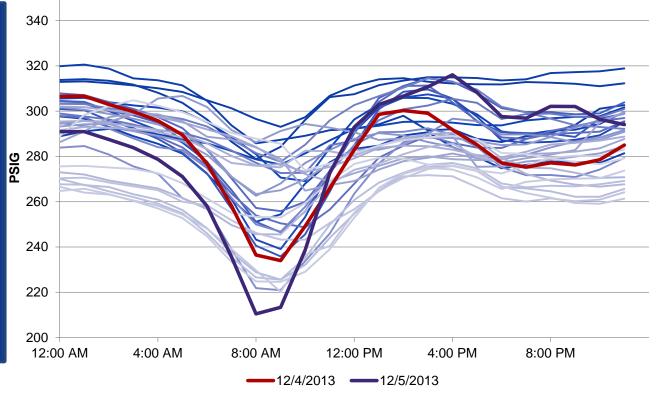

What we do as Gas Control

- Preparations for each day
 - Ensure adequate pressures for morning 'pull' figuring in transit times (gas moves roughly 5 mph)
 - Start/stop compression (integrated system operations)
 - Adjust Storage supply and use of No-notice (as needed)
 Based on QGC specified cut and boost
- Daily meeting on Questar Gas gas supply plan
 - Review load forecasting
 - Discuss nomination strategy during high load events
 - Assist with service interruptions including replacement of lost production (e.g. field or production plant "freeze-offs")

What we do as Gas Control

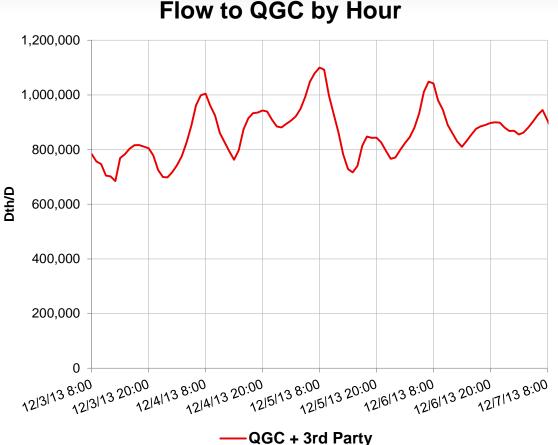
Ensure proper gas quality at city gates

- Coordinate scheduled line work
 - Includes participation in Western area pipeline maintenance meetings (avoid schedule conflicts)


QUEST[®]

Manage System Pressures

Hourly W. Jordan Pressures by Day (12/1/13 - 1/1/14)


"Tools in the Toolbox"

- Experienced controllers
 Ten controllers with an average of 10+ years of experience
- ✓ Control room mgmt. plan
 PHMSA 49 CFR § 192.631
- ✓ Integrated system coordination
- Multiple interconnects and QPC delivery points
- Line Pack management
- ✓ Storage
- ✓ No notice service

Efficiencies and Benefits

- Shared Gas Control staff
- Avoid duplicated \checkmark SCADA and back up systems & sites
- **Reliability:** \checkmark

Real time response to changing system needs

- ✓ Load forecasting
- Manage No-notice \checkmark service / use of storage

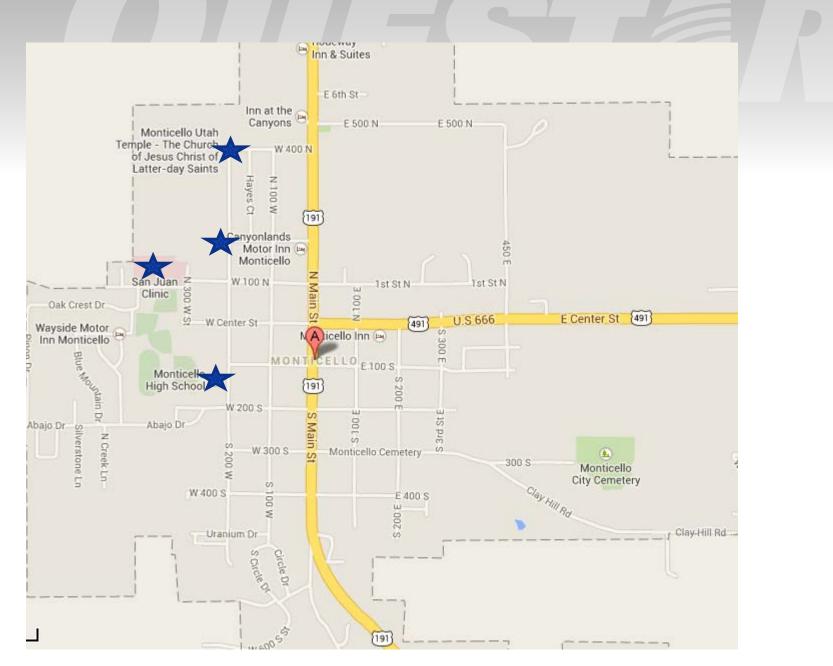
Important Reliability Considerations

- ✓ 24/7 system control and monitoring by qualified & experienced controllers
- Prompt response to SCADA alarms & emergencies
- Timely adjustments to system operations (e.g. balance loads, maintain pressures, ensure gas quality)

Wrap-up

- Invitation to tour Gas Control (date TBD)
- Questions ?

- 8:30am Began Receiving No-Heat Calls
- 9:30am Verified only 1.5 lbs pressure in distribution system
- 9:45am Shut outlet valve of QGC Regulator Station
- 10:00am Dispatched 35 Employees from Salt Lake, Bluffdale, Springville, Vernal, Price, Richfield, Ephraim and Moab



- 10:30am Verified Integrity of QGC Tap Line from Northwest Pipeline
- 10:30am Eastern Regional Manager leaves for Monticello to the Field Command Center

- 10:30am Dispatched CNG Trailers for:
 - -Elementary School
 - -High School
 - -Health Service Clinic
 - -LDS Chapel (emergency shelter)

- 11:00am-9:00pm Shut off service to homes
- Noon Verified pressure loss from Northwest Pipeline
- 9:00pm-10:00pm Purged system-verified all services were shut off.
- 10:00pm-Midnight Coordinated with Monticello Officials to restore service to critical buildings and seniors first.

Monticello Outage

- November 1, 2013, 7:30am Continued restoring service to Entire Community.
 (750 Services)
- November 2, 2013, Midnight All services restored except 7
- November 3, 2013, Sunday Morning Coordinated with Sheriff, Locksmith or Friends to relight the remaining 7 customers.

Preventive

- Met with Northwest Pipeline to ensure no reoccurrence
- Installed telemetering on tap line
- Northwest Pipeline reimbursed Questar Gas Company for all expenses incurred

